Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (2024)

Aleksandr V. Khmelevaleksandr.khmelev@phystech.eduRussian Quantum Center, Skolkovo, Moscow 121205, RussiaMoscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, RussiaQSpace Technologies, Moscow 121205, Russia  Alexey V. DuplinskyQSpace Technologies, Moscow 121205, RussiaHSE University, Moscow 101000, Russia  Ruslan M. BakhshalievQSpace Technologies, Moscow 121205, Russia  Egor I. IvchenkoRussian Quantum Center, Skolkovo, Moscow 121205, RussiaMoscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, RussiaQSpace Technologies, Moscow 121205, RussiaNational University of Science and Technology MISIS, Moscow 119049, Russia  Liubov V. PismeniukQSpace Technologies, Moscow 121205, Russia  Vladimir F. MayborodaNational University of Science and Technology MISIS, Moscow 119049, Russia  Ivan S. NesterovRussian Quantum Center, Skolkovo, Moscow 121205, RussiaQSpace Technologies, Moscow 121205, Russia  Arkadiy N. ChernovRussian Quantum Center, Skolkovo, Moscow 121205, RussiaMoscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, RussiaQSpace Technologies, Moscow 121205, RussiaNational University of Science and Technology MISIS, Moscow 119049, Russia  Anton S. TrushechkinNational University of Science and Technology MISIS, Moscow 119049, RussiaSteklov Mathematical Institute of Russian Academy of Sciences, Moscow 119991, Russia  Evgeniy O. KiktenkoRussian Quantum Center, Skolkovo, Moscow 121205, RussiaNational University of Science and Technology MISIS, Moscow 119049, Russia  Vladimir L. Kurochkinv.kurochkin@rqc.ruRussian Quantum Center, Skolkovo, Moscow 121205, RussiaMoscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, RussiaQSpace Technologies, Moscow 121205, RussiaNational University of Science and Technology MISIS, Moscow 119049, Russia  Aleksey K. Fedorovakf@rqc.ruRussian Quantum Center, Skolkovo, Moscow 121205, RussiaNational University of Science and Technology MISIS, Moscow 119049, Russia

Abstract

The Micius satellite is the pioneering initiative to demonstrate quantum teleportation, entanglement distribution, quantum key distribution (QKD), and quantum-secured communications experiments at the global scale. In this work, we report on the results of the 600-mm-aperture ground station design which has enabled the establishment of a quantum-secured link between the Zvenigorod and Nanshan ground stations using the Micius satellite. As a result of a quantum communications session, an overall sifted key of 2.5 Mbits and a total final key length of 310 kbits have been obtained. We present an extension of the security analysis of the realization of satellite-based QKD decoy-state protocol by taking into account the effect of the detection-efficiency mismatch for four detectors. We also simulate the QKD protocol for the satellite passage and by that validate our semi-empirical model for a realistic receiver, which is in good agreement with the experimental data. Our results pave the way to the considerations of realistic imperfection of the QKD systems, which are important in the context of their practical security.

preprint: APS/123-QED

I Introduction

The development of computational devices opens new possibilities to attack cryptographic systems, whose security is based on computational assumptions.In particular, powerful enough quantum computing devices have the potential to compromise the security of widely deployed cryptographic tools[1, 2], such as those based on the complexity of integer factorization[3].One of the solutions is to switch to information security tools[4, 5, 6, 7, 8],which are considered to be resistant to attacks with quantum computers.Specifically, quantum key distribution (QKD), which is the technology that allows establishing secure communications between distinct parties with the security guaranteed by the law of physics[4, 5], offers such a possibility.The idea behind QKD is to encode information in states of single photons and exchange them in a way that prevents uncontrollable eavesdropping.By following such a QKD protocol properly, two distant parties share strings of random bits — quantum-generated secret keys.Although remarkable progress in QKD has been performed[4, 5, 6],one of the most important problems is photon loss in the channel,so that the distance of peer-to-peer QKD with reasonable key rates is about thousand of kilometers[9, 10].This seems to be a limitation to applying the QKD technology at the global scale.

Overcoming this challenge of the distance is possible with the use of satellite-to-ground QKD[11, 12, 13, 14].The launch of a low-Earth-orbit Micius satellite for implementing decoy-state QKD[11],realizing intercontinental quantum-secured communications[13],and deploying an integrated space-to-ground quantum communication network of the length over 4,600 kilometres[14],have been successfully demonstrated during the last years (for a review, see Refs.[15, 16]).The overall losses for the satellite-to-ground link are small compared to ground-level transmission due to negligible attenuationabove the atmosphere and insignificant vertical turbulence in the lower atmosphere.

Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (1)


Several satellite-based QKD research projects demonstrating diverse technology concepts have been initiated[17, 18, 19, 20, 21, 22, 23].The various QKD models[24, 25, 26, 27, 28, 29] investigating feasible concepts and designs of quantum networks in spacehave been significantly developed since the first satellite-based quantum communication experiments.However, these models commonly use a limited dataset from the quantum experiments provided by the Micius satellite to validate these QKD models.Hence, it results in restricted validation of satellite-based QKD models.Specifically, they do not take into account several potentially important imperfections in the realization of QKD protocols.For example, the problem of detector efficiency mismatch[30, 31, 32],which has been recently investigated in the context of the decoy-state QKD protocol[33, 34],seems to be important for consideration in the security analysis.

In this paper,we report on the results of establishing a quantum-secured link between the Zvenigorod and Nanshan ground stations using the Micius satellite.We realize the decoy-state QKD protocol and obtain a sifted key length of 2491kbits and a total final key length of 310kbits.This has enabled transferring messages that are encrypted via a one-time pad with quantum-generated keys over 3800 km.Also, we present a modification of the security analysis of the realization of satellite-based QKD decoy-state protocol by taking into account the effect of the detection-efficiency mismatch.We also simulate the QKD protocol for that satellite passage, validate our semi-empirical model for a realistic receiver, and find its agreement with the experimental data.Our results pave the way to the considerations of realistic imperfection of the QKD systems,which are important in the context of their practical security.

The paper is organized as follows.In Sec.II, we describe the developed ground station and report the results of the joint QKD experiment betweenthe Micius satellite and the Zvenigorod ground station.In Sec.III, we provide a semi-empirical model of satellite-to-ground QKD and compare its outcome to experimental results.The four detector efficiency mismatch analyses of secure key generationduring satellite-to-ground quantum communication are considered in Sec.IV.Finally, in Sec.V, we provide the results of the quantum secure message transfer between Nanshan and Zvenigorod;we summarize our results and conclude in Sec.V

II Satellite-to-ground QKD experiment

In this section, we describe our ground station[36] that is equipped with a 600-mm-aperture reflector telescope and placed at the Zvenigorod observatory(Moscow region, 555555°42superscript4242^{\prime}\,N, 363636°45superscript4545^{\prime}\,E, altitude of 198m).The main characteristics are listed in Tables1, 2, and 3.Also, we present the results of the joint satellite-to-ground QKD experiment and provide the observable optical characteristics and noise level.A general scheme of the quantum communication procedure is given in Fig.1a.

II.1 Zvenigorod ground station

The ground station has a two-stage acquiring, pointing, and tracking (APT) system that ensures high angular stability for the optical signaland suitable operating conditions for the photon states decoder during quantum communication.The general scheme and the hardware at the Zvenigorod ground station are illustrated in Fig.1b and Fig.1c, respectively.

The coarse control of the station is achieved by a motorized mount of the primary telescope,which uses the calculated satellite location in orbit, and an auxiliary 70-mm telescope with a camera for pointing to the satellite.The algorithm on the camera determines the image center of the satellite, and the telescope orientation is adjusted.Figure1d shows a frame from the coarse camera during satellite tracking.The tracking error of the coarse control stage is typically less than 100 μ𝜇\murad.

Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (2)

The ground station features an optical signal analysis and processing system (APS) for adjusting the beam deflection,rotating the polarization reference frame[35], and spectrum filtering the photons.The main task of APS is the fine control of the beams, which includes a fast-steering mirror and a high-speed camera.As a result, the high-frequency deflections of the co-aligned beaconbeam with quantum signals are corrected to an accuracy of less than 10 μ𝜇\murad.Moreover, there are spectrum filters to suppress the background noise and a motorized half-wave plate to reduce decoding errors (see Sec.III).

The polarization analyzer is configured in the classical BB84 scheme with a 50:50 beam splitterand includes four types of channels: horizontal (H), vertical (V), diagonal (D), and antidiagonal (A) polarization.To distinguish orthogonal quantum states, two polarization beam splitters with additional polarizers on the reflection side are utilized.The mean polarization contrast ratio of the decoder is more than 350:1, which is measured in multiphoton mode.The quantum signals are coupled into four optical fibers with a core diameter of 105 μ𝜇\mum and detected by the single-photon module.The time-to-digital converter with picosecond resolution is used to record the registration moment.

Synchronization pulses are also detected by the single-photon module, and detection moments are recorded by the time-to-digital converter.Such an extra light channel allows us to find a correlation between the quantum states transmitted from the satelliteand recorded on the ground station for the following sifting procedure[37, 38],as well as to suppress the background noise with temporal filtering[11].

II.2 Joint QKD experiment with the Micius satellite

The joint QKD experiment between the Micius satellite and the Zvenigorod ground station took place on March 1, 2022,at night with low background noise. We received quantum states from the Micius satellite for roughly 220 seconds,with a reception angle area (-3 dB) for the four co-aligned channels of 50 μ𝜇\murad.Figure2a shows the tracking error of the satellite beacon laser,which was typically less than 10 μ𝜇\murad and corresponded to the angle deviations of the quantum signal.

The Micius satellite passage had a peak elevation angle of 54°and a maximum photon count rate was more than 49 kHz (see Fig.2b), while the distance between the satellite and the ground station varied from 600 km to 1,100 km.The stable bidirectional tracking started at an elevation angle of 28°.The operating elevation angles of the Zvenigorod ground station ranges from 20°to 90°above the horizon.

The measured photon count rates differ for the four states,which is mostly due to auxiliary polarization filtering on the reflection sides of PBS (see Fig.1b) that affects their optical efficiency.To determine the observable transmission efficiency of the ξ𝜉\xi-type channel,we assume that the photon count rate can be described as follows:

ξ(t)=pξ[(Tηξ(t)+C)+αfpα(1eαηξ(t))],subscript𝜉𝑡subscript𝑝𝜉delimited-[]𝑇subscript𝜂𝜉𝑡𝐶subscript𝛼𝑓subscript𝑝𝛼1superscript𝑒𝛼subscript𝜂𝜉𝑡\mathcal{F}_{\xi}(t)=p_{\xi}[(T\eta_{\xi}(t)+C)+\sum\limits_{\alpha}fp_{\alpha}(1-e^{-\alpha\eta_{\xi}(t)})]~{},(1)

where pξsubscript𝑝𝜉p_{\xi} is the fraction of photons among all received ones that enter the ξ𝜉\xi-type channel(for the symmetric BB84 protocol with equal probability of basis choice for both transmitter and receiverpξ=1/4subscript𝑝𝜉14p_{\xi}=1/4, ξ{H,V,D,A}for-all𝜉HVDA\forall\,\xi\,\in\,\{\rm H,V,D,A\}),ηξ(t)subscript𝜂𝜉𝑡\eta_{\xi}(t) is the time-dependent overall transmission efficiency of the ξ𝜉\xi-type channel at 850 nm between the Micius satelliteand the ground station, f𝑓f is the repetition frequency of the quantum signals, α{μ,ν,λ}𝛼𝜇𝜈𝜆\alpha\,\in\,\{\mu,\nu,\lambda\} are the intensitiesof signal μ𝜇\mu, decoy ν𝜈\nu, and vacuum λ𝜆\lambda=0 coherent states and pα{ps,pd,pv}subscript𝑝𝛼subscript𝑝𝑠subscript𝑝𝑑subscript𝑝𝑣p_{\alpha}\in\{p_{s},p_{d},p_{v}\}are their probabilities to be sent by satellite, respectively.The fixed coefficients T𝑇T and C𝐶C in Eq.(1) denote satellite noise and constant background noise, respectively.AppendixB specifies the coefficients in detail.The next components of the function ξ(t)subscript𝜉𝑡\mathcal{F}_{\xi}(t) correspond to the count rate for a source with the intensity ofsignal, decoy, and vacuum states, according to the general model[33, 34].

The overall link efficiencies ηξ(t)subscript𝜂𝜉𝑡\eta_{\xi}(t) of the ξ𝜉\xi-type channel according to our semi-empiricalsatellite-to-ground QKD model[39] are given by:

ηξ(t)=εDT2(γd)2100.4ϰcscθEl(10.0012cot2θEl)ηopt,ξηdet,subscript𝜂𝜉𝑡𝜀superscriptsubscript𝐷𝑇2superscript𝛾𝑑2superscript100.4italic-ϰsubscript𝜃El10.0012superscript2subscript𝜃Elsubscript𝜂opt𝜉subscript𝜂det\eta_{\xi}(t)=\frac{\varepsilon D_{T}^{2}}{(\gamma d)^{2}}\cdot 10^{-0.4\varkappa\csc{\theta_{\rm El}}\cdot(1-0.0012\cot^{2}{\theta_{\rm El}})}\eta_{\mathrm{opt,}\xi}\eta_{\rm det}~{},(2)

where DTsubscript𝐷𝑇D_{T} is the telescope diameter,ε𝜀\varepsilon is the obstruction of the telescope’s secondary mirror,γ𝛾\gamma is the laser source divergence,ηopt,ξsubscript𝜂opt𝜉\eta_{\mathrm{opt,}\xi} is the optical efficiency of the ξ𝜉\xi-type channel,ηdetsubscript𝜂det\eta_{\rm det} is the quantum efficiency of the single-photon detectors.TLE data is used to calculate the communication channel length d=d(t)𝑑𝑑𝑡d=d(t)and satellite elevation angle θEl=θEl(t)subscript𝜃Elsubscript𝜃El𝑡\theta_{\rm El}=\theta_{\rm El}(t) above the horizon, which vary with time.Table1 and Table3 provides the satellite photon source and the receiver parameters, respectively.

μ𝜇\muν𝜈\nupssubscript𝑝𝑠p_{s}pdsubscript𝑝𝑑p_{d}pvsubscript𝑝𝑣p_{v}f(Hz)𝑓Hzf\,{\rm(Hz)}γ(Rad)𝛾Rad\gamma\,{\rm(Rad)}
0.80.10.50.250.25108superscript10810^{8}105superscript10510^{-5}

Hence, we determine two variables in Eqs.(1) and(2), such as the atmospheric extinction coefficient ϰ=0.22±0.04italic-ϰplus-or-minus0.220.04\varkappa=0.22\pm 0.04,which corresponds to clear weather conditions, and the optical efficiency for each ξ𝜉\xi-type channel, which isspecified in Table2.

H channelV channelD channelA channel
ηopt,ξ,%\eta_{\mathrm{opt,}\xi},\%21±1plus-or-minus21121\pm 135±1plus-or-minus35135\pm 137±1plus-or-minus37137\pm 119±1plus-or-minus19119\pm 1

To get the sifted key, we achieve clock synchronization[37, 38]between the satellite and the ground station with a precision (σ𝜎\sigma) of 500 ps (see Fig.6).Then the temporal filtration with a 2 ns time window is performed to increase the signal-to-noise ratio.

III Experiment and model validation

For the characterization of the experimental results obtained in the joint QKD experimenton March 1, 2022, the simulation of the source of quantum states,time-dependent communication channels and optical characteristics of the receiver is completed.Here we consider a modified semi-empirical satellite-to-ground QKD model[39]implied for the Zvenigorod ground station and the Micius satellite to determine the bit generation rate after basis reconciliationand quantum bit error rate (QBER) for the sources of the signal, decoy, and vacuum states.

Taking into account the variance in optical efficiency among the ξ𝜉\xi-type channels for the ground receiver,we adapt the calculation of the bit generation rate (see Eq.(9) in Ref.[39])for a source of intensity α𝛼\alpha after sifting procedure to the following expression:

Rsiftα=12fpα[Y0+ξpξ(1eαηξ(t))],subscriptsuperscript𝑅𝛼sift12𝑓subscript𝑝𝛼delimited-[]subscript𝑌0subscript𝜉subscript𝑝𝜉1superscript𝑒𝛼subscript𝜂𝜉𝑡R^{\alpha}_{\rm sift}=\frac{1}{2}fp_{\alpha}[Y_{0}+\sum\limits_{\xi}p_{\xi}(1-e^{-\alpha\eta_{\xi}(t)})]~{},(3)

where Y0subscript𝑌0Y_{0} denotes a background signal from the four detectors,ξ{H,V,D,A}𝜉HVDA\xi\in\{\rm H,V,D,A\} is a polarization type of the receiver channel.

Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (3)

The temporal filtering of quantum states reduces satellite and constant background noise by around five times.As a result, the background signal Y0subscript𝑌0Y_{0} per one sent pulse is equal to 𝒩/(5f)𝒩5𝑓\mathcal{N}/(5f) (for details, see AppendixB).WE note that it already contains afterpulse signals, owing to the special experimental way the data 𝒩𝒩\mathcal{N} is acquired.

Figure3 depicts the obtained and the simulated sifted bit generation rates forthe signal, decoy, and vacuum states over the satellite-to-ground QKD experiment under clear weather conditions (ϰ=0.22italic-ϰ0.22\varkappa=0.22).For the QKD experiment, the model accurately depicts the mean value of the bit generation rate.Although there is some difference between the simulated and experimental data,it might be explained by additional losses induced by pointing errors between the Micius satellite and the Zvenigorod ground station.During the quantum communication session,the resulting sifted key rate changes from around 20.7 kbit/s at 600 km to 2.9 kbit/s at 1,100 km, as shown in Fig.3a.

The QBER modeling has also been improved,taking into account the varying optical efficiency of the ξ𝜉\xi-type channels and their intrinsic error edet,ξsubscript𝑒det𝜉e_{\mathrm{det,}\xi}caused by measurement fidelity.The upper bound of an average intrinsic error for the ξ𝜉\xi-type channel is considered as a time-dependent function comprised of two terms:

edet,ξU=edet,ξRx+eTx,superscriptdelimited-⟨⟩subscript𝑒det𝜉Usubscriptsuperscript𝑒Rxdet𝜉delimited-⟨⟩superscript𝑒Tx\langle e_{\mathrm{det,}\xi}\rangle^{\text{U}}=e^{\rm Rx}_{\mathrm{det,}\xi}+\langle e^{\rm Tx}\rangle~{},(4)

where edet,ξRxsubscriptsuperscript𝑒Rxdet𝜉e^{\rm Rx}_{\mathrm{det,}\xi} is an intrinsic error for the ξ𝜉\xi-type channel of the receiverwhen the input beam is perfectly polarized and eTxdelimited-⟨⟩superscript𝑒Tx\langle e^{\rm Tx}\rangleis the average error probability over the four polarization states due to the real polarization contrast ratio of the transmitter optical scheme.

According to Ref.[11], the average polarization contrast ratio of the Micius satellite source is 225:1,whereas the time-dependent part of the intrinsic errors edet,ξRxsubscriptsuperscript𝑒Rxdet𝜉e^{\rm Rx}_{\mathrm{det,}\xi}is caused by the rotation of the polarization states and the birefringent elements in the receiver optical path.This may be measured empirically before the quantum communication session using the motorized half-wave plates.

Before the communication session, we compute the relative rotation of the polarization reference frames between the satellite and ground station based on the predicted trajectory of the Micius satellite[40, 41].Then the APS system of the receiver (see Fig.1) uses the calculated rotation angles to manage the motorized half-wave plate.Therefore, to measure the intrinsic errors of the receiver, we simulate the rotation of each polarization state by sending classicallaser beams into the ground station and then execute dynamical compensation following the computed rotation function[35].Figure4a illustrates the intrinsic errors edet,ξRxsubscriptsuperscript𝑒Rxdet𝜉e^{\rm Rx}_{\mathrm{det,}\xi} of the Zvenigorod ground stationafter the dynamical compensation of the polarization state rotations for the Micius satellite passage on March 1, 2022.

Using Eq.4 the upper bound of the average number of errors in the sifted bits per second for a source of intensity α𝛼\alpha can be expressed as:

NerrαU=12fpα[e0Y0+14ξedet,ξU(1eαηξ(t))],subscriptsuperscriptdelimited-⟨⟩subscript𝑁errU𝛼12𝑓subscript𝑝𝛼delimited-[]subscript𝑒0subscript𝑌014subscript𝜉superscriptdelimited-⟨⟩subscript𝑒det𝜉U1superscript𝑒𝛼subscript𝜂𝜉𝑡\langle N_{\rm err}\rangle^{\text{U}}_{\alpha}=\frac{1}{2}fp_{\alpha}[e_{0}Y_{0}+\frac{1}{4}\sum\limits_{\xi}\langle e_{\mathrm{det,}\xi}\rangle^{\text{U}}(1-e^{-\alpha\eta_{\xi}(t)})]~{},(5)

where e0=1/2subscript𝑒012e_{0}=1/2 is the error rate of the background.Thus, the upper bound of the average QBER for a source of intensity α𝛼\alpha is given by:

QBERαU=NerrαU/Rsiftα.subscriptsuperscriptdelimited-⟨⟩QBERU𝛼subscriptsuperscriptdelimited-⟨⟩subscript𝑁errU𝛼superscriptsubscript𝑅sift𝛼\langle\mathrm{QBER}\rangle^{\text{U}}_{\alpha}=\langle N_{\rm err}\rangle^{\text{U}}_{\alpha}/R_{\rm sift}^{\alpha}~{}.(6)
Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (4)

The observed QBER in the satellite-to-ground QKD experiment and the predicted upper bound of average QBERfor the signal and decoy states are shown in Fig.4b.In four time frames, the announced parts of the QBER for a source of signal states are 0.93%, 0.95%, 0.87%, and 0.89%,which correlate with calculated data. The experimental data on quantum errors for decoy states may be fullyand securely opened according to the QKD decoy state protocol and therefore compared with the model predictions duringthe whole communication session.As a result, the model calculation accurately reproduces the shape of the average QBER.We note that the experimental and model QBER for vacuum states are close to 50%, as expected.

Hence, the joint quantum communication experiment between the Micius satellite and the Zvenogorod ground stationgives results that are quite close to the simulation outcomes according to a semi-empirical satellite-to-ground QKD model for realistic receivers.Thus, the successfully verified model is an excellent tool for simulating complicated and realistic QKD systemsand analyzing their practical constraints and prospects.

IV Security analysis and key rates

To reduce the possible knowledge of an eavesdropper,we estimate the secret key length and use a random matrix for the shuffled key after the error correction step,with an inefficiency fec=1.44subscript𝑓𝑒𝑐1.44f_{ec}=1.44[42](for details of the post-processing procedure, see Refs.[43, 44, 45].The decoy-state method is used to verify the lower bound on the single-photon counts.Therefore, if we consider statistical fluctuation and utilize Chernoff bounds with a failure probabilityof 109superscript10910^{-9}[39, 46], the secure final key is 629,000 bits.

We can also consider higher-level security by taking into account the detection efficiency mismatch[30, 31, 32].The problem is caused by the different channel optical efficiencies of the receiver and the complexityof designing detectors with the same quantum efficiency.Here we assume that the optical efficiencies of the ξ𝜉\xi-type channels are equaland the detection efficiency imbalances are created by detectors with differing quantum efficiencies.

In our QKD experiment, we have four unbalanced detectors with the efficiencies ηz0subscript𝜂𝑧0\eta_{z0}, ηz1subscript𝜂𝑧1\eta_{z1}, ηx0subscript𝜂𝑥0\eta_{x0} and ηx1subscript𝜂𝑥1\eta_{x1},where the first subscript is a basis and the second one is a bit value.We assume that ηz1ηz0subscript𝜂𝑧1subscript𝜂𝑧0\eta_{z1}\leq\eta_{z0} and ηx1ηx0subscript𝜂𝑥1subscript𝜂𝑥0\eta_{x1}\leq\eta_{x0}.Then the detection-efficiency mismatches in each basis are defined as ηz=ηz1/ηz0subscript𝜂𝑧subscript𝜂𝑧1subscript𝜂𝑧0\eta_{z}=\eta_{z1}/\eta_{z0} and ηx=ηx1/ηx0subscript𝜂𝑥subscript𝜂𝑥1subscript𝜂𝑥0\eta_{x}=\eta_{x1}/\eta_{x0}.We take the values ηz=0.60subscript𝜂𝑧0.60\eta_{z}=0.60 and ηx=0.51subscript𝜂𝑥0.51\eta_{x}=0.51.We note that we do not demand that the fractions of the efficiencies are precisely the values given above.The formulas for the secret key rate we used require that ηz1/ηz0subscript𝜂𝑧1subscript𝜂𝑧0\eta_{z1}/\eta_{z0} and ηx1/ηx0subscript𝜂𝑥1subscript𝜂𝑥0\eta_{x1}/\eta_{x0} are not smaller than 0.60 and 0.51,respectively.The ratio of the probability of signal reception in different bases is denoted as txz1subscript𝑡𝑥𝑧1t_{xz}\approx 1,according to Fig.2a and Table2.We then assume that the beam splitter is set perfectly with the basis selection probability of 1/2121/2.

To perform a privacy amplification of the key, we use the calculations and results of Ref.[30, 32],where the various methods of accounting for detection mismatch are addressed.Here we use an approach that allows us to obtain the maximum final key rate.

The formula for the final key generation rate for one impulse emitted byAlice (transmitter)[30] is given by:

Kpz2pdetz[h(1δz,z2)h(1δz,x2+δz,z22)fech(Qz)]𝐾superscriptsubscript𝑝𝑧2superscriptsubscript𝑝det𝑧delimited-[]1subscript𝛿𝑧𝑧21superscriptsubscript𝛿𝑧𝑥2superscriptsubscript𝛿𝑧𝑧22subscript𝑓ecsubscript𝑄𝑧\displaystyle K\geq p_{z}^{2}p_{\rm det}^{z}\left[h\left(\frac{1-\delta_{z,z}}{2}\right)-h\left(\frac{1-\sqrt{\delta_{z,x}^{2}+\delta_{z,z}^{2}}}{2}\right)-f_{\rm ec}h\left(Q_{z}\right)\right]\qquad
+px2pdetx[h(1δx,x2)h(1δx,x2+δx,z22)fech(Qx)],superscriptsubscript𝑝𝑥2superscriptsubscript𝑝det𝑥delimited-[]1subscript𝛿𝑥𝑥21superscriptsubscript𝛿𝑥𝑥2superscriptsubscript𝛿𝑥𝑧22subscript𝑓ecsubscript𝑄𝑥\displaystyle+~{}p_{x}^{2}p_{\rm det}^{x}\left[h\left(\frac{1-\delta_{x,x}}{2}\right)-h\left(\frac{1-\sqrt{\delta_{x,x}^{2}+\delta_{x,z}^{2}}}{2}\right)-f_{\rm ec}h\left(Q_{x}\right)\right]~{},(7)
δz,z=pz,0pz,1pdetz,δz,x=ηx(tz2qx)pdetz,formulae-sequencesubscript𝛿𝑧𝑧subscript𝑝𝑧0subscript𝑝𝑧1superscriptsubscript𝑝det𝑧subscript𝛿𝑧𝑥subscript𝜂𝑥subscript𝑡𝑧2subscript𝑞𝑥superscriptsubscript𝑝det𝑧\delta_{z,z}=\frac{p_{z,0}-p_{z,1}}{p_{\rm det}^{z}}~{},\qquad\delta_{z,x}=\frac{\sqrt{\eta_{x}}(t_{z}-2q_{x})}{p_{\rm det}^{z}}~{},(8)
δx,x=px,0px,1pdetx,δx,z=ηz(tx2qz)pdetx,formulae-sequencesubscript𝛿𝑥𝑥subscript𝑝𝑥0subscript𝑝𝑥1superscriptsubscript𝑝det𝑥subscript𝛿𝑥𝑧subscript𝜂𝑧subscript𝑡𝑥2subscript𝑞𝑧superscriptsubscript𝑝det𝑥\delta_{x,x}=\frac{p_{x,0}-p_{x,1}}{p_{\rm det}^{x}}~{},\qquad\delta_{x,z}=\frac{\sqrt{\eta_{z}}(t_{x}-2q_{z})}{p_{\rm det}^{x}}~{},(9)

where pxsubscript𝑝𝑥p_{x} and pzsubscript𝑝𝑧p_{z} are the probabilities of choice the X𝑋X and Z𝑍Z bases by either Alice or Bob(for our case, px=pz=1/2subscript𝑝𝑥subscript𝑝𝑧12p_{x}=p_{z}=1/2),pdetbsuperscriptsubscript𝑝det𝑏p_{\rm det}^{b} denotes the probability of detecting the signal in the basis b𝑏b,if Alice chose the same basis, Qxsubscript𝑄𝑥Q_{x} and Qzsubscript𝑄𝑧Q_{z} are the QBERs in signal states for appropriate bases,fec=1.44subscript𝑓ec1.44f_{\rm ec}=1.44 is the error correction efficiency,pb,isubscript𝑝𝑏𝑖p_{b,i} is the click probability of the detector with the bit value i𝑖i, if Alice (transmitter) and Bob (receiver) chose the basis b𝑏b,tb=pb,0+pb,1ηbsubscript𝑡𝑏subscript𝑝𝑏0subscript𝑝𝑏1subscript𝜂𝑏t_{b}=p_{b,0}+\frac{p_{b,1}}{\eta_{b}} denotes the transparency of the channel for the b𝑏b basis,qbsubscript𝑞𝑏q_{b} is a weighted mean erroneous detection rate in the b𝑏b basis (erroneous ones are taken with the weight ηb1superscriptsubscript𝜂𝑏1\eta_{b}^{-1}and erroneous zeroes are taken with the weight 111).

This equation can be simply explained by physical considerations.First, we divide our data into two parts: one key is generated from the positions where Alice and Bob chose the Z𝑍Z basis and another one –where they chose the X𝑋X basis, and after that, these two keys are merged into one.Then, according to the Devetak and Winter theorem[47],for each basis, the secret key rate is proportional to the difference between Eve’s ignorance about Alice’s stringand Bob’s ignorance about Alice’s string with all information that legitimate users announce during communication.Bob’s ignorance can be bound from above by binary entropy from quantum bit error rate; it is the last term in each bracket of Eq.(7).The first term (Eve’s ignorance) contains some eavesdropper’s information about the state.We can get rid of this using the entropic uncertainty relations and receive the first and second parts in each bracket of Eq.(7).Also, Eve can change the initial states ρABsubscript𝜌𝐴𝐵\rho_{AB} as she wants,but we can detect interference using conditions on the observable value of received bits and errors for different bases.The derivation is described in more detail in AppendixC.This relationship is derived from general considerations about information and conditional entropy,and it is performed for our case of four detectors too.The main difference between the reasoning for two unbalanced detectors[30, 31]and our case is that both bases are used for key generation.

Hence, we estimate the final key rate using Eq.(7) applied to the divided data among two bases X𝑋X and Z𝑍Z.As a result, 310,400 bits of the secret key were finally shared between Alice and Bob.

V Results and Discussion

Once we had achieved the shared secret key between Zvenigorod ground station and the Micius satellite,our colleagues from China carried out the same procedures with Nanshan ground station near Urumqi to get the shared key across these stations.As a result, a secret key is established between China and Russia at a distance of 3800 km on Earth.Figure5 illustrates the transfer of encoded messages with two shared keys totaling 4kbytes.Each side used a basic bitwise XOR operation to encrypt and decrypt the image size of 2kbytes, providing unconditional security.

Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (5)

We have reported satellite-to-ground QKD between the Micius satelliteand the developed Zvenigorod ground station that enabled Eurasian-scaled secure message transfer.By simulating the parameters of the quantum communication link,we have validated our semi-empirical QKD model for the Zvenigorod ground station[39]with the results of the presented joint QKD experiment.Based on these experimental and simulated findings, we give a more secure analysis of the key rate than the general decoy state protocol,taking into account the detection efficiency mismatch.That kind of practical imperfection is common in realistic QKD devices, and we offer a possible solution to the problem in this research.

Acknowledgments

We are grateful to our colleagues from the University of Science and Technology of China for their helpful assistance and numerous recommendations throughout the joint experiment with the Micius satellite.The communications session has been completed on March 1, 2022.We thank A. Tayduganov and O. Fat’yanov for helpful discussions.We thank the Priority 2030 program at the National University of Science and Technology MISIS (Project No. K1-2022-027).

Appendix A Supplementary Data

CharacteristicData
Diameter (DTsubscript𝐷𝑇D_{T})600mm
TelescopeFocal length4800mm
Obstruction, (ε𝜀\varepsilon)0.73
Diameter70mm
Coarse controlFocal length350mm
(GT&CAM2)Field of view12.4mrad ×\times 12.4mrad
Typical tracking error (σ𝜎\sigma)<100μabsent100𝜇<\!100~{}\murad
Wavelength671nm
Beacon laserPower3W@CW
Divergence3mrad
Focal length (L1)75mm
Field of view (CAM1)3.6mrad ×\times 3mrad
Analysis and processingTypical tracking error (σ𝜎\sigma)<10μabsent10𝜇<\!10~{}\murad
system (APS)Beam expander coefficient1 : 3
Spectral filter (CWL)850nm
Spectral filter (FWHM)10nm
Wavelength850nm
Coupler focal length18.5mm
Polarization analyzer (PA)Polarizer transmittance84.6%
Detector efficiency (ηdetsubscript𝜂det\eta_{\rm det})60%absentpercent60\thicksim\!60\%
Polarization contrast ratio (mean)>350:1:absent3501>\!350:1
Spectral filter (CWL)532nm
SynchronisationSpectral filter (FWHM)10nm
module (SCM)Coupler focal length18.5mm
Detector efficiency @532 nm50%absentpercent50\thicksim\!50\%

Appendix B Noise estimation

The noise during satellite quantum communication is defined by the coefficientsT𝑇T andC𝐶C in Eq.(1).The coefficientT𝑇T represents the mean number of sunlight photons at 850 nm reflected from the Micius satellite surface to the ground station,with the divergence angle equal to the quantum signal.Meanwhile, the background noise due to stray light and detector dark count is given by the coefficientC𝐶C.

To determine the coefficientC𝐶C, we point the telescope at the night sky and record the count rate, which is 290±60plus-or-minus29060290\pm 60 clicks per second.However, the coefficientT𝑇T cannot be measured in advance and must be estimated directly during quantum communication.For instance, when the registered quantum signals are synchronized with the satellite clock,the noise may be found as the number of counts outside the time filtering frame and compared with the counting rate of registered vacuum states.

Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (6)

The temporal distribution of quantum photons acquired after time synchronization is shown in Fig.6with the distribution peak of counts corresponding to 6 ns.To extract an overall noise, we compute the count rate in the time frame from 00 ns to 222 ns, which is opposite the distribution peak.Then the obtained data of the overall noise (see Fig.7) are fitted with the following function:

𝒩=Tη(t)+C,𝒩𝑇𝜂𝑡𝐶\mathcal{N}=T\eta(t)+C~{},(10)

where η(t)=14ηξ(t)𝜂𝑡14subscript𝜂𝜉𝑡\eta(t)=\frac{1}{4}\sum\eta_{\xi}(t) denotes the time-dependent overall link efficiency of the communication channel[Eq.(2)] with a fixed optical efficiency ηoptsubscript𝜂opt\eta_{\rm opt} for the entire receiver of 27%percent2727\% based on preliminary measurements.

As a result, the coefficientT𝑇T is equal to 1.8106±0.1105plus-or-minus1.8superscript1060.1superscript1051.8\cdot 10^{6}\pm 0.1\cdot 10^{5} photons per second,and the atmospheric extinction coefficient ϰitalic-ϰ\varkappa is estimated at 0.25±0.05plus-or-minus0.250.050.25\pm 0.05.We note that to estimate the atmospheric extinction coefficient accurately,we should utilize a sufficiently high count rate, as it is done in Sec.II.2 for the total count rate of the raw key.

Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (7)

Appendix C Derivation of the secret key rate

A complete analysis for the case of detection-efficiency mismatch is presented in Refs.[30, 31].Here we use these articles as a guide and present the general ideas on how to adopt this theory in the case of four detectors.The main result of this section is Eq.(7) for the secret key rate.

Denote ρ𝜌\rho is the density operator distributed by Eve (according to the equivalent entanglement-based formulation,also known as the source replacement scheme).Then, we express the process of imperfect measurement as two stages:the attenuation on detectors ρGbρGbmaps-to𝜌subscript𝐺𝑏𝜌subscript𝐺𝑏\rho\mapsto G_{b}\rho G_{b},where Gbsubscript𝐺𝑏G_{b} is the attenuation operator corresponding to the measurement in the basis b𝑏b, followed by a perfect measurement.The operator G𝐺G is not unitary but turns out to be Hermitian.TrGbρGb=pdetbTrsubscript𝐺𝑏𝜌subscript𝐺𝑏superscriptsubscript𝑝det𝑏\operatorname{Tr}G_{b}\rho G_{b}=p_{\rm det}^{b} is the detection probability in the basis bX,Z𝑏𝑋𝑍b\in{X,Z} and ρ~=GbρGb/pdetb~𝜌subscript𝐺𝑏𝜌subscript𝐺𝑏superscriptsubscript𝑝det𝑏\widetilde{\rho}=G_{b}\rho G_{b}/p_{\rm det}^{b}.

According to Devetak and Winter theorem from Ref.[47], the secret key rate is expressed as follows:

K=px2pdetx[H(X|E)ρ~H(X|B)ρ~]+𝐾limit-fromsuperscriptsubscript𝑝𝑥2superscriptsubscript𝑝det𝑥delimited-[]𝐻subscriptconditional𝑋𝐸~𝜌𝐻subscriptconditional𝑋𝐵~𝜌\displaystyle K=p_{x}^{2}p_{\rm det}^{x}\left[H(X|E)_{\widetilde{\rho}}-H(X|B)_{\widetilde{\rho}}\right]+\quad
+pz2pdetz[H(Z|E)ρ~H(Z|B)ρ~],superscriptsubscript𝑝𝑧2superscriptsubscript𝑝det𝑧delimited-[]𝐻subscriptconditional𝑍𝐸~𝜌𝐻subscriptconditional𝑍𝐵~𝜌\displaystyle+~{}p_{z}^{2}p_{\rm det}^{z}\left[H(Z|E)_{\widetilde{\rho}}-H(Z|B)_{\widetilde{\rho}}\right]~{},(11)

where px=pz=1/2subscript𝑝𝑥subscript𝑝𝑧12p_{x}=p_{z}=1/2.

The reasoning in both bases is identical and is transformed by interchanging X𝑋X and Z𝑍Z.So we will give reasoning for only the first line in Eq.(11).The first term contains the Eve subsystem. To get rid of this, according to Ref.[48],we can approximate this term by using the entropic uncertainty relations:

H(X|E)ρ~+H(Z|B)ρ~1.𝐻subscriptconditional𝑋𝐸~𝜌𝐻subscriptconditional𝑍𝐵~𝜌1H(X|E)_{\widetilde{\rho}}+H(Z|B)_{\widetilde{\rho}}\geq 1~{}.(12)

The second term in brackets can be bounded from above by binary entropy from QBER for the signal states;one can say that this is Bob’s ignorance about Alice’s string.The factor fecsubscript𝑓ecf_{\rm ec} appears due to imperfections in the error correction procedure.Substituting the uncertainty relation Eq.(12) into Eq.(11) for the secret key rate,we receive the next lower bound for the generation rate:

Kpx2pdetx[1minρABSzH(Z|B)ρ~fech(Qx)]+𝐾limit-fromsuperscriptsubscript𝑝𝑥2superscriptsubscript𝑝det𝑥delimited-[]1subscriptsubscript𝜌𝐴𝐵subscript𝑆𝑧𝐻subscriptconditional𝑍𝐵~𝜌subscript𝑓ecsubscript𝑄𝑥\displaystyle K\geq p_{x}^{2}p_{\rm det}^{x}\left[1-\min_{\rho_{AB}\in S_{z}}H(Z|B)_{\widetilde{\rho}}-f_{\rm ec}h(Q_{x})\right]+~{}~{}~{}
+pz2pdetz[1minρABSxH(X|B)ρ~fech(Qz)],superscriptsubscript𝑝𝑧2superscriptsubscript𝑝det𝑧delimited-[]1subscriptsubscript𝜌𝐴𝐵subscript𝑆𝑥𝐻subscriptconditional𝑋𝐵~𝜌subscript𝑓ecsubscript𝑄𝑧\displaystyle+~{}p_{z}^{2}p_{\rm det}^{z}\left[1-\min_{\rho_{AB}\in S_{x}}H(X|B)_{\widetilde{\rho}}-f_{\rm ec}h(Q_{z})\right]~{},~{}~{}(13)

where ρAB=TrEρsubscript𝜌𝐴𝐵subscriptTr𝐸𝜌\rho_{AB}=\operatorname{Tr}_{E}\rho is the density operator of Alice’s and Bob’s subsystem.The imposed constraints on the initial density matrix that define the spaces Sxsubscript𝑆𝑥S_{x} and Szsubscript𝑆𝑧S_{z} are taken from Ref.[31].

According to Ref.[31], we estimate the conditional entropy for the Z𝑍Z basis as follows:

minρABSzH(X|B)ρ~1h(1δz,z2)subscriptsubscript𝜌𝐴𝐵subscript𝑆𝑧𝐻subscriptconditional𝑋𝐵~𝜌1limit-from1subscript𝛿𝑧𝑧2\displaystyle\min_{\rho_{AB}\in S_{z}}H(X|B)_{\widetilde{\rho}}\leq 1-h\left(\frac{1-\delta_{z,z}}{2}\right)-\qquad
h(1δz,x2+δz,z22),1superscriptsubscript𝛿𝑧𝑥2superscriptsubscript𝛿𝑧𝑧22\displaystyle-~{}h\left(\frac{1-\sqrt{\delta_{z,x}^{2}+\delta_{z,z}^{2}}}{2}\right)~{},(14)

where

δz,z=pz,0pz,1pdetz,δz,x=ηz(tz2qx)pdetz.formulae-sequencesubscript𝛿𝑧𝑧subscript𝑝𝑧0subscript𝑝𝑧1superscriptsubscript𝑝det𝑧subscript𝛿𝑧𝑥subscript𝜂𝑧subscript𝑡𝑧2subscript𝑞𝑥superscriptsubscript𝑝det𝑧\delta_{z,z}=\frac{p_{z,0}-p_{z,1}}{p_{\rm det}^{z}}~{},\qquad\delta_{z,x}=\frac{\sqrt{\eta_{z}}(t_{z}-2q_{x})}{p_{\rm det}^{z}}~{}.(15)

The upper bound on the entropy for the X𝑋X basis is made similar to Eq.(14).Thus, we obtain the desired Eq.(7) by substituting Eq.(14) and the corresponding one for the X𝑋X basis in Eq.(13).

References

  • Shor [1994]P.Shor,Algorithms for quantumcomputation: discrete logarithms and factoring,inProceedings 35th Annual Symposium on Foundations of Computer Science(1994)pp.124–134.
  • Grover [1996]L.K.Grover,A fast quantum mechanicalalgorithm for database search,inProceedings of the Twenty-Eighth Annual ACM Symposium on Theory ofComputing,STOC ’96(Association for Computing Machinery,NewYork, NY, USA,1996)p.212–219.
  • Rivestetal. [1978]R.L.Rivest, A.Shamir,andL.Adleman,A method for obtaining digitalsignatures and public-key cryptosystems,Commun. ACM21,120–126 (1978).
  • Gisinetal. [2002]N.Gisin, G.Ribordy,W.Tittel,andH.Zbinden,Quantum cryptography,Rev. Mod. Phys.74,145 (2002).
  • Scaranietal. [2009]V.Scarani, H.Bechmann-Pasquinucci, N.J.Cerf, M.Dušek, N.Lütkenhaus,andM.Peev,Thesecurity of practical quantum key distribution,Rev. Mod. Phys.81,1301 (2009).
  • Diamantietal. [2016]E.Diamanti, H.-K.Lo,B.Qi,andZ.Yuan,Practical challenges in quantum key distribution,npj Quantum Information2,16025 (2016).
  • BernsteinandLange [2017]D.J.BernsteinandT.Lange,Post-quantumcryptography,Nature549,188 (2017).
  • Yunakovskyetal. [2021]S.E.Yunakovsky, M.Kot,N.Pozhar, D.Nabokov, M.Kudinov, A.Guglya, E.O.Kiktenko, E.Kolycheva, A.Borisov,andA.K.Fedorov,Towards security recommendations forpublic-key infrastructures for production environments in the post-quantumera,EPJ Quantum Technology8,14 (2021).
  • Chenetal. [2021a]J.-P.Chen, C.Zhang,Y.Liu, C.Jiang, W.-J.Zhang, Z.-Y.Han, S.-Z.Ma, X.-L.Hu, Y.-H.Li, H.Liu, F.Zhou, H.-F.Jiang, T.-Y.Chen, H.Li, L.-X.You, Z.Wang, X.-B.Wang, Q.Zhang,andJ.-W.Pan,Twin-fieldquantum key distribution over a 511 km optical fibre linking two distantmetropolitan areas,Nature Photonics15,570 (2021a).
  • Liuetal. [2023]Y.Liu, W.-J.Zhang,C.Jiang, J.-P.Chen, C.Zhang, W.-X.Pan, D.Ma, H.Dong, J.-M.Xiong,C.-J.Zhang, H.Li, R.-C.Wang, J.Wu, T.-Y.Chen, L.You, X.-B.Wang, Q.Zhang,andJ.-W.Pan,Experimental twin-fieldquantum key distribution over 1000 km fiber distance,Phys. Rev. Lett.130,210801 (2023).
  • Liaoetal. [2017]S.-K.Liao, W.-Q.Cai,W.-Y.Liu, L.Zhang, Y.Li, J.-G.Ren, J.Yin, Q.Shen, Y.Cao, Z.-P.Li, F.-Z.Li, X.-W.Chen, L.-H.Sun, J.-J.Jia, J.-C.Wu,X.-J.Jiang, J.-F.Wang, Y.-M.Huang, Q.Wang, Y.-L.Zhou, L.Deng, T.Xi, L.Ma, T.Hu, Q.Zhang, Y.-A.Chen, N.-L.Liu, X.-B.Wang, Z.-C.Zhu,C.-Y.Lu, R.Shu, C.-Z.Peng, J.-Y.Wang,andJ.-W.Pan,Satellite-to-ground quantum key distribution,Nature549,43 (2017).
  • Zhangetal. [2018]Q.Zhang, F.Xu, Y.-A.Chen, C.-Z.Peng,andJ.-W.Pan,Large scale quantum key distribution: challenges and solutions,Opt. Express26,24260 (2018).
  • Liaoetal. [2018]S.-K.Liao, W.-Q.Cai,J.Handsteiner, B.Liu, J.Yin, L.Zhang, D.Rauch, M.Fink, J.-G.Ren, W.-Y.Liu, Y.Li, Q.Shen, Y.Cao, F.-Z.Li, J.-F.Wang, Y.-M.Huang, L.Deng,T.Xi, L.Ma, T.Hu, L.Li, N.-L.Liu,F.Koidl, P.Wang, Y.-A.Chen, X.-B.Wang, M.Steindorfer, G.Kirchner, C.-Y.Lu, R.Shu, R.Ursin, T.Scheidl,C.-Z.Peng, J.-Y.Wang, A.Zeilinger,andJ.-W.Pan,Satellite-relayed intercontinental quantum network,Phys. Rev. Lett.120,030501 (2018).
  • Chenetal. [2021b]Y.-A.Chen, Q.Zhang,T.-Y.Chen, W.-Q.Cai, S.-K.Liao, J.Zhang, K.Chen, J.Yin, J.-G.Ren,Z.Chen, S.-L.Han, Q.Yu, K.Liang, F.Zhou,X.Yuan, M.-S.Zhao, T.-Y.Wang, X.Jiang, L.Zhang, W.-Y.Liu, Y.Li, Q.Shen, Y.Cao, C.-Y.Lu, R.Shu, J.-Y.Wang, L.Li, N.-L.Liu,F.Xu, X.-B.Wang, C.-Z.Peng,andJ.-W.Pan,An integrated space-to-ground quantum communication network over4,600 kilometres,Nature589,214 (2021b).
  • Bedingtonetal. [2017]R.Bedington, J.Mantilla,andA.Ling,Progress in satellitequantum key distribution,npj Quantum Information3(2017).
  • Luetal. [2022]C.-Y.Lu, Y.Cao, C.-Z.Peng,andJ.-W.Pan,Micius quantum experiments in space,Rev. Mod. Phys.94,035001 (2022).
  • Sidhuetal. [2021]J.S.Sidhu, S.K.Joshi,M.Gündoğan,T.Brougham, D.Lowndes, L.Mazzarella, M.Krutzik, S.Mohapatra, D.Dequal, G.Vallone, etal.,Advances in space quantum communications,IET Quantum Communication2,182 (2021).
  • Jenneweinetal. [2023]T.Jennewein, C.Simon,A.Fougeres, F.Babin, F.K.Asadi, K.B.Kuntz, M.Maisonneuve, B.Moffat, K.Mohammadi,andD.Panneton,Qeyssat 2.0–white paper on satellite-based quantum communication missionsin canada,arXiv preprintarXiv:2306.0248110.48550/arXiv.2306.02481 (2023).
  • Toyoshimaetal. [2009]M.Toyoshima, H.Takenaka,Y.Shoji, Y.Takayama, Y.Koyama,andH.Kunimori,Polarization measurements through space-to-ground atmosphericpropagation paths by using a highly polarized laser source in space,Optics express17,22333 (2009).
  • Takenakaetal. [2017]H.Takenaka, A.Carrasco-Casado, M.Fujiwara, M.Kitamura,M.Sasaki,andM.Toyoshima,Satellite-to-ground quantum-limited communication using a50-kg-class microsatellite,Nature Photonics11 (2017).
  • Bourgoinetal. [2015]J.-P.Bourgoin, B.L.Higgins, N.Gigov,C.Holloway, C.J.Pugh, S.Kaiser, M.Cranmer,andT.Jennewein,Free-space quantum key distribution to a moving receiver,Optics express23,33437 (2015).
  • Villaretal. [2020]A.Villar, A.Lohrmann,X.Bai, T.Vergoossen, R.Bedington, C.Perumangatt, H.Y.Lim, T.Islam, A.Reezwana, Z.Tang, R.Chandrasekara, S.Sachidananda, K.Durak,C.F.Wildfeuer, D.Griffin, D.K.L.Oi,andA.Ling,Entanglement demonstration on board a nano-satellite,Optica7,734(2020).
  • Anwaretal. [2022]A.Anwar, C.Perumangatt,A.Villar, A.Lohrmann,andA.Ling,Development of compact entangled photon-pair sources forsatellites,Applied Physics Letters121,220503 (2022).
  • Vergoossenetal. [2020]T.Vergoossen, S.Loarte,R.Bedington, H.Kuiper,andA.Ling,Modelling of satellite constellations for trusted node qkdnetworks,Acta Astronautica173,164 (2020).
  • Sidhuetal. [2022]J.Sidhu, T.Brougham,D.Mcarthur, R.Pousa,andD.Oi,Finite key effects in satellite quantum key distribution,npj Quantum Information8,18 (2022).
  • Eckeretal. [2021]S.Ecker, B.Liu, J.Handsteiner, M.Fink, D.Rauch, F.Steinlechner, T.Scheidl, A.Zeilinger,andR.Ursin,Strategies for achieving high key rates in satellite-based qkd,npj Quantum Information7,5 (2021).
  • Wangetal. [2021a]X.Wang, C.Dong, S.Zhao, Y.Liu, X.Liu,andH.Zhu,Feasibilityof space-based measurement-device-independent quantum key distribution,New Journal of Physics23,045001 (2021a).
  • Liornietal. [2019]C.Liorni, H.Kampermann,andD.Bruß,Satellite-based links for quantum keydistribution: beam effects and weather dependence,New Journal of Physics21,093055 (2019).
  • Abasifardetal. [2023]M.Abasifard, C.Cholsuk,R.G.Pousa, A.Kumar, A.Zand, T.Riel, D.K.L.Oi,andT.Vogl,The ideal wavelength for daylightfree-space quantum key distribution (2023),arXiv:2303.02106 [quant-ph] .
  • BochkovandTrushechkin [2019]M.K.BochkovandA.S.Trushechkin,Security of quantumkey distribution with detection-efficiency mismatch in the single-photoncase: Tight bounds,Phys. Rev. A99,032308 (2019).
  • Trushechkin [2022]A.Trushechkin,Security of quantumkey distribution with detection-efficiency mismatch in the multiphotoncase,Quantum6,771 (2022).
  • Ivchenkoetal. [2023]E.I.Ivchenko, A.V.Khmelev,andV.L.Kurochkin,Detection-efficiencymismatch in a satellite-to-ground quantum communication,in10th International School and Conference onOptoelectronics, Photonics, Engineering and Nanostructures(Saint-Petersburg, Russia, 23-26 May 2023)p.75,availableonline:https://spb.hse.ru/mirror/pubs/share/844993137 (accessed on 30July 2023).
  • Maetal. [2005]X.Ma, B.Qi, Y.Zhao,andH.-K.Lo,Practical decoy state for quantum key distribution,Phys. Rev. A72,012326 (2005).
  • Trushechkinetal. [2021]A.S.Trushechkin, E.O.Kiktenko, D.A.Kronberg,andA.K.Fedorov,Security of the decoystate method for quantum key distribution,Physics-Uspekhi64,88 (2021).
  • Duplinskyetal. [2022]A.V.Duplinsky, A.V.Khmelev, V.E.Merzlinkin, V.L.Kurochkin,andY.V.Kurochkin,Influence ofpolarization reference frame rotation on ground receiver error rate insatellite quantum key distribution,St. Petersburg Polytechnic University Journal. Physics andMathematics59,61(2022).
  • Khmelevetal. [2021]A.Khmelev, A.Duplinsky,V.Mayboroda, R.Bakhshaliev, M.Balanov, V.Kurochkin,andY.Kurochkin,Recording of a single-photon signal from low-flying satellites for satellitequantum key distribution,Tech. Phys. Lett.47 (2021).
  • Wangetal. [2021b]C.Wang, Y.Li, W.Cai, M.Yang, W.Liu, S.Liao,andC.Peng,Robust aperiodic synchronous schemefor satellite-to-ground quantum key distribution,Appl. Opt.60,4787 (2021b).
  • Wangetal. [2021c]C.-Z.Wang, Y.Li, W.-Q.Cai, W.-Y.Liu, S.-K.Liao,andC.-Z.Peng,Synchronization using quantum photons for satellite-to-ground quantum keydistribution,Opt. Express29,29595 (2021c).
  • Khmelevetal. [2023]A.V.Khmelev, E.I.Ivchenko, A.V.Miller, A.V.Duplinsky, V.L.Kurochkin,andY.V.Kurochkin,Semi-empiricalsatellite-to-ground quantum key distribution model for realistic receivers,Entropy25,10.3390/e25040670 (2023).
  • Hanetal. [2020]X.Han, H.-L.Yong,P.Xu, K.-X.Yang, S.-L.Li, W.-Y.Wang, H.-J.Xue, F.-Z.Li, J.-G.Ren,C.-Z.Peng,andJ.-W.Pan,Polarization design for ground-to-satellitequantum entanglement distribution,Opt. Express28,369 (2020).
  • Bonatoetal. [2006]C.Bonato, M.Aspelmeyer,T.Jennewein, C.Pernechele, P.Villoresi,andA.Zeilinger,Influence of satellite motion on polarization qubits in aspace-earth quantum communication link,Opt. Express14,10050 (2006).
  • Kiktenkoetal. [2017]E.O.Kiktenko, A.S.Trushechkin, C.C.W.Lim, Y.V.Kurochkin,andA.K.Fedorov,Symmetric blind informationreconciliation for quantum key distribution,Phys. Rev. Appl.8,044017 (2017).
  • Kiktenkoetal. [2016]E.Kiktenko, A.Trushechkin, Y.Kurochkin,andA.Fedorov,Post-processing procedurefor industrial quantum key distribution systems,Journal of Physics: Conference Series741,012081 (2016).
  • Fedorovetal. [2018]A.K.Fedorov, E.O.Kiktenko,andA.S.Trushechkin,Symmetric blindinformation reconciliation and hash-function-based verification for quantumkey distribution,Lobachevskii Journal ofMathematics39,992(2018).
  • Kiktenkoetal. [2020]E.O.Kiktenko, A.O.Malyshev, M.A.Gavreev, A.A.Bozhedarov, N.O.Pozhar, M.N.Anufriev,andA.K.Fedorov,Lightweightauthentication for quantum key distribution,IEEE Transactions on Information Theory66,6354 (2020).
  • Zhangetal. [2017]Z.Zhang, Q.Zhao,M.Razavi,andX.Ma,Improved key-rate bounds for practical decoy-statequantum-key-distribution systems,Phys. Rev. A95,012333 (2017).
  • DevetakandWinter [2005]I.DevetakandA.Winter,Distillation of secret keyand entanglement from quantum states,Proceedings of the Royal Society A: Mathematical, Physical andengineering sciences461,207 (2005).
  • Bertaetal. [2010]M.Berta, M.Christandl, R.Colbeck, J.M.Renes,andR.Renner,The uncertaintyprinciple in the presence of quantum memory,Nature Physics6,659 (2010),arXiv:0909.0950 [quant-ph] .
Eurasian-Scale Experimental Satellite-based Quantum Key Distribution with Detector Efficiency Mismatch Analysis (2024)
Top Articles
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 6247

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.