PDE5 compositions and methods for immunotherapy (2024)

This application is a continuation of U.S. patent application Ser. No. 16/621,593 filed Dec. 11, 2019, which is a 371 national phase of PCT/US2018/037005 filed Jun. 12, 2018, which claims priority to U.S. Provisional Application No. 62/518,078 filed on Jun. 12, 2017, U.S. Provisional Application No. 62/523,850 filed on Jun. 23, 2017, U.S. Provisional Application No. 62/523,862 filed on Jun. 23, 2017, and U.S. Provisional Application No. 62/555,313 filed on Sep. 7, 2017, the contents of each of which are herein incorporated by reference in their entirety.

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 2095_1003PCT_SL.txt, created on Jun. 12, 2018, which is 18,074,972 bytes in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.

The present invention relates to tunable biocircuit systems for the development of controlled and/or regulated therapeutic systems. In particular, regulatable biocircuits containing destabilizing domains (DD) derived from mutant human cGMP-specific phosphodiesterase type 5 (PDE5) are disclosed. The present invention also relates to compositions and methods for immunotherapy.

Provided in the present invention include polypeptides of biocircuit systems, effector modules, stimulus response elements (SREs) and immunotherapeutic agents, polynucleotides encoding the same, vectors and cells containing the polypeptides and/or polynucleotides for use in cancer immunotherapy. In one embodiment, the compositions comprise destabilizing domains (DDs) which tune protein stability.

Safe and effective gene therapy requires tightly regulated expression of a therapeutic transgenic product (e.g., the protein product). Similarly, the analysis of gene function in development, cell differentiation and other physiological activities requires the controllable expression of a protein under investigation. However, current technologies do not allow titration of levels of target protein induced or kinetics of induction. Inadequate exogenous and/or endogenous gene control is a critical issue in numerous settings including ex vivo and in vivo gene therapy. This lack of tunability also makes it difficult to safely express proteins with narrow or uncertain therapeutic windows or those requiring more titrated, controlled or transient expression.

One approach to regulated protein expression or function is the use of Destabilizing Domains (DDs). Destabilizing domains are small protein domains that can be appended to a payload such as a protein of interest (POI). DDs render the attached protein of interest (POI) unstable in the absence of a DD-binding ligand such that the protein is rapidly degraded by the ubiquitin-proteasome system of the cell (Stankunas, K., et al., (2003). Mol. Cell 12, 1615-1624; Banaszynski, L. A., et al., (2006) Cell; 126(5): 995-1004; reviewed in Banaszynski, L. A., and Wandless, T. J. (2006) Chem. Biol. 13, 11-21; Iwamoto, M., et al. (2010). Chem Biol. 17(9):981-8; Egeler, E. L. et al. (2011). J Biol Chem. 286(36):31328-36; and Rakhit R, Navarro R, Wandless T J (2014) Chem Biol. September 18; 21(9):1238-52; Navarro, R. et al. (2016) ACS Chem Biol. 11(8): 2101-2104). In some cases, the protein of interest is not completely processed and may not be secreted or presented on the membrane in the absence of DD-binding ligand (Sellmeyer et al., (2012), doi.org/10.1371/journal.pone.0043297; the contents of which are incorporated by reference in their entirety). However, when a specific small molecule ligand binds its intended DD as a ligand binding partner, the instability is reversed and protein function is restored or, in some cases, processing is restored and the protein of interest is presented on the membrane or secreted. Such a system is herein referred to as a biocircuit, with the canonical DD-containing biocircuit described above being the prototypical model biocircuit

It is believed that improvements of biocircuits, including those containing DDs can form the basis of a new class of cell and gene therapies that employ tunable and temporal control of gene expression and function. Such novel moieties are described by the present inventors as stimulus response elements (SREs) which act in the context of an effector module to complete a biocircuit arising from a stimulus and ultimately producing a signal or outcome. When properly formatted with a polypeptide payload, and when activated by a particular stimulus, e.g., a small molecule, biocircuit systems can be used to regulate transgene and/or protein levels either up or down by perpetuating a stabilizing signal or destabilizing signal. This approach has many advantages over existing methods of regulating protein function and/or expression, which are currently focused on top level transcriptional regulation via inducible promoters.

The present invention provides novel protein domains, in particular, destabilizing domains (DDs) derived from mutant human cGMP-specific phosphodiesterase type 5 (PDE5), particularly the catalytic domain of human PDE5, that display small molecule dependent stability, and the biocircuit systems and effector modules comprising such DDs. Methods for tuning transgene functions using the same are also provided.

Cancer immunotherapy aims to eradicate cancer cells by rejuvenating the tumoricidal functions of tumor-reactive immune cells, predominantly T cells. Strategies of cancer immunotherapy including the recent development of checkpoint blockade, adoptive cell transfer (ACT) and cancer vaccines which can increase the anti-tumor immune effector cells have produced remarkable results in several tumors.

The impact of host anti-tumor immunity and cancer immunotherapy is impeded by three major hurdles: 1) low number of tumor antigen-specific T cells due to clonal deletion; 2) poor activation of innate immune cells and accumulation of tolerogenic antigen-presenting cells in the tumor microenvironment; and 3) formation of an immunosuppressive tumor microenvironment. Particularly, in solid tumors the therapeutic efficacy of immunotherapeutic regimens remains unsatisfactory due to lack of an effective an anti-tumor response in the immunosuppressive tumor microenvironment. Tumor cells often induce immune tolerance or suppression and such tolerance is acquired because even truly foreign tumor antigens will become tolerated. Such tolerance is also active and dominant because cancer vaccines and adoptive transfer of pre-activated immune effector cells (e.g., T cells), are subject to suppression by inhibitory factors in the tumor microenvironment (TME).

In addition, administration of engineered T cells could result in on/off target toxicities as well as a cytokine release syndrome (reviewed by Tey Clin. Transl. Immunol., 2014, 3: e17 10.1038).

Development of a tunable switch that can turn on or off the transgenic immunotherapeutic agent expression is needed in case of adverse events. For example, adoptive cell therapies may have a very long and an indefinite half-life. Since toxicity can be progressive, a safety switch is desired to eliminate the infused cells. Systems and methods that can tune the transgenic protein level and expression window with high flexibility can enhance therapeutic benefit, and reduce potential side effects.

In an effort to develop regulatable therapeutic agents for disease therapy, in particular cancer immunotherapy, the present invention provides biocircuit systems to control the expression of immunotherapeutic agents. The biocircuit system comprises a stimulus and at least one effector module that responds to the stimulus. The effector module may include a stimulus response element (SRE) that binds and is responsive to a stimulus and an immunotherapeutic agent operably linked to the SRE. In one example, a SRE is a destabilizing domain (DD) which is destabilized in the absence of its specific ligand and can be stabilized by binding to its specific ligand.

The present invention provides compositions and methods for immunotherapy. The compositions relate to tunable systems and agents that induce anti-cancer immune responses in a cell or in a subject. The tunable system and agent may be a biocircuit system comprising at least one effector module that is responsive to at least one stimulus. The biocircuit system may be, but is not limited to, a destabilizing domain (DD) biocircuit system, a dimerization biocircuit system, a receptor biocircuit system, and a cell biocircuit system. These systems are further taught in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).

The present invention provides compositions for an inducing immune response in a cell or subject. In some embodiments, the composition may include a stimulus response element (SRE) and at least one payload. In some embodiments, the payload may be attached, appended or associated with the SRE. The SRE may comprise a destabilizing domain (DD). In some embodiments, the DD may comprise, in whole or in part, the cGMP-specific 3′,5′-cyclic phosphodiesterase (hPDE5; SEQ ID NO. 1). In some embodiments, the payload may be appended to the SRE.

In some embodiments, the DD may comprise the catalytic domain of hPDE5 (SEQ ID NO. 3). In some aspects, the catalytic domain may include amino acids 535-860 of hPDE5 (SEQ ID NO. 1). In some embodiments, the DD may include a mutation in the amino acid at position 732 (R732) of SEQ ID NO. 1. The mutation at position R732 may include but is not limited to R732L, R732A, R732G, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, and R732K.

In some aspects, the DD may be selected from the group including but not limited to hPDE5 (Amino acid 535-860 of WT, R732L) (SEQ ID NO. 12); hPDE5 (Amino acid 535-860 of WT, R732A) (SEQ ID NO. 384); hPDE5 (Amino acid 535-860 of WT, R732G) (SEQ ID NO. 383); hPDE5 (Amino acid 535-860 of WT, R732V) (SEQ ID NO. 385); hPDE5 (Amino acid 535-860 of WT, R732I) (SEQ ID NO. 386); hPDE5 (Amino acid 535-860 of WT, R732P) (SEQ ID NO. 387); hPDE5 (Amino acid 535-860 of WT, R732F) (SEQ ID NO. 388); hPDE5 (Amino acid 535-860 of WT, R732W) (SEQ ID NO. 389); hPDE5 (Amino acid 535-860 of WT, R732Y) (SEQ ID NO. 390); hPDE5 (Amino acid 535-860 of WT, R732H) (SEQ ID NO. 391); hPDE5 (Amino acid 535-860 of WT, R732S) (SEQ ID NO. 392); hPDE5 (Amino acid 535-860 of WT, R732T) (SEQ ID NO. 393); hPDE5 (Amino acid 535-860 of WT, R732D) (SEQ ID NO. 394); hPDE5 (Amino acid 535-860 of WT, R732E) (SEQ ID NO. 395); hPDE5 (Amino acid 535-860 of WT, R732Q) (SEQ ID NO. 396); hPDE5 (Amino acid 535-860 of WT, R732N) (SEQ ID NO. 397); hPDE5 (Amino acid 535-860 of WT, R732M) (SEQ ID NO. 398); hPDE5 (Amino acid 535-860 of WT, R732C) (SEQ ID NO. 399); and hPDE5 (Amino acid 535-860 of WT, R732K) (SEQ ID NO. 400).

In some embodiments, the mutation in the amino acid at position R732 may be R732L. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 12. In some embodiments, the mutation in the amino acid at position R732 may be R732A. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 384. In some embodiments, the mutation in the amino acid at position R732 may be R732G. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 383.

The DDs of the present invention may further comprise one or more mutations independently selected from the group consisting of H653A, F736A, D764A, D764N, Y612F, Y612W, Y612A, W853F, I821A, Y829A, F787A, D656L, Y728L, M625I, E535D, E536G, Q541R, K555R, F559L, F561L, F564L, F564S, K591E, N587S, K604E, K608E, N609H, K630R, K633E, N636S, N661S, Y676D, Y676N, C677R, H678R, D687A, T712S, D724N, D724G, L738H, N742S, A762S, D764G, D764V, S766F, K795E, L797F, I799T, T802P, S815C, M816A, I824T, C839S, K852E, S560G, V585A, I599V, I648V, S663P, L675P, T711A, F744L, L746S, F755L, L804P, M816T, and F840S.

In one embodiment the DD may include the mutation H653A. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 509. In one embodiment, the DD may include the mutation F736A. In one embodiment, the DD may comprise the amino acid sequence of SEQ ID NO. 227. In one embodiment, the DD may comprise the mutation D764A. In one embodiment, the DD comprises the amino acid sequence of SEQ ID NO. 510. In one embodiment, the DD may include the mutation Y612F. In one aspect, the DD may comprise the amino acid sequence of SEQ ID NO. 506. In one embodiment, the DD may include the Y612W mutation. In one aspect, the DD may include the amino acid sequence of SEQ ID NO. 507. In one embodiment, the DD may include the mutation Y612A. In one embodiment the DD may comprise the amino acid sequence of SEQ ID NO. 508. In one embodiment, the DD may include the mutation D64N. In some aspects, the DD may comprise the amino acid sequence of SEQ ID NO. 505.

In some embodiments, the SRE of the present invention may be appended to a payload. In some aspects, the payload may be an immunotherapeutic agent. In some aspects, the immunotherapeutic agent may be selected from a chimeric antigen receptor (CAR) and a cytokine-cytokine receptor fusion polypeptide.

In some embodiments the CAR may include an extracellular target moiety, a hinge and transmembrane domain, an intracellular signaling domain; and optionally, one or more co-stimulatory domains. In some embodiments, the CAR may be a standard CAR, a split CAR, an off-switch CAR, an on-switch CAR, a first-generation CAR, a second-generation CAR, a third-generation CAR, or a fourth-generation CAR.

The extracellular target moiety of the CAR may have an affinity of bind to a target molecule on the surface of the cancer cell. In some aspects, the extracellular target moiety of the CAR may be an scFv. In one aspect, the target molecule may be CD19. In some embodiments, the extracellular target moiety of the CAR is a CD19 scFv (SEQ ID NO. 8233). In some embodiments, wherein the hinge and transmembrane domain of the CAR may be paired. The paired hinge and transmembrane domain may be derived from CD8a, CDS, CD4, CD9, CD16, CD22, CD33, CD28, CD37, CD45, CD64, CD80, CD86, CD148, DAP 10, EpoRI, GITR, LAG3, ICOS, Her2, OX40 (CD134), 4-1BB (CD137), CD152, CD154, PD-1, or CTLA-4. In some embodiments, the paired domain may be derived from a transmembrane region of an alpha, beta or zeta chain of a T-cell receptor; or an immunoglobulin selected from IgG1, IgD, IgG4, and an IgG4 Fc region; or the CD3 epsilon chain of a T-cell receptor. In one embodiment, the paired hinge and transmembrane domain of the CAR may be derived from CD8a. In one aspect, the paired hinge and transmembrane domain may comprise the amino acid sequence of SEQ ID NO. 8235. In some embodiments, the CAR of the present invention may include an intracellular domain. The intracellular domain may be derived from CD3 zeta or a cell surface molecule selected from the group consisting of FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, and CD66d. In some embodiments, the co-stimulatory domain may be present. The costimulatory domain may be derived from 4-1BB (CD137) 2B4, HVEM, ICOS, LAG3, DAP10, DAP12, CD27, CD28, OX40 (CD134), CD30, CD40, ICOS (CD278), glucocorticoid-induced tumor necrosis factor receptor (GITR), lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, and B7-H3. In one aspect the intracellular domain may be derived from CD3 Zeta SEQ ID NO. 8236. In some embodiments, the CAR may include a co-stimulatory domain derived from 4-1BB (SEQ ID NO. 8237). In some aspects, the CAR further may also include a signal sequence. The signal sequence may be derived from CD8a. In some aspects, the signal sequence may comprise the amino acid sequence of SEQ ID NO. 278.

In some embodiments, the immunotherapeutic agent may be a cytokine-cytokine receptor fusion polypeptide. The cytokine-cytokine receptor fusion polypeptide may include the whole or a portion of IL15, fused to the whole or a portion of IL15Ra to produce a IL15-IL15Ra fusion polypeptide. In one embodiment the cytokine-cytokine receptor fusion polypeptide may include amino acid sequence of SEQ ID NO. 8324 fused to the amino acid sequence of SEQ ID NO. 8324 to produce a fusion polypeptide.

In some embodiments, the effector module of the invention may be a DD-CD19 CAR fusion polypeptide. The fusion polypeptide may comprise the amino acid sequence of SEQ ID NO. 8283; 8271-8282 or 8284. In some embodiments, the effector module of the invention may be a DD-IL15-IL15Ra fusion polypeptide (SEQ ID NO. 8338; 8334-8337 or 8339-8343).

In some embodiments, the SRE may be responsive to one or more stimuli. The stimulus may be a small molecule such as but not limited to Tadalafil, Vardenafil, Sildenafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil. In one aspect, the small molecule may be Tadalafil.

The present invention also provides a pharmaceutical composition which may include the compositions described herein and a pharmaceutically acceptable excipient.

The present invention also provides polynucleotides encoding the compositions and the pharmaceutical compositions described herein.

Also provided herein are immune cells for adoptive transfer. The immune cells may express the compositions, pharmaceutical compositions, the polynucleotides, or the vectors described herein.

The present invention also provides methods of inducing an immune response in a cell. Such methods may include administering to the cell, a therapeutically effective amount of any of the pharmaceutical composition and administering to the cell, a therapeutically effective amount of a stimulus to modulate the expression of the immunotherapeutic agent. In some embodiments, the stimulus may be a ligand. In some aspects, the immunotherapeutic agent may be capable of inducing an immune response in the cell, in response to the stimulus.

Methods of reducing tumor burden using the compositions described herein are also provided. Such methods may include administering to the subject a therapeutically effective amount of the immune cells described herein and administering to the subject a therapeutically effective amount of a stimulus. In some embodiments, the stimulus may be a ligand. In some embodiments, the stimulus may be able to modulate the expression of the immunotherapeutic agent, thereby reducing the tumor burden. In some embodiments, the ligand is Tadalafil. In some aspects the Tadalafil may be administered to the subject at a dose ranging from about 0.1 mg/kg to about 100 mg/kg body weight of the subject. In some aspects, the Tadalafil may be administered to the subject at a dose of 10 mg/kg body weight of the subject. In some aspects, the Tadalafil may be administered to the subject at a dose of 30 mg/kg body weight of the subject. In some aspects, the Tadalafil may be administered to the subject at a dose of 100 mg/kg body weight of the subject.

The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings. The drawings are not necessarily to scale; emphasis instead being placed upon illustrating the principles of various embodiments of the invention.

FIG. 1 shows an overview diagram of a biocircuit system of the invention. The biocircuit comprises a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces a signal or outcome. The effector module comprises at least one stimulus response element (SRE) and one payload.

FIG. 2 shows representative effector modules carrying one payload. The signal sequence (SS), SRE and payload may be located or positioned in various arrangements without (A to F) or with (G to Z, and AA to DD) a cleavage site. An optional linker may be inserted between each component of the effector module.

FIG. 3 shows representative effector modules carrying two payloads without a cleavage site. The two payloads may be either directly linked to each other or separated.

FIG. 4 shows representative effector modules carrying two payloads with a cleavage site. In one embodiment, an SS is positioned at the N-terminus of the construct, while other components: SRE, two payloads and the cleavage site may be located at different positions (A to L). In another embodiment, the cleavage site is positioned at the N-terminus of the construct (M to X). An optional linker may be inserted between each component of the effector module.

FIG. 5 shows effector modules of the invention carrying two payloads, where an SRE is positioned at the N-terminus of the construct (A to L), while SS, two payloads and the cleavage site can be in any configuration. An optional linker may be inserted between each component of the effector module.

FIG. 6 shows effector modules of the invention carrying two payloads, where either the two payloads (A to F) or one of the two payloads (G to X) is positioned at the N-terminus of the construct (A to L), while SS, SRE and the cleavage site can be in any configuration. An optional linker may be inserted between each component of the effector module.

FIG. 7 depicts representative configurations of the stimulus and effector module within a biocircuit system. A trans-membrane effector module is activated either by a free stimulus (A) or a membrane bound stimulus (B) which binds to SRE. The response to the stimulus causes the cleavage of the intracellular signal/payload, which activates down-stream effector/payload.

FIG. 8 depicts a dual stimulus-dual presenter biocircuit system, where two bound stimuli (A and B) from two different presenters (e.g., different cells) bind to two different effector modules in a single receiver (e.g., another single cell) simultaneously and create a dual-signal to downstream payloads.

FIG. 9 depicts a dual stimulus-single presenter biocircuit system, where two bound stimuli (A and B) from the same presenter (e.g., a single cell) bind to two different effector modules in another single cell simultaneously and create a dual-signal.

FIG. 10 depicts a single-stimulus-bridged receiver biocircuit system. In this configuration, a bound stimulus (A) binds to an effector module in the bridge cell and creates a signal to activate a payload which is a stimulus (B) for another effector module in the final receiver (e.g., another cell).

FIG. 11 depicts a single stimulus-single receiver biocircuit system, wherein the single receiver contains the two effector modules which are sequentially activated by a single stimulus.

FIG. 12 depicts a biocircuit system which requires a dual activation. In this embodiment, one stimulus must bind the transmembrane effector module first to prime the receiver cell being activated by the other stimulus. The receiver only activates when it senses both stimuli (B).

FIG. 13 depicts a standard effector module of a chimeric antigen receptor (CAR) system which comprises an antigen binding domain as an SRE, and signaling domain(s) as payload.

FIG. 14 depicts the structure design of a regulatable CAR system, where the trans-membrane effector modules comprise antigen binding domains sensing an antigen and a first switch domain and the intracellular module comprises a second switch domain and signaling domains. A stimulus (e.g., a dimerization small molecule) can dimerize the first and second switch domains and assemble an activated CAR system.

FIG. 15 shows schematic representation of CAR systems having one (A) or two (B and C) SREs incorporated into the effector module.

FIG. 16 depicts a split CAR design to control T cell activation by a dual stimulus (e.g., an antigen and small molecule). (A) shows normal T cell activation which entails a dual activation of TCR and co-stimulatory receptor. The regular CAR design (B) combines the antigen recognition domain with TCR signaling motif and co-stimulatory motif in a single molecule. The split CAR system separates the components of the regular CAR into two separate effector modules which can be reassembled when a heterodimerizing small molecule (stimulus) is present.

FIG. 17 depicts the positive and negative regulation of CAR engineered T cell activation. The absence or presence of a second stimulus can negatively (A) or positively (B) control T cell activation.

FIG. 18 shows schematic representation of gated activation of CAR engineered T cells. If a normal cell that has no stimulus (e.g., an antigen) (A) or an antigen that cannot bind to the trans-membrane effector module (B), or only an antigen that activates the trans-membrane effector module and primes the receiver T cell to express the second effector (C), the receiver T cell remains inactive. When both stimuli (e.g. two antigens) that bind the trans-membrane effector module and the primed effector, are present on the presenter cell (e.g. a cancer cell), the T cell is activated (D).

FIG. 19A shows the percent of CAR positive cells obtained with cells transduced with different volumes of virus related to the CAR constructs. FIG. 19B shows the percentage of CAR positive cells with vardenafil treatment. FIG. 19C shows the expression of the CAR with CD3/CD28 bead restimulation. FIG. 19D shows the percentage of CAR positive cells with different concentrations of virus and in the presence or absence of CD3/CD28 bead restimulation. FIG. 19E shows the dose response of CD19 CAR constructs to sildenafil, vardenafil and tadalafil. FIG. 19F shows the response of CD19 CAR constructs to different ligands and with varying the duration of ligand treatment. FIG. 19G shows IL2 and IFNγ levels obtained from the supernatants of cocultures of effector and target cells in the presence of vardenafil. FIG. 19H shows the percentage of CAR positive T cells obtained with Tadalafil treatment. FIG. 19I shows the IL2 and IFNγ levels obtained from the supernatants of cocultures of effector and target cells in the presence of tadalafil. FIG. 19J shows the target cell killing by CAR expressing T cells in the presence of vardenafil. FIG. 19K shows the proliferation of target cells cocultured with CAR expressing T cells in the presence of vardenafil.

FIG. 20A shows the total flux of Nalm6 luc cells in mice, in the presence of tadalafil. FIG. 20B and FIG. 20C show the pharmaco*kinetics of vardenafil and tadalafil in plasma of mice after injections of ligand at indicated doses.

The details of one or more embodiments of the invention are set forth in the accompanying description below. Although any materials and methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred materials and methods are now described. Other features, objects and advantages of the invention will be apparent from the description. In the description, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In the case of conflict, the present description will control.

Protein Regulation

The ability to conditionally control protein levels is a powerful tool in gene and cell therapy. Techniques to control protein expression on a genetic level have been widely studied. The Cre-Lox technology provides a useful approach to activate or inactivate genes. Tissue or cell specific promoters can be used to control spatial and temporal expression of genes of interest. However, this system is limited in application due to the irreversible nature of the perturbation. The transcription of the gene of interest can be conditionally regulated using tools such as Doxycycline (Dox)-inducible system. Alternatively, the stability of mRNA can be regulated using RNA interference techniques. However, methods targeting DNA or RNA are slow acting, irreversible and have low efficiency.

Direct manipulation of activities at the protein level provides significant advantages in flexibility, reversibility and speed. Strategies which directly trigger a cell's natural degradation system have been developed. Szostak and colleagues showed that a small peptide sequence could be fused to the N-terminus of a protein of interest to modulate protein stability (Park, E C., et al., Proc. Natl. Acad. Sci. U.S.A. 1992, 89:1249-1252). Varshaysky and coworkers isolated a temperature-sensitive peptide sequence that greatly reduced the half-life of dihydrofolate reductase (DHFR) at the non-permissive temperatures (Dohmen et al. Science 1994, 263:1273-1276). These mutants have been widely used to study protein functions in yeast (Labib et al. Science 2000, 288:1643-1646; and Kanemaki et al. Nature 2003, 423:720-724).

Subsequently, reversible systems employing a rapamycin derivative for the regulation of GSK-3β kinase fused to an unstable triple-mutant of the FRB domain (FRB*) were developed. The rapamycin derivative induces dimerization of the FRB*-GSK-3β and endogenous FKBP12 and stabilizes the FRB* fusion thus restoring the function of the fused kinase. (Stankunas et al., Mol Cell. 2003; 12:1615-1624 and Liu et al., Nature. 2007; 446:79-82).

Building on the FRB* domain system, Banaszynski, et al., developed a cell-permeable ligand system using mutants of FKBP12 protein which were engineered to be unstable in the absence of a high-affinity ligand, Shield-1. (Banaszynski et al., Cell. 2006; 126:995-1004). They termed these unstable domains, destabilizing domains (DDs).

The FKBP/shield-1 tuning system has been successfully used in several studies to control target proteins. For example, Dettwier et al., fused FKBP to tune the express of NADPH P450 oxidoreductase (POR) (Dettwier et al., PLoS One, 2014, 9(11): e113540).

The FKBP DD-shield system has been used in cell lines, transgenic mice, protozoan Entamoeba histolytica, the flatworm Caenorhabditis elegans, the medaka, and transgenic xenografts to investigate the activity of a protein of interest (Maynard-Smith et al., J Biol Chem. 2007, 282(34): 24866-24872; Liu et al., Int J Parasitol. 2014, 44(10):729-735; Cho et al., PLoS One. 2013, 8(8): e72393); Banaszynski et al. Nat Med. 2008, 14(10):1123-1127; Rodriguez and Wolfgang, Chem Biol. 2011, 19(3):391-398; and Froschauer et al., PLoS One, 2015, 10(7): e0131252), for iPSC reprogramming (Sui et al., Stem cell Reports, 2014, 2(5): 721-733).

In addition, the destabilizing domain has been used for the conditional knock-down or knock-out of the target gene fused with the destabilizing domain. Park et al achieved this genomic engineering by CRISPR/Cas9-mediated hom*ologous recombination and a donor template coding for a resistance cassette and the DD-tagged TCOF1 sequence (Park et al., PLoS One. 2014, 9(4): e95101).

More recently protein switches useful as biosensors as well as new chimeric antigen receptors and other small molecule stabilization frameworks have been disclosed (An W, et al. PLoS ONE, 2015, 10(12): e0145783. doi: 10.1371/journal.pone.0145783; Nicholes, et al., Protein Engineering, Design & Selection, 2016, vol. 29 no. 2, pp. 77-85; Nath, et al., Biochemical and Biophysical Research Communications, 2016, 470: 411e416); Stevers, et al., PNAS, 2016, vol. 119, no. 9, pp. E112-1161; Juillerat, A. et al., Sci. Rep. 2016, 6: 18950; Roybal, Cell, 2016, vol. 164, pp. 1-10; and Morsut, Cell, 2016, vol. 164, pp. 1-12).

One drawback of the FKBP/Shield-1 is that Shield-1 is a novel drug whose biodistribution is not fully characterized and it is not known to what extent Shield-1 crosses the blood-brain barrier.

Other DD ligand pairs include estrogen receptor domains which can be regulated by several estrogen receptor antagonists (Miyazaki et al., J Am Chem. Soc., 2012, 134(9): 3942-3945), and fluorescent destabilizing domain (FDD) derived from bilirubin-inducible fluorescent protein, UnaG. A FDD and its cognate ligand bilirubin (BR) can induce degradation of a protein fused to the FDD (Navarro et al., ACS Chem Biol., 2016, June 6, Epub). Other known DDs and their applications in protein stability include those described in U.S. Pat. Nos. 8,173,792 and 8,530,636, the contents of which are each incorporated herein by reference in their entirety.

In an orthogonal approach, the destabilizing domains of the bacterial dihydrofolate reductase (ecDHFR) were explored. (Iwamoto et al., Chem Biol. 2010, 17(9):981-988; and Tai et al., PLoS One. 2012, 7(9): e46269). Numerous inhibitors of DHFR have been developed as drugs and one such inhibitor Trimethoprim (TMP), inhibits ecDHFR much more potently than mammalian DHFR providing specificity to the interaction. Additionally, TMP is commercially available and has desirable pharmacological properties making this protein-ligand pair ideal for development for use as a biocircuit (Iwamoto, et al., Chem Biol. (2010) Sep. 24; 17(9): 981-988).

The present invention provides novel protein domains displaying small molecule dependent stability. Such protein domains are called destabilizing domains (DDs). In the absence of its binding ligand, the DD is destabilizing and causes degradation of a payload fused to the DD (e.g., a protein of interest (POI), while in the presence of its binding ligand, the fused DD and payload can be stabilized and its stability is dose dependent. Methods for tuning the expression level and activity of a protein of interest using the DDs, effector modules, biocircuit systems and compositions of the invention are also provided. In some embodiments, the SRE may be a destabilizing domain (DD). In some examples, the DD may be a portion or region of human protein PDE5. In this context, the biocircuit system is a DD biocircuit system.

The present invention expands upon the technology of tuning protein stability using novel destabilizing domains derived from human PDE5 protein. The destabilization and stabilization of a protein of interest, e.g., a transgene for gene therapy, can be controlled by PDE5 mutant DDs having destabilizing or stabilizing properties and their ligands, e.g. Sildenafil and Vardenafil specifically binding to such protein domains. The presence and/or absence of a small molecule ligand can tune the activity of a payload (e.g., a protein of interest) that is operably linked to the destabilizing domain.

Immunotherapy

Cancer immunotherapy aims' at the induction or restoration of the reactivity of the immune system towards cancer. Significant advances in immunotherapy research have led to the development of various strategies which may broadly be classified into active immunotherapy and passive immunotherapy. In general, these strategies may be utilized to directly kill cancer cells or to counter the immunosuppressive tumor microenvironment. Active immunotherapy aims at induction of an endogenous, long-lasting tumor-antigen specific immune response. The response can further be enhanced by non-specific stimulation of immune response modifiers such as cytokines. In contrast, passive immunotherapy includes approaches where immune effector molecules such as tumor-antigen specific cytotoxic T cells or antibodies are administered to the host. This approach is short lived and requires multiple applications.

Despite significant advances, the efficacy of current immunotherapy strategies is limited by associated toxicities. These are often related to the narrow therapeutic window associated with immunotherapy, which in part, emerges from the need to push therapy dose to the edge of potentially fatal toxicity to get a clinically meaningful treatment effect. Further, dose expands in vivo since adoptively transferred immune cells continue to proliferate within the patient, often unpredictably.

A major risk involved in immunotherapy is the on-target but off tumor side effects resulting from T-cell activation in response to normal tissue expression of the tumor associated antigen (TAA). Clinical trials utilizing T cells expressing T-cell receptor against specific TAA reported skin rash, colitis and hearing loss in response to immunotherapy.

Immunotherapy may also produce on target, on-tumor toxicities that emerge when tumor cells are killed in response to the immunotherapy. The adverse effects include tumor lysis syndrome, cytokine release syndrome and the related macrophage activation syndrome. Importantly, these adverse effects may occur during the destruction of tumors, and thus even a successful on-tumor immunotherapy might result in toxicity. Approaches to regulatably control immunotherapy are thus highly desirable since they have the potential to reduce toxicity and maximize efficacy.

The present invention provides systems, compositions, immunotherapeutic agents and methods for cancer immunotherapy. These compositions provide tunable regulation of gene expression and function in immunotherapy. The present invention also provides biocircuit systems, effector modules, stimulus response elements (SREs) and payloads, as well as polynucleotides encoding any of the foregoing. In one aspect, the systems, compositions, immunotherapeutic agents and other components of the invention can be controlled by a separately added stimulus, which provides a significant flexibility to regulate cancer immunotherapy. Further, the systems, compositions and the methods of the present invention may also be combined with therapeutic agents such as chemotherapeutic agents, small molecules, gene therapy, and antibodies.

The tunable nature of the systems and compositions of the invention has the potential to improve the potency and duration of the efficacy of immunotherapies. Reversibly silencing the biological activity of adoptively transferred cells using compositions of the present invention allows maximizing the potential of cell therapy without irretrievably killing and terminating the therapy.

In particular, present invention provides methods for fine tuning of immunotherapy after administration to patients. This in turn improves the safety and efficacy of immunotherapy and increases the subject population that may benefit from immunotherapy.

A variety of strategies that can directly control protein, e.g., a transgene, expression and function are available. The present invention provides novel protein domains displaying small molecule dependent stability. Such protein domains are called destabilizing domains (DDs). In the absence of its binding ligand, the DD causes degradation of a payload such as a protein of interest (POI) that is operably linked to the DD, while in the presence of its binding ligand, the fused DD and payload can be stabilized and its stability is dose dependent.

According to the present invention, novel destabilizing domains derived from human hPDE5 (cGMP-specific phosphodiesterase type 5; also referred to as cGMP-specific 3′,5′-cyclic phosphodiesterase) protein are provided. The destabilizing domain (DD) mutants are derived from the human PDE5 protein, comprising the amino acid sequence of SEQ ID NO. 1 (encoded by the nucleic acid sequence of SEQ ID NO. 2). The hPDE5 DD mutant may also comprise more than one mutation in the catalytic domain of human PDE5 (SEQ ID NO. 3), encoded by nucleic acid sequence of SEQ ID NO. 339, e.g., two, three, four, five or more mutations. These hPDE5 DDs can bind to Sildenafil and/or Vardenafil and be stabilized. In some embodiments, the hPDE5 DD may include a methionine appended to the N terminus of catalytic domain (SEQ ID NO. 237), encoded by SEQ ID NO. 4.

According to the present invention, biocircuit systems are provided which comprise, at their core, at least one effector module system. Such effector module systems comprise at least one effector module having associated, or integral therewith, one or more stimulus response elements (SREs). The overall architecture of a biocircuit system of the invention is illustrated in FIG. 1. In general, a stimulus response element (SRE) may be operably linked to a payload construct which could be any protein of interest (POI) (e.g., an immunotherapeutic agent), to form an effector module. The SRE, when activated by a particular stimulus, e.g., a small molecule, can produce a signal or outcome, to regulate transcription and/or protein levels of the linked payload either up or down by perpetuating a stabilizing signal or destabilizing signal, or any other types of regulation. A much-detailed description of a biocircuit system can be found in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety). In accordance with the present invention, biocircuit systems, effector modules, SREs and components that tune expression levels and activities of any agents used for immunotherapy are provided. In particular, biocircuit systems and effector modules comprising the novel hPDE5 destabilizing domains discussed herein are provided.

As used herein, a “biocircuit” or “biocircuit system” is defined as a circuit within or useful in biologic systems comprising a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces at least one signal or outcome within, between, as an indicator of, or on a biologic system. Biologic systems are generally understood to be any cell, tissue, organ, organ system or organism, whether animal, plant, fungi, bacterial, or viral. It is also understood that biocircuits may be artificial circuits which employ the stimuli or effector modules taught by the present invention and effect signals or outcomes in acellular environments such as with diagnostic, reporter systems, devices, assays or kits. The artificial circuits may be associated with one or more electronic, magnetic, or radioactive components or parts.

In accordance with the present invention, a biocircuit system may be a destabilizing domain (DD) biocircuit system, a dimerization biocircuit system, a receptor biocircuit system, and a cell biocircuit system. Any of these systems may act as a signal to any other of these biocircuit systems. In some embodiments, the present invention provides biocircuit systems, effector modules and compositions comprising the DDs of the present invention. In one aspect, the biocircuit system is a DD biocircuit system.

In one aspect of the present invention, the biocircuit system is a DD biocircuit system. The DD is a hPDE5 derived DD.

Effector Modules and SREs for Immunotherapy

In accordance with the present invention, biocircuit systems, effector modules, SREs, and components that tune expression levels and activities of any agents used for immunotherapy are provided. As non-limiting examples, an immunotherapeutic agent may be an antibody and fragments and variants thereof, a cancer specific T cell receptor (TCR) and variants thereof, an anti-tumor specific chimeric antigen receptor (CAR), a chimeric switch receptor, an inhibitor of a co-inhibitory receptor or ligand, an agonist of a co-stimulatory receptor and ligand, a cytokine, chemokine, a cytokine receptor, a chemokine receptor, a soluble growth factor, a metabolic factor, a suicide gene, a homing receptor, or any agent that induces an immune response in a cell and a subject.

As stated, the biocircuits of the invention include at least one effector module as a component of an effector module system. As used herein, an “effector module” is a single or multi-component construct or complex comprising at least (a) one or more stimulus response elements (SREs) and (b) one or more payloads (i.e. proteins of interest (POIs)). In the context of the present invention, the SRE is a DD derived from human PDE5 protein.

As used herein a “stimulus response element (SRE)” is a component of an effector module which is joined, attached, linked to or associated with one or more payloads of the effector module and in some instances, is responsible for the responsive nature of the effector module to one or more stimuli. As used herein, the “responsive” nature of an SRE to a stimulus may be characterized by a covalent or non-covalent interaction, a direct or indirect association or a structural or chemical reaction to the stimulus. Further, the response of any SRE to a stimulus may be a matter of degree or kind. The response may be a partial response. The response may be a reversible response. The response may ultimately lead to a regulated signal or output. Such output signal may be of a relative nature to the stimulus, e.g., producing a modulatory effect of between 1% and 100% or a factored increase or decrease such as 2-fold, 3-fold, 4-fold, 5-fold, 10-fold or more.

In some embodiments, the biocircuit system of the present invention comprising a stimulus and an effector module of the invention. The DD of the effector module binds to the stimulus and regulates the stability of the linked payload. The DD may destabilize the protein of interest by a destabilization ratio between 0, and 0.09, wherein the destabilization ratio comprises the ratio of expression, function or level of a protein of interest in the absence of the stimulus specific to the DD to the expression, function or level of the protein of interest that is expressed constitutively, and in the absence of the stimulus specific to the DD. In some embodiments, the DD may stabilize the protein of interest by a stabilization ratio of 1 or more, wherein the stabilization ratio comprises the ratio of expression, function or level of a protein of interest in the presence of the stimulus to the expression, function or level of the protein of interest in the absence of the stimulus.

In some embodiments, the present invention provides methods for modulating protein expression, function or level. In some aspects, the modulation of protein expression, function or level refers to modulation of expression, function or level by at least about 20%, such as by at least about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100%.

According to the present invention, biocircuit systems and effector modules of the invention can be used to regulate the expression and activity of a payload in response to the presence or absence of a ligand that specifically binds to the DD integrated within the biocircuit system and effector module.

In some aspects, DDs, effector modules and biocircuit systems of the invention may be used to regulate the expression, function and activity of a payload in a cell or a subject. The regulation refers to a level of change of its expression, function and activity, by at least about 10%, or at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100%.

In some embodiments, the mutation co-efficient of the biocircuits of the invention may also be measured as a way of evaluating the ability of the DD to modulate protein expression, function or level. As used herein, the “mutation co-efficient” refers to the expression, function or level or a protein of interest, appended to a particular DD mutant, in the absence of the stimulus specific to the SRE; to the protein expression, function or level of the protein of interest, appended to the corresponding wildtype sequence from which the particular DD mutant is derived and in the absence of the stimulus. The mutation co-efficient is indicative of the contribution of the destabilizing mutations towards the basal expression of the protein independent of the whether the corresponding wildtype protein can be destabilized without any mutations. In some aspects, the mutation co-efficient ratio is at least 0, such as by at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or at least, 0-0.1, 0-0.2, 0-0.3, 0-0.4, 0-0.5, 0-0.6, 0-0.7, 0-0.8, 0-0.9, 0.1-0.2, 0.1-0.3, 0.1-0.4, 0.1-0.5, 0.1-0.6, 0.1-0.7, 0.1-0.8, 0.1-0.9, 0.2-0.3, 0.2-0.4, 0.2-0.5, 0.2-0.6, 0.2-0.7, 0.2-0.8, 0.2-0.9, 0.3-0.4, 0.3-0.5, 0.3-0.6, 0.3-0.7, 0.3-0.8, 0.3-0.9, 0.4-0.5, 0.4-0.6, 0.4-0.7, 0.4-0.8, 0.4-0.9, 0.5-0.6, 0.5-0.7, 0.5-0.8, 0.5-0.9, 0.6-0.7, 0.6-0.8, 0.6-0.9, 0.7-0.8, 0.7-0.9 or 0.8-0.9.

In some embodiments, the present invention provides methods for modulating protein, expression, function or level by measuring the stabilization ratio, destabilization ratio, and/or destabilizing mutation co-efficient. As used herein, the “stabilization ratio” is the ratio of expression, function or level of a protein of interest in response to the stimulus to the expression, function or level of the protein of interest in the absence of the stimulus specific to the SRE. In some aspects, the stabilization ratio is at least 1, such as by at least 1-10, 1-20, 1-30, 1-40, 1-50, 1-60, 1-70, 1-80, 1-90, 1-100, 20-30, 20-40, 20-50, 20-60, 20-70, 20-80, 20-90, 20-95, 20-100, 30-40, 30-50, 30-60, 30-70, 30-80, 30-90, 30-95, 30-100, 40-50, 40-60, 40-70, 40-80, 40-90, 40-95, 40-100, 50-60, 50-70, 50-80, 50-90, 50-95, 50-100, 60-70, 60-80, 60-90, 60-95, 60-100, 70-80, 70-90, 70-95, 70-100, 80-90, 80-95, 80-100, 90-95, 90-100 or 95-100. As used herein, the “destabilization ratio” is the ratio of expression, function or level of a protein of interest in the absence of the stimulus specific to the effector module to the expression, function or level of the protein of interest, that is expressed constitutively and in the absence of the stimulus specific to the SRE. As used herein “constitutively” refers to the expression, function or level a protein of interest that is not linked to an SRE, and is therefore expressed both in the presence and absence of the stimulus to the SRE. As used herein, the “destabilizing mutation co-efficient” may be defined as the ratio of expression or level of a protein of interest that is appended to a DD, in the absence of the stimulus specific to the effector module to the expression, function or level of the protein that is appended to the wild type protein from which the DD is derived. In some aspects, the destabilization ratio and/or the destabilizing mutation co-efficient is at least 0, such as by at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or at least, 0-0.1, 0-0.2, 0-0.3, 0-0.4, 0-0.5, 0-0.6, 0-0.7, 0-0.8, 0-0.9, 0.1-0.2, 0.1-0.3, 0.1-0.4, 0.1-0.5, 0.1-0.6, 0.1-0.7, 0.1-0.8, 0.1-0.9, 0.2-0.3, 0.2-0.4, 0.2-0.5, 0.2-0.6, 0.2-0.7, 0.2-0.8, 0.2-0.9, 0.3-0.4, 0.3-0.5, 0.3-0.6, 0.3-0.7, 0.3-0.8, 0.3-0.9, 0.4-0.5, 0.4-0.6, 0.4-0.7, 0.4-0.8, 0.4-0.9, 0.5-0.6, 0.5-0.7, 0.5-0.8, 0.5-0.9, 0.6-0.7, 0.6-0.8, 0.6-0.9, 0.7-0.8, 0.7-0.9 or 0.8-0.9.

The SRE of the effector module may be selected from, but is not limited to, a peptide, peptide complex, peptide-protein complex, protein, fusion protein, protein complex, protein-protein complex. The SRE may comprise one or more regions derived from any natural or mutated protein, or antibody. In this aspect, the SRE is an element, when responding to a stimulus, can tune intracellular localization, intramolecular activation, and/or degradation of payloads.

In some embodiments, effector modules of the present invention may comprise additional features that facilitate the expression and regulation of the effector module, such as one or more signal sequences (SSs), one or more cleavage and/or processing sites, one or more targeting and/or penetrating peptides, one or more tags, and/or one or more linkers. Additionally, effector modules of the present invention may further comprise other regulatory moieties such as inducible promoters, enhancer sequences, microRNA sites, and/or microRNA targeting sites. Each aspect or tuned modality may bring to the effector module or biocircuit a differentially tuned feature. For example, an SRE may represent a destabilizing domain, while mutations in the protein payload may alter its cleavage sites or dimerization properties or half-life and the inclusion of one or more microRNA or microRNA binding site may impart cellular detargeting or trafficking features. Consequently, the present invention embraces biocircuits which are multifactorial in their tenability. Such biocircuits may be engineered to contain one, two, three, four or more tuned features.

As shown in FIG. 2, representative effector module embodiments comprising one payload, i.e. one immunotherapeutic agent are illustrated. Each components of the effector module may be located or positioned in various arrangements without (A to F) or with (G to Z, and AA to DD) a cleavage site. An optional linker may be inserted between each component of the effector module.

FIGS. 3 to 6 illustrate representative effector module embodiments comprising two payloads, i.e. two immunotherapeutic agents. In some aspects, more than two immunotherapeutic agents (payloads) may be included in the effector module under the regulation of the same SRE (e.g., the same DD). The two or more agents may be either directly linked to each other or separated (FIG. 3). The SRE may be positioned at the N-terminus of the construct, or the C-terminus of the construct, or in the internal location.

In some aspects, the two or more immunotherapeutic agents may be the same type such as two antibodies, or different types such as a CAR construct and a cytokine IL12. Biocircuits and components utilizing such effector molecules are given in FIGS. 7-12.

As used herein a “payload” or “target payload” is defined as any protein or nucleic acid whose function is to be altered. Payloads may include any coding or non-coding gene or any protein or fragment thereof, or fusion constructs, or antibodies.

Payloads are often associated with one or more SREs (e.g., DDs) and may be encoded alone or in combination with one or more DD in a polynucleotide of the invention. Payloads themselves may be altered (at the protein or nucleic acid level) thereby providing for an added layer of tenability of the effector module. For example, payloads may be engineered or designed to contain mutations, single or multiple, which affect the stability of the payload or its susceptibility to degradation, cleavage or trafficking. The combination of a DD which can have a spectrum of responses to a stimulus with a payload which is altered to exhibit a variety of responses or gradations of output signals, e.g., expression levels, produce biocircuits which are superior to those in the art. For example, mutations or substitutional designs such as those created for IL12 in WO2016048903 (specifically in Example 1 therein), the contents of which are incorporated herein by reference in their entirety, may be used in any protein payload in conjunction with a DD of the present invention to create dual tunable biocircuits. The ability to independently tune both the DD and the payload greatly increases the scope of uses of the effector modules of the present invention.

Effector modules may be designed to include one or more payloads, one or more DDs, one or more cleavage sites, one or more signal sequences, one or more tags, one or more targeting peptides, and one or more additional features including the presence or absence of one or more linkers. Representative effector module embodiments of the invention are illustrated in FIGS. 2-6. In some aspects, the DD can be positioned at the N-terminal end, or the C-terminal end, or internal of the effector module construct. Different components of an effector module such as DDs, payloads and additional features are organized linearly in one construct, or are separately constructed in separate constructs.

Additionally, effector modules of the present invention may further comprise other regulatory moieties such as inducible promoters, enhancer sequences, microRNA sites, and/or microRNA targeting sites that provide flexibility on controlling the activity of the payload. The payloads of the present invention may be any natural proteins and their variants, or fusion polypeptides, antibodies and variants thereof, transgenes and therapeutic agents.

The stimulus of the biocircuit system may be, but is not limited to, a ligand, a small molecule, an environmental signal (e.g., pH, temperature, light and subcellular location), a peptide or a metabolite. In one aspect of the present invention, the stimulus is a hPDE5 DD binding ligand including Sildenafil and Vardenafil.

Polypeptides of DDs, biocircuit systems and effector modules comprising such DDs and payload constructs, other components, polynucleotides encoding these polypeptides and variants thereof, vectors comprising these polynucleotides, are provided in the present invention. The vector may be a plasmid or a viral vector including but not limited to a lentiviral vector, a retroviral vector, a recombinant AAV vector and oncolytic viral vector.

The position of the payload with respect to the DD, within the SRE may be varied to achieve optimal DD regulation. In some embodiments, the payload may be fused to the N terminus of the DD. In another embodiment, the payload may be fused to the C terminus of the DDs. An optional start codon nucleotide sequence encoding for methionine may be added to the DD and/or payload.

In some embodiments, more than one biocircuit system may be used in combination to control various protein functions in the same cell or organism, each of which uses different DD and ligand pair and can be regulated separately.

In some embodiments, biocircuits of the invention may be modified to reduce their immunogenicity. Immunogenicity is the result of a complex series of responses to a substance that is perceived as foreign and may include the production of neutralizing and non-neutralizing antibodies, formation of immune complexes, complement activation, mast cell activation, inflammation, hypersensitivity responses, and anaphylaxis. Several factors can contribute to protein immunogenicity, including, but not limited to protein sequence, route and frequency of administration and patient population. In a preferred embodiment, protein engineering may be used to reduce the immunogenicity of the compositions of the invention. In some embodiments, modifications to reduce immunogenicity may include those that reduce binding of the processed peptides derived from the sequence of the compositions of the invention, to the MHC proteins. For example, amino acid may be modified such that virtually none or a minimal of number of immune epitopes predicted to bind to any prevalent MHC alleles are present in the compositions of the invention. Several methods to identify MHC binding epitopes of known protein sequences are known in the art and may be used to score epitopes in the compositions of the present invention. Such methods are disclosed in U.S. Patent Publication No. US20020119492, US20040230380, and U.S. 20060148009; the contents of each of which are incorporated by reference in their entirety.

Epitope identification and subsequent sequence modification may be applied to reduce immunogenicity. The identification of immunogenic epitopes may be achieved either physically or computationally. Physical methods of epitope identification may include, for example, mass spectrometry and tissue culture/cellular techniques. Computational approaches that utilize information related to antigen processing, loading and display, structural and/or proteomic data for identifying peptides that may result from antigen processing, and that are likely to have good binding characteristics in the groove of the MHC may also be utilized. One or more mutations may be introduced into the biocircuits of the invention to render the identified epitope less or non-immunogenic, while maintaining functionality.

In some embodiments, protein modifications engineered into the structure of the compositions of the invention to interfere with antigen processing and peptide loading such as glycosylation and PEGylation, may also be useful in the present invention. Compositions of the invention may also be engineered to include non-classical amino acid sidechains. Any of the methods discussed in International Patent Publication No. WO2005051975 for reducing immunogenicity may be useful in the present invention (the contents of which are incorporated by reference in their entirety).

In one embodiment, patients may also be stratified according to the immunogenic peptides presented by their immune cells and may be utilized as a parameter to determine patient cohorts that may therapeutically benefit from the compositions of the invention.

In some embodiments, reduced immunogenicity may be achieved by limiting immunoproteasome processing. The proteasome is an important cellular protease that is found in two forms: the constitutive proteasome, which is expressed in all cell types and which contains catalytic subunits and the immunoproteasome that is expressed in cells of the hematopoietic lineage, and which contains different active subunits termed low molecular weight proteins (LMP) namely LMP-2, LMP-7 and LMP-10. Immunoproteasomes exhibit altered peptidase activities and cleavage site preferences that result in more efficient liberation of many MEW class I epitopes. A well described function of the immunoproteasome is to generate peptides with hydrophobic C terminus that can be processed to fit in the groove of MEW class I molecules. Deol P et al. have shown that immunoproteasomes may lead to a frequent cleavage of specific peptide bonds and thereby to a faster appearance of a certain peptide on the surface of the antigen presenting cells; and enhanced peptide quantities (Deol P et al. (2007) J Immunol 178 (12) 7557-7562; the contents of which are incorporated herein reference in its entirety). This study indicates that reduced immunoproteasome processing may be accompanied by reduced immunogenicity. In some embodiments, immunogenicity of the compositions of the invention may be reduced by modifying the sequence encoding the compositions of the invention to prevent immunoproteasome processing. Biocircuits of the present invention may also be combined with immunoproteasome-selective inhibitors to achieve the same effects. Examples of inhibitors useful in the present invention include UK-101 (Bli selective compound), IPSI-001, ONX 0914 (PR-957), and PR-924 (IPSI).

In some embodiments, effector modules of the present invention may include one or more degrons to tune expression. As used herein, a “degron” refers to a minimal sequence within a protein that is sufficient for the recognition and the degradation by the proteolytic system. An important property of degrons is that they are transferrable, that is, appending a degron to a sequence confers degradation upon the sequence. In some embodiments, the degron may be appended to the destabilizing domains, the payload or both. Incorporation of the degron within the effector module of the invention, confers additional protein instability to the effector module and may be used to reduce basal expression. In some embodiments, the degron may be an N-degron, a phospho degron, a heat inducible degron, a photosensitive degron, an oxygen dependent degron. As a non-limiting example, the degron may be an Ornithine decarboxylase degron as described by Takeuchi et al. (Takeuchi J et al. (2008). Biochem J. 2008 Mar. 1; 410(2):401-7; the contents of which are incorporated by reference in their entirety). Other examples of degrons useful in the present invention include degrons described in International patent publication Nos. WO2017004022, WO2016210343, and WO2011062962; the contents of each of which are incorporated by reference in their entirety.

In some embodiments, the effector modules of the present invention may include degrons at their C termini. The degrons may comprise -GG, -RG, -KG, -QG, -WG, -PG, and -AG as the penultimate and the ultimate amino acids of the SREs. Furthermore, certain −2 amino acids (D, E, V, I and L) may be more enriched in the C terminus of the of the effector modules. Other degrons include, but are not limited, to RxxG motif, wherein x is any amino acid, C-terminal twin glutamic acid (EE) motif, and motifs that comprise an arginine at the −3 positions. Degrons may also be selected from the R-3 motif, G-end, R at −3, A-end, A at −2, V at −2 positions. Any of the degrons described in Koren et al., 2018, Cell 173, 1-14, may be useful in the present invention (the contents of which are incorporated by reference in their entirety). In some aspects, the expression of the effector module may be tuned by altering its overall amino acid composition. In some aspects, the amino acid composition of the effector module may be tuned to reduce basal expression. In some embodiments, basal expression may be tuned by increasing the number of bulky aromatic residues such as tryptophan (W), phenylalanine (F), and tyrosine (Y) in the effector module. Such bulky amino acids are known to reduce protein stability. In some embodiments, the amino acid composition of the SREs may be enriched with acidic residues such as, but not limited to, aspartic acid (D) and glutamic acid (E), and positively charged lysine (K), if an increase in the basal expression of the SRE is desired.

In some embodiments, the endoplasmic reticulum associated degradation (ERAD) pathway may be used to optimize degradation of the payloads described herein e.g. secreted and membrane cargos. In one embodiment, the effector modules of the invention may be directed to the ER E3 ligases by using adaptor proteins or protein domains. The endoplasmic reticulum is endowed with a specialized machinery to ensure proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by the ERAD pathway, a process through which folding defective proteins are selected and ultimately degraded by the ubiquitin proteasome system. ERAD proceeds through four main steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasome degradation. Any of these steps may be modulated to optimize the degradation of the payloads and the effector modules described herein. Protein adaptors within the ER membrane, link substrate recognition to the ERAD machinery (herein referred to as the “dislocon”), which causes the dislocation of the proteins from the ER. Non-limiting examples of protein adaptors that may be used to optimize ERAD pathway degradation include, but are not limited to SEL1L (an adaptor that links glycan recognition to the dislocon), Erlins (intermembrane substrate adaptors), Insigs (client specific adaptors), F-Box proteins (act as adaptors for dislocated glycoproteins in the cytoplasm) and viral-encoded adaptors.

According to the present invention, novel destabilizing domains derived from human hPDE5 (cGMP-specific phosphodiesterase type 5) protein are provided. The destabilizing mutants are derived from the human PDE5 protein, comprising the amino acid sequence of SEQ ID NO. 1 (encoded by the nucleic acid sequence of SEQ ID NO: 2). The hPDE5 DD mutant may also comprise more than one mutation in the catalytic domain of human PDE5 of SEQ ID NO. 3 (encoded by nucleic acid sequence of SEQ ID NO. 339), e.g., two, three, four, five or more mutations. These hPDE5 DDs can bind to Sildenafil and/or Vardenafil and be stabilized.

Destabilizing Domains (DDs)

As used herein, the term “destabilizing domains (DDs)” refers to protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. Destabilizing domains (DDs) can be appended to a target protein of interest (POI) and can convey its destabilizing property to the protein of interest, causing protein degradation. The presence, absence or an amount of a small molecule ligand that binds to or interacts with the DD, can, upon such binding or interaction modulate the stability of the payload(s) and consequently the function of the payload. A protein domain with destabilizing property (e.g. a DD) is used in conjunction with a cell-permeable ligand to regulate any protein of interest when it is fused with the destabilizing domain. DDs render the attached protein of interest unstable in the absence of a DD-binding ligand such that the protein is rapidly degraded by the ubiquitin-proteasome system of the cell. However, when a specific small molecule ligand binds its intended DD as a ligand binding partner, the instability is reversed and protein function is restored. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable substrate for degradation. Moreover, its dependency on the concentration of its ligand further provides tunable control of degradation rates. Depending on the degree of binding and/or interaction the altered function of the payload may vary, hence providing a “tuning” of the payload function.

Due to its reversibility, specificity and the fast and easy regulation on protein level, the post-transcriptional tuning system provides a useful system for gene regulation. Furthermore, the regulation may be dose-dependent, thereby altering the protein-turnover rate to transform a short-lived or no detectable protein into a protein that functions for a precisely controlled period of time (Iwamoto et al., Chem. Biol. 2010, 17: 981-988).

In some embodiments, the desired characteristics of the DDs may include, but are not limited to, low protein levels in the absence of a ligand of the DD (i.e. low basal stability), large dynamic range, robust and predictable dose-response behavior, and rapid kinetics of degradation. Candidate DDs that bind to a desired ligand but not endogenous molecules may be preferred.

Candidate destabilizing domain sequence identified from protein domains of known wildtype proteins (as a template) may be mutated to generate libraries of mutants based on the template candidate domain sequence. Mutagenesis strategies used to generate DD libraries may include site-directed mutagenesis e.g. by using structure guided information, or random mutagenesis e.g. using error-prone PCR, or a combination of both. In some embodiments, destabilizing domains identified using random mutagenesis may be used to identify structural properties of the candidate DDs that may be required for destabilization, which may then be used to further generate libraries of mutations using site directed mutagenesis.

In some embodiments, novel DDs may be identified by mutating one or more amino acids in the candidate destabilizing domain to an amino acid that is vicinal to the mutation site. As used herein a vicinal amino acid refers to an amino acid that is located 1, 2, 3, 4, 5 or more amino acids upstream or downstream of the mutation site in the linear sequence and/or the crystal structure of the candidate destabilizing domain. In some embodiments, the vicinal amino acid may be a conserved amino acid (with similar physicochemical properties as the amino acid at the mutation site), a semi-conserved amino acid (e.g. negatively to positively charge amino acid) or a non-conserved amino acid (with different physicochemical properties than the amino acid at the mutation site).

In some embodiments, DD mutant libraries may be screened for mutations with altered, preferably higher binding affinity to the ligand, as compared to the wild type protein. DD libraries may also be screened using two or more ligands and DD mutations that are stabilized by some ligands but not others may be preferentially selected. DD mutations that bind preferentially to the ligand compared to a naturally occurring protein may also be selected. Such methods may be used to optimize ligand selection and ligand binding affinity of the DD. Additionally, such approaches can be used to minimize deleterious effects caused by off-target ligand binding.

In some embodiments, suitable DDs may be identified by screening mutant libraries using barcodes. Such methods may be used to detect, identify and quantify individual mutant clones within the heterogeneous mutant library. Each DD mutant within the library may have distinct barcode sequences (with respect to each other). In other instances, the polynucleotides can also have different barcode sequences with respect to 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleic acid bases. Each DD mutant within the library may also comprise a plurality of barcode sequences. When used in plurality barcodes may be used such that each barcode is unique to any other barcode. Alternatively, each barcode used may not be unique, but the combination of barcodes used may create a unique sequence that can be individually tracked. The barcode sequence may be placed upstream of the SRE, downstream of the SRE, or in some instances may be placed within the SRE. DD mutants may be identified by barcodes using sequencing approaches such as Sanger sequencing, and next generation sequencing, but also by polymerase chain reaction and quantitative polymerase chain reaction. In some embodiments, polymerase chain reaction primers that amplify a different size product for each barcode may be used to identify each barcode on an agarose gel. In other instances, each barcode may have a unique quantitative polymerase chain reaction probe sequence that enables targeted amplification of each barcode.

Inventors of the present invention investigated several human proteins and identified novel human DDs which can confer its instability features to the fused payload and facilitate the rapid degradation of the fusion polypeptide in the absence of its ligand but stabilize the fused payload in response to the binding to its ligand. Specifically, the new DDs are derived from human PDE5 protein.

Human PDE5 Mutants

In some embodiments, DDs of the invention may be derived from human cGMP-specific phosphodiesterase type 5 (PDE5); gene name: PDE5A (herein referred to as “hPDE5”). hPDE5 (phosphodiesterase 5) is a member of the 3,5′-cyclic nucleotide phosphodiesterase family which degrades/hydrolyzes cyclic GMP (cGMP) into its inactive form, GMP, and regulates cGMP signaling. The cGMP/PDE 5 signaling contributes to the development of hypertension in the vasculature, the central nervous system, and the kidney. hPDE5 is known to bind to small molecule such as Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, Beminafil, SLx-2101, LAS 34179, UK-343,664, UK-357903, UK-371800, and BMS-341400. Sildenafil, Vardenafil, Avanafil, and Tadalafil are hPDE5 inhibitors clinically approved for the treatment of erectile dysfunction. In particular, the binding of these small molecules to hPDE5 occurs within the catalytic domain. In some embodiments, the DDs of the invention may be derived from the catalytic domain of hPDE5 (SEQ ID NO. 3) which includes of residues 535 to 860 of hPDE5 (SEQ ID NO. 1; GenBank Access NO. 076074.2) which may be stabilized by ligands such as small molecule inhibitors of hPDE5 e.g. Sildenafil and Vardenafil. As used herein the term “PDE5 WT” or “hPDE5 WT”, refers to the human wildtype PDE5 protein sequence, which is defined as SEQ ID NO. 1, with the GenBank Access NO. 076074.2. In some embodiments, DDs of the present invention may be identified by utilizing a co*cktail of hPDE5 inhibitors. In other instances, the suitable DDs may be identified by screening first with one hPDE5 inhibitor and subsequently screening with a second hPDE5 inhibitor.

In one embodiment, the hPDE5 derived DD may comprise the amino acid sequence of UniProt ID: 076074 (SEQ ID NO. 1) or a portion or a fragment thereof. In another embodiment, the hPDE5 derived DD may comprise the catalytic domain of UniProt ID: 076074, spanning from amino acid position 535 to position 860 (SEQ ID NO. 3); encoded by SEQ ID NO. 339. In addition to the catalytic domain, hPDE5 derived DDs may also comprise one or more GAF domains and/or the C terminal portion that extends beyond the catalytic domain. In some embodiment, the hPDE5 derived DD may be identified by testing constructs generated by truncating the 5′ and/or the 3′ end of hPDE5. In one embodiment, the hPDE5 derived DD may be truncated and the smallest hPDE5 based DD may be identified. In another embodiment, the hPDE5 derived DD may include amino acids from position 535 to 836 of SEQ ID NO. 1 which removes the C terminal helix. In another embodiment, the hPDE5 derived DD may consist of amino acids from position 567 to 860 of UniProt ID: 076074 (SEQ ID NO. 1), or position 590 to 860 of UniProt ID: 076074 (SEQ ID NO. 1), which removes a portion of the N terminal domain. In another embodiment, the hPDE5 derived DD may consist of amino acids from position 590 to 836 of UniProt ID: 076074 (SEQ ID NO. 1), which removes a portion of the N terminal domain and the C terminal helix. The DD may include amino acids from position 535 to position 875 of UniProt ID: 076074 (SEQ ID NO. 1). In another embodiment, the hPDE5 derived DD may consist of amino acids from position 466 to 875 of UniProt ID: 076074 (SEQ ID NO. 1) or position 420 to 875 of UniProt ID: 076074 (SEQ ID NO. 1).

According to the present invention, several hPDE5 destabilizing mutations were discovered by site directed mutagenesis of the catalytic domain of wildtype human PDE5 using site directed mutagenesis. The destabilization of the mutants in the absence of its binding ligands is tested. Binding to hPDE5 ligands, Sildenafil, Tadalafil and Vardenafil to human PDE5 was tested and ligand dependent stabilization was characterized. Based on the structural analysis of hPDE5 bound to Sildenafil, several residues were selected for mutagenesis. In some embodiments one or more of the residues described herein may be mutagenized to obtain hPDE5 derived DDs. The tryptophan at position 853 of SEQ ID NO. 1 may be mutated to phenylalanine to induce hydrophobic packing near binding site, while maintaining pi bond with the nearby tryptophan at position 772. The isoleucine at position 821 may be mutated to valine or alanine, which results in hydrophobic packing near binding site. The tyrosine at position 829 may be mutated to isoleucine, valine or alanine, which results in hydrophobic packing near binding site. The aspartate at position 656 may be mutated to asparagine or leucine to break up the charge and the salt bridge on loop/helix. The tyrosine at position 728 may be mutated to phenylalanine or leucine to break the salt bridges at position 732 and to affect hydrophobic packing. Alternatively, the arginine at position 732 may be mutated to lysine or leucine to generate the inverse of the effects of mutating tyrosine at position 728. The methionine at position 625 may be mutated to leucine or isoleucine to alter packing in away from the binding site. In some embodiments, destabilizing mutations that do not affect ligand binding may be preferentially selected.

In some embodiments, new destabilizing domains of the present invention are derived from the catalytic domain of human PDE5 protein comprising the amino acid sequence of SEQ ID NO. 3. In some aspects, the destabilizing mutant domain may comprise one, two, three, four, five or more mutations such as, but not limited to, M625I, D656L, Y728L, R732L, F736A, F787A, I821A, Y829A and W853F. The DDs of the invention may further include additional mutations e.g. E535D, E536G, Q541R, K555R, S560G, F559L, F561L, F564L, F564S, S766F, V585A, N587S, K591E, I599V, K604E, K608E, N609H, K630R, K633E, N636S, I648V, N661S, S663P, L675P, Y676D, Y676N, C677R, H678R, D687A, T711A, T712S, D724N, L738H, N742S, F744L, L746S, F755L, A762S, D764V, D764N, D764G, K795E, L797F, I799T, L804P, T802P, S815C, M816A, M816T, I824T, C839S, F840S, and K852E. In some embodiments, any of the mutation sites disclosed herein may be mutated to any of the known amino acids such as Histidine, Alanine, Isoleucine, Arginine, Leucine, Aspartic acid, Lysine, Cysteine, Methionine, Glutamic acid, Phenylalanine, Glutamine, Threonine, Glycine, Tryptophan, Proline, Valine, Serine, Tyrosine, Asparagine, Selenocysteine, Pyrrolysine. In some embodiments, DDs of the present invention may be stabilized by ligands such as Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil.

The amino acid sequences of the destabilizing domains encompassed in the invention have at least about 40%, 50 or 60% identity, further at least about 70% identity, preferably at least about 75% or 80% identity, more preferably at least about 85%, 86%, 87%, 88%, 89% or 90% identity, and further preferably at least about 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequence set forth therein. Percent identity may be determined, for example, by comparing sequence information using the advanced BLAST computer program, including version Magic-BLAST 1.2.0, available from the National Institutes of Health. The BLAST program is based on the alignment method discussed in Karl and Altschul (1990) Proc. Natl. Acad. Sci USA, 87:2264-68 (the contents of which are incorporated by reference in their entirety).

Several hPDE5 destabilizing mutants were identified and are provided in Table 1. The position of the mutated amino acids listed in Table 1 is relative to the full length hPDE5 of SEQ ID NO. 1. The domains described in Table 1 include the catalytic domain of hPDE5 (e.g., 535-860 of SEQ ID NO. 1). In some embodiments, the hPDE5 DDs described in Table 1 may include a methionine at the N terminal of the catalytic domain of hPDE5, i.e. amino acid 535-860 of PDE5 WT. In Table 1, the mutated amino acids are in bold and underlined.

TABLE 1
hPDE5 DDs
hPDE5AANA
mutantSEQ IDSEQ ID
descriptionAmino Acid SequenceNONO
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI  5350
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
W853F)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKFQAL
AEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI  6351
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSH
WT, I821A)DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI  7352
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
Y829A)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI  8353
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSH
WT, F787A)DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFADQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI  9354;
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN355
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT, F736A)DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEF
AELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ
QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI 10356
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT,DLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
D656L)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI 11357
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
Y728L)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI 12358;
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN359
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT, R732L)DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI 13360
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCIFAALKAGKIQNKLTDLEILALLIAALSHD
WT, M625I)LDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILN
SPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFE
LIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI
AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQV
GFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAE
QQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC340 14
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
W853F)GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKF
QALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC341 15
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, I821A)MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQK
WQALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC342 16
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
Y829A)GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC343 17
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, F787A)MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFADQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC344 18
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, F736A)MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC345 19
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
D656L)GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC346 20
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRG
Y728L)EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC238 21
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
535-860 ofSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, R732L)MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC347 22
hPDE5TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
(Amino acidHNWRHAFNTAQCIFAALKAGKIQNKLTDLEILALLIAALS
535-860 ofHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI
WT, M625I)LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEF
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ
QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI348361
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSA
WT,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
H653A)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI349362
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
D764A)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ

In some embodiments, DDs derived from hPDE5 may include one, two, three, four, five, or more of the mutations described in the previous Table (Table 1).

In some embodiments, DDs derived from hPDE5 may further comprise one, two, three, four, five or more mutations to the catalytic domain of hPDE5 and may be selected from E535D, E536G, Q541R, K555R, S560G, F559L, F561L, F564L, F564S, S766F, V585A, N587S, K591E, I599V, K604E, K608E, N609H, K630R, K633E, N636S, I648V, N661S, S663P, L675P, Y676D, Y676N, C677R, H678R, D687A, T711A, T712S, D724N, L738H, N742S, F744L, L746S, F755L, A762S, D764V, D764N, D764G, K795E, L797F, I799T, L804P, T802P, S815C, M816A, M816T, I824T, C839S, F840S, and K852E (as listed in Table 2). The position of the mutated amino acid is with respect to the hPDE5 of SEQ ID NO. 1. In Table 2, the mutated amino acids are underlined and in bold. The position of the mutated amino acids listed in Table 2 is relative to the full length hPDE5 of SEQ ID NO. 1

TABLE 2
Additional hPDE5 DDs
hPDE5 mutantAA SEQ
descriptionAmino Acid SequenceID NO
hPDE5 (AminoDETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT23
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, E535D)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEGTRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT24
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, E536G)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELRSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT25
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, Q541R)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLRITDFSFSDFELSDLETALCTIRMFT26
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, K555R)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDLSFSDFELSDLETALCTIRMFT27
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, F559L)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSLSDFELSDLETALCTIRMFT28
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, F561L)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDLELSDLETALCTIRMFT29
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, F564L)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDSELSDLETALCTIRMFT30
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, F564S)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT31
acid 535-860 ofDLNLVQNFQMEHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, K591E)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT32
acid 535-860 ofDLNLVQSFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA
WT, N587S)QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQ
RSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
TLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLA
MLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPT
DLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGC
RKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT33
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKENYRKNVAYHNWRHAFNT
WT, K604E)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT34
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRENVAYHNWRHAFNT
WT, K608E)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT35
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKHVAYHNWRHAFNT
WT, N609H)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT36
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, K630R)AQCMFAALRAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT37
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, K633E)AQCMFAALKAGEIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT38
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, N636S)AQCMFAALKAGKIQSKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT39
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, N661S)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVSNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT40
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, Y676D)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLDCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT41
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, Y676N)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLNCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT42
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, C677R)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLYRHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT43
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, H678R)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLYCRSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT44
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, D687A)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFAQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT45
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, T712S)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TSLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT46
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, D724N)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATNLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT47
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, D724G)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATGLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT48
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, L738H)AQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFEHIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT49
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, N742S)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKSQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT50
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, A762S)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTSCDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT51
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, D764N)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT52
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, D764G)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACGLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT53
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, D764V)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACVLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT54
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, S766F)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLFAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT55
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, K795E)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDREREELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT56
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, L797F)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATFFDQGDRERKEFNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT57
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, I799T)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNTE
PTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD
GCRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT58
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, T802P)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
PDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT59
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, S815C)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPCMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT60
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, M816A)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSAQVGFIDAICLQLYEALTHVSEDCFPLLDGC
RKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT61
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, I824T)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDATCLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT62
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, C839S)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDSFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT63
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, K852E)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQEWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFGFSDFELSDLETALCTIRMF64
acid 535-860 ofTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, S560G)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT65
acid 535-860 ofDLNLAQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, V585A)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT66
acid 535-860 ofDLNLVQNFQMKHEVLCRWVLSVKKNYRKNVAYHNWRHAFNT
WT, I599V)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT67
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, I648V)AQCMFAALKAGKIQNKLTDLEILALLVAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT68
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, S663P)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNPYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT69
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, L675P)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQPYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT70
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, T711A)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
ATLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT71
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, F744L)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQLNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT72
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, L746S)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNSEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT73
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, F755L)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELLL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT74
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, L804P)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDPMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT75
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, M816T)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSTQVGFIDAICLQLYEALTHVSEDCFPLLDGC
RKNRQKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT76
acid 535-860 ofDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
WT, F840S)AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYI
QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCSPLLDG
CRKNRQKWQALAEQQ

In some embodiments, DDs derived from hPDE5 may include the combination of at least one, two, three, four or five mutations listed in Table 1 with at least 0, 1, 2, 3, 4, 5 or more mutations listed in Table 2.

In some embodiments, the DDs may be derived from hPDE5 (SEQ ID NO. 3), by mutating one or more amino acids residues between positions 530-550, 550-570, 570-590, 590-610, 620-640, 640-660, 660-680, 680-700, 710-730, 730-750, 750-770, 770-790, 790-810-830, 830-850, 850-860 of the catalytic domain of human PDE5 (SEQ ID NO. 1). In some embodiments, the mutation may be a conserved (with similar physicochemical properties as the amino acid at the mutation site), a semi conserved (e.g., negatively to positively charge amino acid) or a non-conserved (amino acid with different physicochemical properties than the amino acid at the mutation site). In some embodiments, the amino acid lysine may be mutated to glutamic acid or arginine; the amino acid phenylalanine may be mutated to leucine; the amino acid leucine may be mutated to phenylalanine; or the amino acid asparagine may be mutated to serine. Regions or portions or domains of wild type proteins may be utilized as SREs/DDs in whole or in part. They may be combined or rearranged to create new peptides, proteins, regions or domains of which any may be used as SREs/DDs or the starting point for the design of further SREs and/or DDs.

In some embodiments, DDs may be derived from hPDE5 by mutating amino acid residues conserved within all members of the PDE family. Exemplary conserved residues include but are not limited to, E682, H613, H617, H653, D654, and H657 residues of full length human PDE5 (SEQ ID NO. 1) and are taught in Sung et al. Nature (2003) 425, 98-102 (the contents of which are incorporated herein by reference in their entirety). In other embodiments, residues that are critical for binding to metals such as zinc and magnesium may be mutated to identify novel hPDE5 DDs. In some embodiments, hPDE5 derived DDs may be identified from a library of mutants of hPDE5 catalytic domain generated using a combination of error-prone PCR and nucleotide analog mutagenesis through random mutagenesis. Any of the mutations identified by site directed mutagenesis may be combined with the mutations identified by random mutagenesis. In some embodiments, DDs described herein may be derived by mutating the Y612 amino acid of hPDE5 (SEQ ID NO. 1). In some embodiments, the mutations to the Y612 amino acid may be combined with any of the mutations described herein. Independent co-crystals of hPDE5 with vardenafil and with sildenafil, have demonstrated that one of the rings of the both ligand, interacts with Y612 of hPDE5, an amino acid located within the catalytic site of hPDE5. Interactions occur via a hydrogen bond with a water molecule and via hydrophobic bonds. Y612F mutation, which ablates the hydrogen bonding potential, increases the inhibition of hPDE5 activity by both ligands. The Y612A mutation, which leads to the ablation of both hydrogen bonding and hydrophobic bonding potential has been shown to weaken the inhibition of hPDE5 catalytic activity by vardenafil and sildenafil to a lesser extent. These studies suggest that hydrophobic bonding involving Y612 is stronger for vardenafil than for sildenafil (Corbin et al. 2006, International Journal of Impotence Research 18, 251-257; the contents of which are incorporated by reference in their entirety).

The destabilization domains described herein may also include amino acid and nucleotide substitutions that do not affect stability, including conservative, non-conservative substitutions and or polymorphisms.

In some embodiments, hPDE5 DDs described herein may also be fragments of the above destabilizing domains, including fragments containing variant amino acid sequences. Preferred fragments are unstable in the absence of the stimulus and stabilized upon addition of the stimulus. Preferred fragments retain the ability to interact with the stimulus with similar efficiency as the DDs described herein.

In one embodiment, hPDE5 mutants are fused to AcGFP through a linker sequence at either the N-terminal or the C-terminal end of the fusion constructs. The AcGFP of Uniprot ID BAE93141 (SEQ ID NO. 363), may be used as the GFP template and is referred to as the wildtype or “WT” version of AcGFP. In some embodiments, the hPDE5 mutants described herein may also be operably linked to a luciferase (luc) gene, such as the firefly luciferase (Fluc) or Renilla luciferase (Rluc). The position of the mutations in the Fluc protein sequence described herein are based on the comparison of the SEQ ID NO. 223 with the wildtype luciferase sequence of Photinus pyralis (Uniprot ID: P08659.1) or “Fluc WT”, comprising the amino acid sequence of SEQ ID NO. 364. The destabilizing and ligand dependent stabilization properties of the fusion proteins may be evaluated by methods such as western blotting, and FACS. hPDE5 mutants that are fused to the N terminus of GFP are provided in Table 3. All constructs may be cloned into any vector known in the art and/or described herein such as, but not limited to, pLVX.IRES Puro vectors. OT-hPDE5C-036 (OT-001232) was placed under the transcriptional control of the EF1a promoter, while the other constructs described in Table 3 were placed under the transcriptional control of CMV promoter. In Table 3, and asterisk indicates the translation of the stop codon. Table 3 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.

TABLE 3
hPDE5-AcGFP constructs
AANA
Construct ID/SEQ IDSEQ ID
DescriptionAmino Acid SequenceNO.NO.
LinkerGGSGGGSGG 77 92
LinkerGGSGGG 78 93; 300
LinkerSGAGTGGT
AcGFPVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYG 79372
(Amino acidKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQ
2-239 of WT)HDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLV
NRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKN
GIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK
AcGFPMVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY365 94, 373
(Amino acidGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
1-239 of WT)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
HYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK
Fluc (AminoEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTI366374
acid 2-549 ofAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIV
WT, N50D,VCSENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMG
N119G, S548I,ISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGF
K549A, L550V)QSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALIMNSSGST
GLPKGVALPHRTACVRFSHARDPIFGNQIIPDTAILSVVPFH
HGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYKIQS
ALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGE
AVAKRFHLPGIRQGYGLIETTSAILITPEGDDKPGAVGKV
VPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNN
PEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKY
KGYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAV
VVLEHGKTM1EKEIVDYVASQVTTAKKLRGGVVFVDEVP
KGLTGKLDARKIREILIKAKKGGKIAV
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 80 95
001 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001075, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-001)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
(Amino acidPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
WT); linkerQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG
(GGSGGGSGG);HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL
AcGFPSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG
(Amino acidNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY
2-239 ofNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
WT); stopQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG
FVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 81 96
002 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001078, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-002)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
(Amino acidPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKF
WT, W853F);QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG
linkerHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL
(GGSGGGSGG);SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG
AcGFPNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY
(Amino acidNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
2-239 ofQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG
WT); stop)FVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 82 97
003 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001080, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-003)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
(Amino acidPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQK
WT, I821A);WQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN
linkerGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTT
(GGSGGGSGG);LSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDD
AcGFPGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKME
(Amino acidYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADH
2-239 ofYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
WT); stopGFVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 83 98
004 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001081, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-004)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
(Amino acidPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKW
WT, Y829A);QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG
linkerHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL
(GGSGGGSGG);SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG
AcGFPNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY
(Amino acidNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
2-239 ofQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG
WT); stopFVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 84 99
005 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001074, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-005)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
(Amino acidPIQQRIAELVATEFADQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
WT, F787A);QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG
linkerHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL
(GGSGGGSGG);SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG
AcGFPNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY
(Amino acidNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
2-239 ofQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG
WT); stopFVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 85100
006 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001076, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-006)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
(Amino acidPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
WT, F736A);QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG
linkerHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL
(GGSGGGSGG);SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG
AcGFPNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY
(Amino acidNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
2-239 ofQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG
WT); stopFVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 86101
007 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001082, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-007)SHDLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
(Amino acidPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
WT, D656L);QALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG
linkerHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTL
(GGSGGGSGG);SYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDG
AcGFPNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY
(Amino acidNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
2-239 ofQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG
WT); stopFVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 87102
008 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001083, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-008)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRG
hPDE5EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
(Amino acidQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
535-860 ofMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
WT, Y728L);ALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNGH
linkerKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS
(GGSGGGSGG);YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN
AcGFPYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN
(Amino acidYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
2-239 ofQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF
WT); stopVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 88103
009 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001084, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-009)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
hPDE5EFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
(Amino acidQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
535-860 ofMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
WT, R732L);ALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNGH
linkerKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS
(GGSGGGSGG);YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN
AcGFPYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN
(Amino acidYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
2-239 ofQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF
WT); stopVTAAAITHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 89104
010 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001070, OT-HNWRHAFNTAQCIFAALKAGKIQNKLTDLEILALLIAALS
hPDE5-010)HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI
Methionine;LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEF
hPDE5FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ
(Amino acidQRIAELVA1EFFDQGDRERKELNIEPTDLMNREKKNKIPS
535-860 ofMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
WT, M625I);ALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNGH
linkerKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLS
(GGSGGGSGG);YGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN
AcGFPYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN
(Amino acidYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
2-239 ofQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF
WT); stopVTAAAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC 90105
028 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001224)HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
Methionine;SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
hPDE5MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
(Amino acidGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
535-860 ofPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
WT); linkerPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
(GGSGGG);QALAEQQGGSGGGVSKGAELFTGIVPILIELNGDVNGHKF
AcGFPSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYG
(Amino acidVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYK
2-239 ofSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYN
WT); stopAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQN
TPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT
AAAITHGMDELYK*
OT-hPDE5C-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY 91106
036 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001232; OT-QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
hPDE5-036)VNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
AcGFPNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
(Amino acidHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
1-239 ofKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
WT); linkerLCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(SG); hPDE5YHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
(Amino acidLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
535-860 ofMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
WT); stopGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC367375
031 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001227)HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
Methionine;SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
hPDE5MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
(Amino acidGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
535-860 ofPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
WT); linkerPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
(SG); FlucQALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAMK
(N50D, N119G,RYALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYG
S548I, K549A,LNTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDIYNE
L550V); stopRELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMD
SKTDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDKTIA
LIMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPD
TAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLR
SLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGG
APLSKEVGEAVAKRFHLPGIRQGYGLIETTSAILITPEGDD
KPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGP
MIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFI
VDRLKSLIKYKGYQVAPAELESILLQHPNIFDAGVAGLPD
DDAGELPAAVVVLEHGKTMIEKEIVDYVASQVTTAKKLR
GGVVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAV*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC368376
032 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001228)HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
Methionine;SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
hPDE5MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
(Amino acidGEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
535-860 ofPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
WT, F736A);PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
linker (SG);QALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAMK
Fluc (N50D,RYALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYG
N119G, S548I,LNTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDIYNE
K549A, RELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMD
L550V); stopSKTDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDKTIA
LIMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPD
TAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLR
SLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGG
APLSKEVGEAVAKRFHLPGIRQGYGLIETTSAILITPEGDD
KPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGP
MIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFI
VDRLKSLIKYKGYQVAPAELESILLQHPNIFDAGVAGLPD
DDAGELPAAVVVLEHGKTMIEKEIVDYVASQVTTAKKLR
GGVVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAV*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC369377
033 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001229)HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
Methionine;SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
hPDE5MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
(Amino acidEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
535-860 ofQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
WT, R732L);MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
Linker (SG);ALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKR
Fluc (N50D,YALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGL
N119G,NTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDIYNER
S548I,ELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDS
K549A,KTDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALI
L550V); stopMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPDTA
ILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLRSL
QDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAP
LSKEVGEAVAKRFHLPGIRQGYGLIETTSAILITPEGDDKP
GAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMI
MSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFIVD
RLKSLIKYKGYQVAPAELESILLQHPNIFDAGVAGLPDDD
AGELPAAVVVLEHGKTMTEKEIVDYVASQVTTAKKLRGG
VVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAV*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY370378
086 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001211)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); hPDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, H653A);MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
stopGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY371379
087 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001208)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); hPDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, D764A);MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
stopGEFFELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ*

In addition to human PDE5, other phosphodiesterases may also be used to generate novel destabilizing domains. The human PDE superfamily includes 11 structurally related but functionally distinct gene families (hPDE1 to hPDE11). These differ in their cellular functions, primary structures, affinities for cAMP and cGMP, catalytic properties and response to specific activators, inhibitors, effectors and mechanisms of regulation. As modular proteins, hPDEs exhibit a common structural organization with divergent amino-terminal regulatory regions and conserved carboxy-terminal catalytic core. The hPDE family proteins contain an N terminal regulatory region and a C terminal catalytic region. The N-terminal regulatory regions contain structural determinants that target individual hPDEs to different subcellular locations, and allow individual hPDEs to specifically respond to different post translational modification. The structural elements include dimerization domains, auto-inhibitory modules, binding sites for ligands and allosteric effectors. In contrast, the X ray crystal structure isolated catalytic domains of nine hPDE families (hPDE1 to hPDE5 and hPDE7 to hPDE10) have demonstrated that the catalytic domains of hPDEs share a similar topography, composed of ˜350 amino acids folded into 16 helices. Across the hPDE families, the active site forms a deep hydrophobic pocket that contains a hPDE specific, histidine-containing signature motif, HD(X2) H(X4) N (SEQ ID NO: 8377), and binding sites for two divalent metal ions that are essential for catalytic function. The affinity of hPDEs to specific cyclic nucleotides varies within the family-some hPDEs specifically hydrolyze cAMP (hPDE4, hPDE7 and hPDE8), whereas others hydrolyze cGMP (hPDE5, hPDE6 and hPDE9), and some hydrolyze both cAMP and cGMP (hPDE1, hPDE2, hPDE3, hPDE10 and hPDE11).

Similar to hPDE5, the catalytic domain or other functional domain of any hPDE family member may be mutagenized and screened for destabilizing mutations. Known inhibitors for each hPDE protein may also be tested for ligand-dependent stabilization.

In some embodiments, known mutations in phosphodiesterases that affect protein stability may be utilized to identify novel hPDE derived DDs. Mutations previously identified include, but are not limited to, hPDE5 (I778T), or hPDE6C (H602L), hPDE6C (E790K), hPDE6C (R104W), hPDE6C (Y323N), and hPDE6C (P391L) or hPDE4D (S752A), hPDE4D (S754A), hPDE4D (S752A, S754A), and hPDE4D (E757A, E758A, D759A) (Zhu et al. (2010) Mol Cell Biol. 4379-4390; Alexandre et al. (2015). Endocr. Relat. Cancer 22(4):519-30; Cheguru P. et al. (2015) Mol Cell Neurosci; 64: 1-8; the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, novel DDs may be generated from hPDE1 which is also known as calcium and calmodulin dependent phosphodiesterase. It has three subtypes hPDE1A, hPDE1B and hPDE1C. The enzyme contains three functional domains; a conserved catalytic core, a regulatory N-terminus and a C-terminus. The catalytic domains of hPDE1 have three helical subdomains; an N-terminal cyclin fold region, a linker region and a C-terminal helical bundle. Vinpocetine is a known inhibitor of hPDE1.

In some embodiments, novel DDs may be generated from hPDE2, a dual substrate enzyme that hydrolyzes both cAMP and cGMP. The distinguishing feature of this hPDE is that it is allosterically stimulated by cGMP binding to one of its GAF domains. The crystal structure of hPDE2 GAF-B domain reveals that the GAF-B domain binds cGMP with high affinity and selectivity. Exemplary hPDE2 inhibitors include EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), Oxindole, PDP and BAY 60-7550. Inhibitors that selectively inhibit a hPDE2 isoform may also be used, for example, substituted pyrido (2,3-b) pyrazines having a hPDE2A selective inhibitory action (See, e.g., U.S. Pat. No. 9,527,841; the contents of which are incorporated by reference in its entirety.)

In some embodiments, novel DDs may be generated from hPDE3 which preferentially hydrolyses cAMP. Like other hPDE family members, it comprises three functional domains, a conserved catalytic core, a regulatory terminus and the C-terminus. The catalytic core of hPDE is characterized by a unique 44-amino acid insert. Amrinone, Cilostazol, Milrinone, Enoximone and Pimobendan are inhibitors for hPDE3 enzyme.

In some embodiments, novel DDs may be generated from hPDE4, the principal second messenger for immune response regulation and is responsible for the hydrolysis of cAMP. Four isoforms of hPDE4 exist with each isoform having a unique N terminal region that specifies cellular localization by mediating interactions with scaffolding proteins which may further comprise upstream conserved regions (UCRs). All isoforms share invariant catalytic domain. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine (Q369) that forms crucial hydrogen bond with substrates. Analyses of crystal structure of hPDE-inhibitor complexes suggest that two conserved residues are essential for inhibitor binding. The formation of hydrogen bonds with invariant glutamine determines the orientation of the inhibitors and conserved hydrophobic residues (1336 and F340) form a hydrophobic clamp that anchors inhibitors in the pocket. A number of small molecules can inhibit hPDE 4 activity, some of which are FDA approved such as AN2728 (4-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-5-yl)oxy]benzonitrile), Apremilast/CC10004 (N-{2-[(1S)-1-(3-Ethoxy-4-methoxyphenyl)-2-(methyl sulfonyl)ethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl}acetamide), and Roflumilast. Other small molecules that inhibit hPDE4 also include E6005/RVT501, Cilomilast/SB-207,499, Ibudilast (AV-411 or MN-166), Mesembrenone, Piclamilast/RP 73401, Rolipram, Atizoram/CP-80633, Arofylline, CC-1088, Catramilast, CGH-2466, Cipamfylline, Drotaverine, Filaminast/WAY-PDA 641, HT-0712, DNS-001, ICI-63197, Indimilast, Irsogladine/MN 1695, Lirimilast/BAY 19-8004, Oglemilast, Revamilast, Ro 20-1724, Ronomilast, GSK256066, DC-TA-46, AWD 12-281 and YM-976.

In some embodiments, novel DDs may be generated from hPDE6. This holoenzyme includes hPDE6 alpha, hPDE6 beta and/or two identical inhibitory subunits of hPDE6 gamma. hPDE6 alpha and beta forms comprise three domains: two N-terminal GAF domains and one C-terminal catalytic domain. The non-catalytic GAF domains are responsible for cGMP binding.

In some embodiments, novel DDs may be generated from hPDE7, a cAMP specific hPDE which consists of two genes, hPDE7A and hPDE7B. There are no known regulatory domains on the N terminus as established for most of the other hPDE families, although consensus PKA phosphorylation sites exist in this region. Several small molecules can inhibit PDE7, including BRL-50481 (N,N,2-Trimethyl-5-nitrobenzenesulfonamide) and ASB16165 (1H-Thieno(2,3-C) pyrazole-5-carboxamide, 1-cyclohexyl-N-(6-(4-hydroxy-1-piperidinyl)-3-pyridinyl)-3-methyl).

In some embodiments, novel DDs may be generated from hPDE8. Two subfamilies of hPDE8 exist and both they have very high affinity for the substrate cAMP and are insensitive to the non-specific PDE inhibitor IBMX. Each protein contains a catalytic core, a PAS (Per, Arnt and Sim) and a REC (receiver) domain. The crystal structure of the catalytic core of hPDE8 identified Tyr748 residue as a unique residue that distinguishes hPDE8 inhibitor binding from other hPDE proteins bound to inhibitors. PF-04957325 (Pfizer) is a small molecule inhibitor of hPDE8.

In some embodiments, novel DDs may be generated from hPDE9, which has the highest affinity for cGMP. The primary structure of hPDE9A is simple as it does not appear to contain any GAF domains or other N-terminal regulatory sequences found in other hPDEs. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine Gln 453 in hPDE9A2 that forms crucial hydrogen bond with substrates. The formation of hydrogen bonds with invariant glutamine determines the orientation of the inhibitors and conserved hydrophobic residues form a hydrophobic clamp that anchors inhibitors in the pocket and wedges their ring structures against F456 in hPDE9A. Tested hPDE9 inhibitors may include BAY73-6691 (1-(2-chlorophenyl)-6-[(2R)-3,3,3-trifluoro-2-methylpropyl]-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidine-4-one), PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(oxan-4-yl)-2H-pyrazolo[3,4-d]pyrimidin-4-one) and WYQ-C28L.

In some embodiments, novel DDs may be generated from hPDE10, which can hydrolyze both cAMP and cGMP. Like some other hPDE family proteins, hPDE10 comprises 2 GAF domains in the N terminal region, a Protein Kinase A phosphorylation site and a catalytic domain. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine Q726 in hPDE10A2 that forms crucial hydrogen bond with substrates. Several PDE10 inhibitors are under clinical trials including OMS 824, Papaverine and PF-2545920 (2-(4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl) phenoxymethyl) quinolone).

In some embodiments, novel DDs may be generated from hPDE11. Like hPDE10, the recently discovered hPDE11 can hydrolyze both cAMP and cGMP. It comprises of only one gene with four isoform variants. The longest variant, hPDE11A4, has two N-terminal GAF domains, whereas the other variants are truncations of this variant of varying lengths.

In some embodiments, any of the destabilizing mutations related to hPDE5 described herein may be structurally mapped onto other phosphodiesterases to generate destabilizing domains. In one embodiment, mutations that destabilize hPDE5, and which subsequently result in stabilization in the presence of sildenafil and/or vardenafil may be engineered onto hPDE6. In one embodiment, mutations that destabilize hPDE5, and which subsequently result in stabilization in the presence of Tadalafil may be engineered onto hPDE11.

The full length hPDEs and their catalytic domains that may be utilized to derive novel DDs are listed in Table 4.

TABLE 4
Sequences of human PDE proteins and their catalytic domains
PDE protein
(Uniprot ID orAA
domainSEQ ID
description)Amino Acid sequenceNO.
hPDE1AMDDHVTIRKKHLQRPIFRLRCLVKQLERGDVNVVDLKKNIEYAA107
(Uniprot ID:SVLEAVYIDETRRLLDTEDELSDIQTDSVPSEVRDWLASTFTRKM
P54750)GMTKKKPEEKPKFRSIVHAVQAGIFVERMYRKTYHMVGLAYPA
AVIVTLKDVDKWSFDVFALNEASGEHSLKFMIYELFTRYDLINRF
KIPVScl*tFAEALEVGYSKYKNPYHNLIHAADVTQTVHYIMLHT
GIMHWLIELEILAMVFAAAIHDYEHTGTTNNFHIQTRSDVAILYN
DRSVLENHHVSAAYRLMQEEEMNILINLSKDDWRDLRNLVIEMV
LSTDMSGHFQQIKNIRNSLQQPEGIDRAKTMSLILHAADISHPAKS
WKLHYRWTMALMEEFFLQGDKEAELGLPFSPLCDRKSTMVAQS
QIGFIDFIVEPTFSLLTDSTEKIVIPLIEEASKAETSSYVASSSTTIVG
LHIADALRRSNTKGSMSDGSYSPDYSLAAVDLKSFKNNLVDIIQQ
NKERWKELAAQEARTSSQKCEFIHQ
hPDE1AFKIPVScl*tFAEALEVGYSKYKNPYHNLIHAADVTQTVHYIMLH108
CatalyticTGIMHWLTELEILAMVFAAAIHDYEHTGTTNNFHIQTRSDVAILY
domain (AminoNDRSVLENHHVSAAYRLMQEEEMNILINLSKDDWRDLRNLVIEM
acid 193-515VLSTDMSGHFQQIKNIRNSLQQPEGIDRAKTMSLILHAADISHPAK
of PDE1A)SWKLHYRWTMALMEEFFLQGDKEAELGLPFSPLCDRKSTMVAQ
SQIGFIDFIVEPTFSLLTDSTEKIVIPLIEEASKAETSSYVASSSTTIVG
LHIADALRRSNTKGSMSDGSYSPDYSLAAVDLKSFKNNLVDIIQQ
NKERW
hPDE1BMELSPRSPPEMLEESDCPSPLELKSAPSKKMWIKLRSLLRYMVKQ109
(Uniprot ID:LENGEINIEELKKNLEYTASLLEAVYIDETRQILDIEDELQELRSD
Q01064)AVPSEVRDWLASTFTQQARAKGRRAEEKPKFRSIVHAVQAGIFV
ERMFRRTYTSVGPTYSTAVLNCLKNLDLWCFDVFSLNQAADDH
ALRTIVFELLTRHNLISRFKIPTVFLMSFLDALETGYGKYKNPYHN
QIHAADVTQTVHCFLLRTGMVHCLSEIELLAIIFAAAIHDYEHTGT
TNSFHIQTKSECAIVYNDRSVLENHHISSVFRLMQDDEMNIFINLT
KDEFVELRALVIEMVLATDMSCHFQQVKTMKTALQQLERIDKPK
ALSLLLHAADISHPTKQWLVHSRWTKALMEEFFRQGDKEAELGL
PFSPLCDRTSTLVAQSQIGFIDFIVEPTFSVLTDVAEKSVQPLADED
SKSKNQPSFQWRQPSLDVEVGDPNPDVVSFRSTWVKRIQENKQK
WKERAASGITNQMSIDELSPCEEEAPPSPAEDEHNQNGNLD
hPDE1BFKIPTVFLMSFLDALETGYGKYKNPYHNQIHAADVTQTVHCFLLR110
CatalyticTGMVHCLSEIELLAIIFAAAIHDYEHTGTTNSFHIQTKSECAIVYND
domain (AminoRSVLENHHISSVFRLMQDDEMNIFINLTKDEFVELRALVIEMVLA
acid 197-496TDMSCHFQQVKTMKTALQQLERIDKPKALSLLLHAADISHPTKQ
of PDE1B)WLVHSRWTKALMEEFFRQGDKEAELGLPFSPLCDRTSTLVAQSQ
IGFIDFIVEPTFSVLTDVAEKSVQPLADEDSKSKNQPSFQWRQPSL
DVEVGDPNPDVVSFRSTWVKRIQENKQKW
hPDE1CMESPTKEIEEFESNSLKYLQPEQIEKIWLRLRGLRKYKKTSQRLRS111
(Uniprot ID:LVKQLERGEASVVDLKKNLEYAATVLESVYIDETRRLLDTEDELS
Q14123)DIQSDAVPSEVRDWLASTFTRQMGMMLRRSDEKPRFKSIVHAVQ
AGIFVERMYRRTSNMVGLSYPPAVIEALKDVDKWSFDVFSLNEA
SGDHALKFIFYELLTRYDLISRFKIPISALVSFVEALEVGYSKHKNP
YHNLMHAADVTQTVHYLLYKTGVANWLTELEIFAIIFSAAIHDYE
HTGTTNNFHIQTRSDPAILYNDRSVLENHHLSAAYRLLQDDEEM
NILINLSKDDWREFRTLVIEMVMATDMSCHFQQIKAMKTALQQP
EAIEKPKALSLMLHTADISHPAKAWDLHHRWTMSLLEEFFRQGD
REAELGLPFSPLCDRKSTMVAQSQVGFIDFIVEPTFTVLTDMTEKI
VSPLIDETSQTGGTGQRRSSLNSISSSDAKRSGVKTSGSEGSAPINN
SVISVDYKSFKATWTEVVHINRERWRAKVPKEEKAKKEAEEKAR
LAAEEQQKEMEAKSQAEEGASGKAEKKTSGETKNQVNGTRANK
SDNPRGKNSKAEKSSGEQQQNGDFKDGKNKTDKKDHSNIGNDS
KKTDGTKQRSHGSPAPSTSSTCRLTLPVIKPPLRHFKRPAYASSSY
APSVSKKTDEHPARYKMLDQRIKMKKIQNISHNWNRK
hPDE1CFKIPISALVSFVEALEVGYSKHKNPYHNLMHAADVTQTVHYLLY112
CatalyticKTGVANWLTELEIFAIIFSAAIHDYEHTGTTNNFHIQTRSDPAILYN
domain (AminoDRSVLENHHLSAAYRLLQDDEEMNILINLSKDDWREFRTLVIEM
acid 202-521VMATDMSCHFQQIKAMKTALQQPEAIEKPKALSLMLHTADISHP
of PDE1C)AKAWDLHHRWTMSLLEEFFRQGDREAELGLPFSPLCDRKSTMV
AQSQVGFIDFIVEPTFTVLTDMIEKIVSPLIDETSQTGGTGQRRSSL
NSISSSDAKRSGVKTSGSEGSAPINNSVISVDYKSFKATWTEVVHI
NRERW
hPDE2AMGQACGHSILCRSQQYPAARPAEPRGQQVFLKPDEPPPPPQPCAD113
(Uniprot ID:SLQDALLSLGSVIDISGLQRAVKEALSAVLPRVETVYTYLLDGES
O00408)QLVCEDPPHELPQEGKVREAIISQKRLGCNGLGFSDLPGKPLARL
VAPLAPDTQVLVMPLADKEAGAVAAVILVHCGQLSDNEEWSLQ
AVEKHTLVALRRVQVLQQRGPREAPRAVQNPPEGTAEDQKGGA
AYTDRDRKILQLCGELYDLDASSLQLKVLQYLQQETRASRCCLL
LVSEDNLQLSCKVIGDKVLGEEVSFPLTGCLGQVVEDKKSIQLKD
LTSEDVQQLQSMLGCELQAMLCVPVISRATDQVVALACAFNKLE
GDLFTDEDEHVIQHCFHYTSTVLTSTLAFQKEQKLKCECQALLQV
AKNLFTHLDDVSVLLQEIITEARNLSNAEICSVFLLDQNELVAKVF
DGGVVDDESYEIRIPADQGIAGHVATTGQILNIPDAYAHPLFYRG
VDDSTGFRTRNILCFPIKNENQEVIGVAELVNKINGPWFSKFDEDL
ATAFSIYCGISIAHSLLYKKVNEAQYRSHLANEMMMYHMKVSDD
EYTKLLHDGIQPVAAIDSNFASFTYTPRSLPEDDTSMAILSMLQD
MNFINNYKIDCPTLARFCLMVKKGYRDPPYHNWMHAFSVSHFC
YLLYKNLELTNYLEDIEIFALFISCMCHDLDHRGTNNSFQVASKS
VLAALYSSEGSVMERHHFAQAIAILNTHGCNIFDHFSRKDYQRML
DLMRDIILATDLAHHLRIFKDLQKMAEVGYDRNNKQHHRLLLCL
LMTSCDLSDQTKGWKTTRKIAELIYKEFFSQGDLEKAMGNRPME
MMDREKAYIPELQISFMEHIAMPIYKLLQDLFPKAAELYERVASN
REHWTKVSHKFTIRGLPSNNSLDFLDEEYEVPDLDGTRAPINGCC
SLDAE
hPDE2AKIDCPTLARFCLMVKKGYRDPPYHNWMHAFSVSHFCYLLYKNL114
CatalyticELTNYLEDIEIFALFISCMCHDLDHRGTNNSFQVASKSVLAALYSS
domain (AminoEGSVMERHHFAQATAILNTHGCNIFDHFSRKDYQRMLDLMRDIIL
acid 633-891ATDLAHHLRIFKDLQKMAEVGYDRNNKQHHRLLLCLLMTSCDL
of PDE2A)SDQTKGWKTTRKIAELIYKEFFSQGDLEKAMGNRPMEMMDREK
AYIPELQISFMEHIAMPIYKLLQDLFPKAAELYERVASN
hPDE3AMAVPGDAARVRDKPVHSGVSQAPTAGRDCHHRADPASPRDSGC115
(Uniprot ID:RGCWGDLVLQPLRSSRKLSSALCAGSLSFLLALLVRLVRGEVGC
Q14432)DLEQCKEAAAAEEEEAAPGAEGGVFPGPRGGAPGGGARLSPWL
QPSALLFSLLCAFFWMGLYLLRAGVRLPLAVALLAACCGGEALV
QIGLGVGEDHLLSLPAAGVVLSCLAAATWLVLRLRLGVLMIALT
SAVRTVSLISLERFKVAWRPYLAYLAGVLGILLARYVEQILPQSA
EAAPREHLGSQLIAGTKEDIPVFKRRRRSSSVVSAEMSGCSSKSHR
RTSLPCIPREQLMGHSEWDHKRGPRGSQSSGTSITVDIAVMGEAH
GLITDLLADPSLPPNVCTSLRAVSNLLSTQLTFQAIHKPRVNPVTS
LSENYTCSDSEESSEKDKLAIPKRLRRSLPPGLLRRVSSTWTTTTS
ATGLPTLEPAPVRRDRSTSIKLQEAPSSSPDSWNNPVMMTLTKSR
SFTSSYAISAANHVKAKKQSRPGALAKISPLSSPCSSPLQGTPASSL
VSKISAVQFPESADTTAKQSLGSHRALTYTQSAPDLSPQILTPPVIC
SSCGRPYSQGNPADEPLERSGVATRTPSRTDDTAQVTSDYETNNN
SDSSDIVQNEDETECLREPLRKASACSTYAPETMMFLDKPILAPEP
LVMDNLDSIMEQLNTWNFPIFDLVENIGRKCGRILSQVSYRLFED
MGLFEAFKIPIREFMNYFHALEIGYRDIPYHNRIHATDVLHAVWY
LTTQPIPGLSTVINDHGSTSDSDSDSGFTHGHMGYVFSKTYNVTD
DKYGCLSGNIPALELMALYVAAAMHDYDHPGRTNAFLVATSAP
QAVLYNDRSVLENHHAAAAWNLFMSRPEYNFLINLDHVEFKHF
RFLVIEAILATDLKKHFDFVAKFNGKVNDDVGIDWTNENDRLLV
CQMCIKLADINGPAKCKELHLQWTDGIVNEFYEQGDEEASLGLPI
SPFMDRSAPQLANLQESFISHIVGPLCNSYDSAGLMPGKWVEDSD
ESGDTDDPEEEEEEAPAPNEEETCENNESPKKKTFKRRKIYCQITQ
HLLQNHKMWKKVIEEEQRLAGIENQSLDQTPQSHSSEQIQAIKEE
EEEKGKPRGEEIPTQKPDQ
hPDE3AFKIPIREFMNYFHALEIGYRDIPYHNRIHATDVLHAVWYLTTQPIP116
CatalyticGLSTVINDHGSTSDSDSDSGFTHGHMGYVFSKTYNVTDDKYGCL
domain (AminoSGNIPALELMALYVAAAMHDYDHPGRTNAFLVATSAPQAVLYN
acid 728-1086DRSVLENHHAAAAWNLFMSRPEYNFLINLDHVEFKHFRFLVIEAI
of PDE3A)LATDLKKHFDFVAKFNGKVNDDVGIDWTNENDRLLVCQMCIKL
ADINGPAKCKELHLQWTDGIVNEFYEQGDEEASLGLPISPFMDRS
APQLANLQESFISHIVGPLCNSYDSAGLMPGKWVEDSDESGDTDD
PEEEEEEAPAPNEEETCENNESPKKKTFKRRKIYCQITQHLLQNHK
MW
hPDE3BMRRDERDAKAMRSLQPPDGAGSPPESLRNGYVKSCVSPLRQDPP117
(Uniprot ID:RGFFFHLCRFCNVELRPPPASPQQPRRCSPFCRARLSLGALAAFVL
Q13370)ALLLGAEPESWAAGAAWLRTLLSVCSHSLSPLFSIACAFFFLTCFL
TRTKRGPGPGRSCGSWWLLALPACCYLGDFLVWQWWSWPWGD
GDAGSAAPHTPPEAAAGRLLLVLSCVGLLLTLAHPLRLRHCVLV
LLLASFVWWVSFTSLGSLPSALRPLLSGLVGGAGCLLALGLDHFF
QIREAPLHPRLSSAAEEKVPVIRPRRRSSCVSLGETAASYYGSCKIF
RRPSLPCISREQMILWDWDLKQWYKPHYQNSGGGNGVDLSVLN
EARNMVSDLLTDPSLPPQVISSLRSISSLMGAFSGSCRPKINPLTPF
PGFYPCSEIEDPAEKGDRKLNKGLNRNSLPTPQLRRSSGTSGLLPV
EQSSRWDRNNGKRPHQEFGISSQGCYLNGPFNSNLLTIPKQRSSS
VSLTHHVGLRRAGVLSSLSPVNSSNHGPVSTGSLTNRSPIEFPDTA
DFLNKPSVILQRSLGNAPNTPDFYQQLRNSDSNLCNSCGHQMLK
YVSTSESDGTDCCSGKSGEEENIFSKESFKLMETQQEEETEKKDSR
KLFQEGDKWLTEEAQSEQQTNIEQEVSLDLILVEEYDSLIEKMSN
WNFPIFELVEKMGEKSGRILSQVMYTLFQDTGLLEIFKIPTQQFMN
YFRALENGYRDIPYHNRIHATDVLHAVWYLTTRPVPGLQQIHNG
CGTGNETDSDGRINHGRIAYISSKSCSNPDESYGCLSSNIPALELM
ALYVAAAMHDYDHPGRTNAFLVATNAPQAVLYNDRSVLENHH
AASAWNLYLSRPEYNFLLHLDHVEFKRFRFLVIEAILATDLKKHF
DFLAEFNAKANDVNSNGIEWSNENDRLLVCQVCIKLADINGPAK
VRDLHLKWTEGIVNEFYEQGDEEANLGLPISPFMDRSSPQLAKLQ
ESFITHIVGPLCNSYDAAGLLPGQWLEAEEDNDTESGDDEDGEEL
DTEDEEMENNLNPKPPRRKSRRRIFCQLMHHLTENHKIWKEIVEE
EEKCKADGNKLQVENSSLPQADEIQVIEEADEEE
hPDE3BFKIPTQQFMNYFRALENGYRDIPYHNRIHATDVLHAVWYLTTRP118
CatalyticVPGLQQIHNGCGTGNETDSDGRINHGRIAYISSKSCSNPDESYGCL
domain (AminoSSNIPALELMALYVAAAMHDYDHPGRTNAFLVATNAPQAVLYN
acid 713-1072DRSVLENHHAASAWNLYLSRPEYNFLLHLDHVEFKRFRFLVIEAI
of PDE3B)LATDLKKHFDFLAEFNAKANDVNSNGIEWSNENDRLLVCQVCIK
LADINGPAKVRDLHLKWIEGIVNEFYEQGDEEANLGLPISPFMDR
SSPQLAKLQESFITHIVGPLCNSYDAAGLLPGQWLEAEEDNDILS
GDDEDGEELD1EDEEMENNLNPKPPRRKSRRRIFCQLMHHLTEN
HKIW
hPDE4AMEPPTVPSERSLSLSLPGPREGQATLKPPPQHLWRQPRTPIRIQQR119
(Uniprot ID:GYSDSAERAERERQPHRPIERADAMDTSDRPGLRTTRMSWPSSFH
P27815)GTGTGSGGAGGGSSRRFEAENGPTPSPGRSPLDSQASPGLVLHAG
AATSQRRESFLYRSDSDYDMSPKTMSRNSSVTSEAHAEDLIVTPF
AQVLASLRSVRSNFSLLTNVPVPSNKRSPLGGPTPVCKATLSEETC
QQLARETLEELDWCLEQLETMQTYRSVSEMASHKFKRMLNREL
THLSEMSRSGNQVSEYISTTFLDKQNEVEIPSPTMKEREKQQAPRP
RPSQPPPPPVPHLQPMSQITGLKKLMHSNSLNNSNIPRFGVKTDQE
ELLAQELENLNKWGLNIFCVSDYAGGRSLTCIMYMIFQERDLLK
KFRIPVDTMVTYMLTLEDHYHADVAYHNSLHAADVLQSTHVLL
ATPALDAVFTDLEILAALFAAAIHDVDHPGVSNQFLINTNSELAL
MYNDESVLENHHLAVGFKLLQEDNCDIFQNLSKRQRQSLRKMVI
DMVLATDMSKHMTLLADLKTMVETKKVTSSGVLLLDNYSDRIQ
VLRNMVHCADLSNPTKPLELYRQWTDRIMAEFFQQGDRERERG
MEISPMCDKHTASVEKSQVGFIDYIVHPLWETWADLVHPDAQEIL
DTLEDNRDWYYSAIRQSPSPPPEEESRGPGHPPLPDKFQFELTLEE
EEEEEISMAQIPCTAQEALTAQGLSGVEEALDATIAWEASPAQESL
EVMAQEASLEAELEAVYLTQQAQSTGSAPVAPDEFSSREEFVVA
VSHSSPSALALQSPLLPAWRTLSVSEHAPGLPGLPSTAAEVEAQR
EHQAAKRACSACAGTFGEDTSALPAPGGGGSGGDPT
hPDE4AQPMSQITGLKKLMHSNSLNNSNIPRFGVKTDQEELLAQELENLNK120
CatalyticWGLNIFCVSDYAGGRSLTCIMYMIFQERDLLKKFRIPVDTMVTY
domain (AminoMLTLEDHYHADVAYHNSLHAADVLQSTHVLLATPALDAVFTDL
acid 330-723 ofEILAALFAAAIHDVDHPGVSNQFLINTNSELALMYNDESVLENHH
PDE4A)LAVGFKLLQEDNCDIFQNLSKRQRQSLRKMVIDMVLATDMSKH
MTLLADLKTMVETKKVTSSGVLLLDNYSDRIQVLRNMVHCADL
SNPTKPLELYRQWTDRIMAEFFQQGDRERERGMEISPMCDKHTA
SVEKSQVGFIDYIVHPLWETWADLVHPDAQEILDTLEDNRDWYY
SAIRQSPSPPPEEESRGPGHPPLPDKFQFELTLEEEEEEEISM
hPDE4BMKKSRSVMTVMADDNVKDYFECSLSKSYSSSSNTLGIDLWRGRR121
(Uniprot ID:CCSGNLQLPPLSQRQSERARTPEGDGISRPTTLPLTTLPSIAITTVSQ
Q07343)ECFDVENGPSPGRSPLDPQASSSAGLVLHATFPGHSQRRESFLYRS
DSDYDLSPKAMSRNSSLPSEQHGDDLIVTPFAQVLASLRSVRNNF
TILTNLHGTSNKRSPAASQPPVSRVNPQEESYQKLAMETLEELDW
CLDQLETIQTYRSVSEMASNKFKRMLNRELTHLSEMSRSGNQVS
EYISNTFLDKQNDVEIPSPTQKDREKKKKQQLMTQISGVKKLMHS
SSLNNTSISRFGVNIENEDHLAKELEDLNKWGLNIFNVAGYSHNR
PLTCIMYAIFQERDLLKTFRISSDTFITYMMTLEDHYHSDVAYHNS
LHAADVAQSTHVLLSTPALDAVFTDLEILAAIFAAAIHDVDHPGV
SNQFLINTNSELALMYNDESVLENHHLAVGFKLLQEEHCDIFMNL
TKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTMVETKKVTSS
GVLLLDNYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEE
FFQQGDKERERGMEISPMCDKHTASVEKSQVGFIDYIVHPLWET
WADLVQPDAQDILDTLEDNRNWYQSMIPQSPSPPLDEQNRDCQG
LMEKFQFELTLDEEDSEGPEKEGEGHSYFSSTKTLCVIDPENRDSL
GETDIDIATEDKSPVDT
hPDE4BVNIENEDHLAKELEDLNKWGLNIFNVAGYSHNRPLTCIMYAIFQ122
CatalyticERDLLKTFRISSDTFITYMMTLEDHYHSDVAYHNSLHAADVAQS
domain (AminoTHVLLSTPALDAVFTDLEILAAIFAAAIHDVDHPGVSNQFLINTNS
acid 330-682 ofELALMYNDESVLENHHLAVGFKLLQEEHCDIFMNLTKKQRQTLR
PDE4B)KMVIDMVLATDMSKHMSLLADLKTMVETKKVTSSGVLLLDNYT
DRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKER
ERGMEISPMCDKHTASVEKSQVGFIDYIVHPLWETWADLVQPDA
QDILDTLEDNRNWYQSMIPQSPSPPLDEQNRDCQGLMEKFQFEL
hPDE4CMENLGVGEGAEACSRLSRSRGRHSMTRAPKHLWRQPRRPIRIQQ123
(Uniprot ID:RFYSDPDKSAGCRERDLSPRPELRKSRLSWPVSSCRRFDLENGLS
Q08493)CGRRALDPQSSPGLGRIMQAPVPHSQRRESFLYRSDSDYELSPKA
MSRNSSVASDLHGEDMIVTPFAQVLASLRTVRSNVAALARQQCL
GAAKQGPVGNPSSSNQLPPAEDTGQKLALETLDELDWCLDQLET
LQTRHSVGEMASNKFKRILNRELTHLSETSRSGNQVSEYISRTFLD
QQTEVELPKVTAEEAPQPMSRISGLHGLCHSASLSSATVPRFGVQ
TDQEEQLAKELEDTNKWGLDVFKVAELSGNRPLTAIIFSIFQERDL
LKTFQIPADTLATYLLMLEGHYHANVAYHNSLHAADVAQSTHV
LLATPALEAVFTDLEILAALFASAIHDVDHPGVSNQFLINTNSELA
LMYNDASVLENHHLAVGFKLLQAENCDIFQNLSAKQRLSLRRM
VIDMVLATDMSKHMNLLADLKTMVETKKVTSLGVLLLDNYSDR
IQVLQNLVHCADLSNPTKPLPLYRQWTDRIMAEFFQQGDRERES
GLDISPMCDKHTASVEKSQVGFIDYIAHPLWETWADLVHPDAQD
LLDTLEDNREWYQSKIPRSPSDLTNPERDGPDRFQFELTLEEAEEE
DEEEEEEGEETALAKEALELPDTELLSPEAGPDPGDLPLDNQRT
hPDE4CVQTDQEEQLAKELEDTNKWGLDVFKVAELSGNRPLTAIIFSIFQE124
CatalyticRDLLKTFQIPADTLATYLLMLEGHYHANVAYHNSLHAADVAQST
domain (AminoHVLLATPALEAVFTDLEILAALFASAIHDVDHPGVSNQFLINTNSE
acid 312-677 ofLALMYNDASVLENHHLAVGFKLLQAENCDIFQNLSAKQRLSLRR
PDE4C)MVIDMVLATDMSKHMNLLADLKTMVETKKVTSLGVLLLDNYS
DRIQVLQNLVHCADLSNPTKPLPLYRQWTDRIMAEFFQQGDRER
ESGLDISPMCDKHTASVEKSQVGFIDYIAHPLWETWADLVHPDA
QDLLDTLEDNREWYQSKIPRSPSDLTNPERDGPDRFQFELTLEEA
EEEDEEEEEEGE
hPDE4DMEAEGSSAPARAGSGEGSDSAGGATLKAPKHLWRHEQHHQYPL125
(Uniprot ID:RQPQFRLLHPHHHLPPPPPPSPQPQPQCPLQPPPPPPLPPPPPPPGAA
Q08499)RGRYASSGATGRVRHRGYSDTERYLYCRAMDRTSYAVETGHRP
GLKKSRMSWPSSFQGLRRFDVDNGTSAGRSPLDPMTSPGSGLILQ
ANFVHSQRRESFLYRSDSDYDLSPKSMSRNSSIASDIHGDDLIVTP
FAQVLASLRTVRNNFAALTNLQDRAPSKRSPMCNQPSINKATITE
EAYQKLASETLEELDWCLDQLETLQTRHSVSEMASNKFKRMLNR
ELTHLSEMSRSGNQVSEFISNTFLDKQHEVEIPSPTQKEKEKKKRP
MSQISGVKKLMHSSSLTNSSIPRFGVKTEQEDVLAKELEDVNKW
GLHVFRIAELSGNRPLTVIMHTIFQERDLLKTFKIPVDTLITYLMTL
EDHYHADVAYHNNIHAADVVQSTHVLLSTPALEAVFTDLEILAAI
FASAIHDVDHPGVSNQFLINTNSELALMYNDSSVLENHHLAVGFK
LLQEENCDIFQNLTKKQRQSLRKMVIDIVLATDMSKHMNLLADL
KTMVETKKVTSSGVLLLDNYSDRIQVLQNMVHCADLSNPTKPLQ
LYRQWTDRIMEEFFRQGDRERERGMEISPMCDKHNASVEKSQVG
FIDYIVHPLWETWADLVHPDAQDILDTLEDNREWYQSTIPQSPSP
APDDPEEGRQGQTEKFQFELTLEEDGESDTEKDSGSQVEEDTSCS
DSKTLCTQDSESTEIPLDEQVEEEAVGEEEESQPEACVIDDRSPDT
hPDE4DVKIEQEDVLAKELEDVNKWGLHVFRIAELSGNRPLTVIMHTIFQE126
CatalyticRDLLKTFKIPVDTLITYLMTLEDHYHADVAYHNNIHAADVVQST
domain (AminoHVLLSTPALEAVFTDLEILAAIFASAIHDVDHPGVSNQFLINTNSEL
acid 386-751 ofALMYNDSSVLENHHLAVGFKLLQEENCDIFQNLTKKQRQSLRKM
PDE4D)VIDIVLATDMSKHMNLLADLKTMVETKKVTSSGVLLLDNYSDRI
QVLQNMVHCADLSNPTKPLQLYRQWTDRIMEEFFRQGDRERER
GMEISPMCDKHNASVEKSQVGFIDYIVHPLWETWADLVHPDAQD
ILDTLEDNREWYQSTIPQSPSPAPDDPEEGRQGQTEKFQFELTLEE
DGESDTEKD
hPDE6AMGEVTAEEVEKFLDSNIGFAKQYYNLHYRAKLISDLLGAKEAAV127
(Uniprot ID:DFSNYHSPSSMEESEIIFDLLRDFQENLQTEKCIFNVMKKLCFLLQ
P16499)ADRMSLFMYRTRNGIAELATRLFNVHKDAVLEDCLVMPDQEIVF
PLDMGIVGHVAHSKKIANVPNTEEDEHFCDFVDILTEYKTKNILA
SPIMNGKDVVAIIMAVNKVDGSHFTKRDEEILLKYLNFANLIMKV
YHLSYLHNCETRRGQILLWSGSKVFEELTDIERQFHKALYTVRAF
LNCDRYSVGLLDMTKQKEFFDVWPVLMGEVPPYSGPRTPDGREI
NFYKVIDYILHGKEDIKVIPNPPPDHWALVSGLPAYVAQNGLICNI
MNAPAEDFFAFQKEPLDESGWMIKNVLSMPIVNKKEEIVGVATF
YNRKDGKPFDEMDETLMESLTQFLGWSVLNPDTYESMNKLENR
KDIFQDIVKYHVKCDNEEIQKILKTREVYGKEPWECEEEELAEILQ
AELPDADKYEINKFHFSDLPLTELELVKCGIQMYYELKVVDKFHI
PQEALVRFMYSLSKGYRKITYHNWRHGFNVGQTMFSLLVTGKL
KRYFTDLEALAMVTAAFCHDIDHRGTNNLYQMKSQNPLAKLHG
SSILERHHLEFGKTLLRDESLNIFQNLNRRQHEHAIHMMDIAIIAT
DLALYFKKRTMFQKIVDQSKTYESEQEWTQYMMLEQTRKEIVM
AMMMTACDLSAITKPWEVQSQVALLVAAEFWEQGDLERTVLQQ
NPIPMMDRNKADELPKLQVGFIDFVCTFVYKEFSRFHEEITPMLD
GITNNRKEWKALADEYDAKMKVQEEKKQKQQSAKSAAAGNQP
GGNPSPGGATTSKSCCIQ
hPDE6AEEEELAEILQAELPDADKYEINKFHFSDLPLTELELVKCGIQMYYE128
CatalyticLKVVDKFHIPQEALVRFMYSLSKGYRKITYHNWRHGFNVGQTM
domain (AminoFSLLVTGKLKRYFTDLEALAMVTAAFCHDIDHRGTNNLYQMKSQ
acid 483-819 ofNPLAKLHGSSILERHHLEFGKTLLRDESLNIFQNLNRRQHEHAIH
PDE6A)MMDIAIIATDLALYFKKRTMFQKIVDQSKTYESEQEWTQYMMLE
QTRKEIVMAMMMTACDLSAITKPWEVQSQVALLVAAEFWEQGD
LERTVLQQNPIPMMDRNKADELPKLQVGFIDFVCTFVYKEFSRFH
EEITPMLDGITNNRKEWKALADEYDAK
hPDE6BMSLSEEQARSFLDQNPDFARQYFGKKLSPENVAAACEDGCPPDC129
(Uniprot ID:DSLRDLCQVEESTALLELVQDMQESINMERVVFKVLRRLCTLLQ
P35913)ADRCSLFMYRQRNGVAELATRLFSVQPDSVLEDCLVPPDSEIVFP
LDIGVVGHVAQTKKMVNVEDVAECPHFSSFADELTDYKTKNML
ATPIMNGKDVVAVIMAVNKLNGPFFTSEDEDVFLKYLNFATLYL
KIYHLSYLHNCETRRGQVLLWSANKVFEELTDIERQFHKAFYTVR
AYLNCERYSVGLLDMTKEKEFFDVWSVLMGESQPYSGPRTPDGR
EIVFYKVIDYVLHGKEEIKVIPTPSADHWALASGLPSYVAESGFIC
NIMNASADEMFKFQEGALDDSGWLIKNVLSMPIVNKKEEIVGVA
TFYNRKDGKPFDEQDEVLMESLTQFLGWSVMNTDTYDKMNKLE
NRKDIAQDMVLYHVKCDRDEIQLILPTRARLGKEPADCDEDELG
EILKEELPGPTTFDIYEFHFSDLECTELDLVKCGIQMYYELGVVRK
FQIPQEVLVRFLFSISKGYRRITYHNWRHGFNVAQTMFTLLMTGK
LKSYYTDLEAFAMVTAGLCHDIDHRGTNNLYQMKSQNPLAKLH
GSSILERHHLEFGKFLLSEETLNIYQNLNRRQHEHVIHLMDIAIIAT
DLALYFKKRAMFQKIVDESKNYQDKKSWVEYLSLETTRKEIVMA
MMMTACDLSAITKPWEVQSKVALLVAAEFWEQGDLERTVLDQQ
PIPMMDRNKAAELPKLQVGFIDFVCTFVYKEFSRFHEEILPMFDRL
QNNRKEWKALADEYEAKVKALEEKEEEERVAAKKVGTEICNGG
PAPKSSTCCIL
hPDE6BPADCDEDELGEILKEELPGPTTFDIYEFHFSDLECTELDLVKCGIQ130
CatalyticMYYELGVVRKFQIPQEVLVRFLFSISKGYRRITYHNWRHGFNVA
domain (AminoQTMFTLLMTGKLKSYYTDLEAFAMVTAGLCHDIDHRGTNNLYQ
acid 476-817 ofMKSQNPLAKLHGSSILERHHLEFGKFLLSEETLNIYQNLNRRQHE
PDE6B)HVIHLMDIAIIATDLALYFKKRAMFQKIVDESKNYQDKKSWVEY
LSLETTRKEIVMAMMMTACDLSAITKPWEVQSKVALLVAAEFW
EQGDLERTVLDQQPIPMMDRNKAAELPKLQVGFIDFVCTFVYKE
FSRFHEEILPMFDRLQNNRKEWKALADEYEAK
hPDE6CMGEINQVAVEKYLEENPQFAKEYFDRKLRVEVLGEIFKNSQVPV131
(Uniprot ID:QSSMSFSELTQVEESALCLELLWTVQEEGGTPEQGVHRALQRLA
P51160)HLLQADRCSMFLCRSRNGIPEVASRLLDVTPTSKFEDNLVGPDKE
VVFPLDIGIVGWAAHTKKTHNVPDVKKNSHFSDFMDKQTGYVT
KNLLATPIVVGKEVLAVIMAVNKVNASEFSKQDEEVFSKYLNFV
SIILRLHHTSYMYNIESRRSQILMWSANKVFEELTDVERQFHKAL
YTVRSYLNCERYSIGLLDMTKEKEFYDEWPIKLGEVEPYKGPKTP
DGREVNFYKIIDYILHGKEEIKVIPTPPADHWTLISGLPTYVAENGF
ICNMMNAPADEYFTFQKGPVDETGWVIKNVLSLPIVNKKEDIVG
VATFYNRKDGKPFDEHDEYITETLTQFLGWSLLNTDTYDKMNKL
ENRKDIAQEMLMNQTKATPEEIKSILKFQEKLNVDVIDDCEEKQL
VAILKEDLPDPRSAELYEFRFSDFPLTEHGLIKCGIRLFFEINVVEK
FKVPVEVLTRWMYTVRKGYRAVTYHNWRHGFNVGQTMFTLLM
TGRLKKYYTDLEAFAMLAAAFCHDIDHRGTNNLYQMKSTSPLA
RLHGSSILERHHLEYSKTLLQDESLNIFQNLNKRQFETVIHLFEVAI
IATDLALYFKKRTMFQKIVDACEQMQTEEEAIKYVTVDPTKKEII
MAMMMTACDLSAITKPWEVQSQVALMVANEFWEQGDLERTVL
QQQPIPMMDRNKRDELPKLQVGFIDFVCTFVYKEFSRFHKEITPM
LSGLQNNRVEWKSLADEYDAKMKVIEEEAKKQEGGAEKAAEDS
GGGDDKKSKTCLML
hPDE6CDDCEEKQLVAILKEDLPDPRSAELYEFRFSDFPLTEHGLIKCGIRLF132
CatalyticFEINVVEKFKVPVEVLTRWMYTVRKGYRAVTYHNWRHGFNVG
domain (AminoQTMFTLLMTGRLKKYYTDLEAFAMLAAAFCHDIDHRGTNNLYQ
acid 483-822 ofMKSTSPLARLHGSSILERHHLEYSKTLLQDESLNIFQNLNKRQFET
PDE6C)VIHLFEVAIIATDLALYFKKRTMFQKIVDACEQMQTEEEAIKYVT
VDPTKKEIIMAMMMTACDLSAITKPWEVQSQVALMVANEFWEQ
GDLERTVLQQQPIPMMDRNKRDELPKLQVGFIDFVCTFVYKEFSR
FHKEITPMLSGLQNNRVEWKSLADEYDAK
hPDE7AMEVCYQLPVLPLDRPVPQHVLSRRGAISFSSSSALFGCPNPRQLSQ133
(Uniprot ID:RRGAISYDSSDQTALYIRMLGDVRVRSRAGFESERRGSHPYIDFRI
Q13946)FHSQSEIEVSVSARNIRRLLSFQRYLRSSRFFRGTAVSNSLNILDDD
YNGQAKCMLEKVGNWNFDIFLFDRLTNGNSLVSLTFHLFSLHGLI
EYFHLDMMKLRRFLVMIQEDYHSQNPYHNAVHAADVTQAMHC
YLKEPKLANSVTPWDILLSLIAAATHDLDHPGVNQPFLIKTNHYL
ATLYKNTSVLENHHWRSAVGLLRESGLFSHLPLESRQQMETQIG
ALILATDISRQNEYLSLFRSHLDRGDLCLEDTRHRHLVLQMALKC
ADICNPCRTWELSKQWSEKVTEEFFHQGDIEKKYHLGVSPLCDR
HTESIANIQIGFMTYLVEPLFTEWARFSNTRLSQTMLGHVGLNKA
SWKGLQREQSSSEDTDAAFELNSQLLPQENRLS
hPDE7AFHLDMMKLRRFLVMIQEDYHSQNPYHNAVHAADVTQAMHCYL134
CatalyticKEPKLANSVTPWDILLSLIAAATHDLDHPGVNQPFLIKTNHYLAT
domain (AminoLYKNTSVLENHHWRSAVGLLRESGLFSHLPLESRQQMETQIGALI
acid 187-451 ofLATDISRQNEYLSLFRSHLDRGDLCLEDTRHRHLVLQMALKCADI
PDE7A)CNPCRTWELSKQWSEKVTEEFFHQGDIEKKYHLGVSPLCDRHTE
SIANIQIGFMTYLVEPLFTEWARFSNTRLSQTMLGHVGLNKASW
hPDE7BMSCLMVERCGEILFENPDQNAKCVCMLGDIRLRGQTGVRAERRG135
(Uniprot ID:SYPFIDFRLLNSTTYSGEIGTKKKVKRLLSFQRYFHASRLLRGIIPQ
Q9NP56)APLHLLDEDYLGQARHMLSKVGMWDFDIFLFDRLTNGNSLVTLL
CHLFNTHGLIHHFKLDMVTLHRFLVMVQEDYHSQNPYHNAVHA
ADVTQAMHCYLKEPKLASFLTPLDIMLGLLAAAAHDVDHPGVN
QPFLIKTNHHLANLYQNMSVLENHHWRSTIGMLRESRLLAHLPK
EMTQDIEQQLGSLILATDINRQNEFLTRLKAHLHNKDLRLEDAQD
RHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYRQGELEQK
FELEISPLCNQQKDSIPSIQIGFMSYIVEPLFREWAHFTGNSTLSEN
MLGHLAHNKAQWKSLLPRQHRSRGSSGSGPDHDHAGQGTESEE
QEGDSP
hPDE7BYHNAVHAADVTQAMHCYLKEPKLASFLTPLDIMLGLLAAAAHD136
CatalyticVDHPGVNQPFLIKTNHHLANLYQNMSVLENHHWRSTIGMLRESR
domain (AminoLLAHLPKEMTQDIEQQLGSLILATDINRQNEFLTRLKAHLHNKDL
acid 172-410 ofRLEDAQDRHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYR
PDE7B)QGELEQKFELEISPLCNQQKDSIPSIQIGFMSYIVEPLFREWAHFTG
NSTLSENMLGHLAHNK
hPDE8AMGCAPSIHISERLVAEDAPSPAAPPLSSGGPRLPQGQKTAALPRTR137
(Uniprot ID:GAGLLESELRDGSGKKVAVADVQFGPMRFHQDQLQVLLVFTKE
O60658)DNQCNGFCRACEKAGFKCTVTKEAQAVLACFLDKHHDIIIIDHRN
PRQLDAEALCRSIRSSKLSENTVIVGVVRRVDREELSVMPFISAGF
TRRYVENPNIMACYNELLQLEFGEVRSQLKLRACNSVFTALENSE
DAIEITSEDRFIQYANPAFETTMGYQSGELIGKELGEVPINEKKAD
LLDTINSCIRIGKEWQGIYYAKKKNGDNIQQNVKIIPVIGQGGKIR
HYVSIIRVCNGNNKAEKISECVQSDTHTDNQTGKHKDRRKGSLD
VKAVASRATEVSSQRRHSSMARIHSMTIEAPITKVINIINAAQESSP
MPVTEALDRVLEILRTIELYSPQFGAKDDDPHANDLVGGLMSDG
LRRLSGNEYVLSTKNTQMVSSNIITPISLDDVPPRIARAMENEEYW
DFDIFELEAATHNRPLIYLGLKMFARFGICEFLHCSESTLRSWLQII
EANYHSSNPYHNSTHSADVLHATAYFLSKERIKETLDPIDEVAALI
AATIHDVDHPGRTNSFLCNAGSELAILYNDTAVLESHHAALAFQL
TTGDDKCNIFKNMERNDYRTLRQGIIDMVLATEMTKHFEHVNKF
VNSINKPLATLEENGETDKNQEVINTMLRTPENRTLIKRMLIKCA
DVSNPCRPLQYCIEWAARISEEYFSQTDEEKQQGLPVVMPVFDRN
TCSIPKSQISFIDYFITDMFDAWDAFVDLPDLMQHLDNNFKYWKG
LDEMKLRNLRPPPE
hPDE8ALHCSESTLRSWLQIIEANYHSSNPYHNSTHSADVLHATAYFLSKE138
CatalyticRIKETLDPIDEVAALIAATIHDVDHPGRTNSFLCNAGSELAILYND
domain (AminoTAVLESHHAALAFQLTTGDDKCNIFKNMERNDYRTLRQGIIDMV
acid 531-813 ofLATEMTKHFEHVNKFVNSINKPLATLEENGETDKNQEVINTMLR
PDE8A)TPENRTLIKRMLIKCADVSNPCRPLQYCIEWAARISEEYFSQTDEE
KQQGLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFVDLP
DLMQHLDNNFKYW
hPDE8BMGCAPSIHVSQSGVIYCRDSDESSSPRQTTSVSQGPAAPLPGLFVQ139
(Uniprot ID:TDAADAIPPSRASGPPSVARVRRARIELGSGSSAGSAAPAATTSR
O95263)GRRRHCCSSAEAETQTCYTSVKQVSSAEVRIGPMRLTQDPIQVLLI
FAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKHHEIIVI
DHRQTQNFDAEAVCRSIRATNPSEHTVILAVVSRVSDDHEEASVL
PLLHAGFNRRFMENSSIIACYNELIQIEHGEVRSQFKLRACNSVFT
ALDHCHEAIEITSDDHVIQYVNPAFERMMGYHKGELLGKELADL
PKSDKNRADLLDTINTCIKKGKEWQGVYYARRKSGDSIQQHVKI
TPVIGQGGKIRHFVSLKKLCCTTDNNKQIHKIHRDSGDNSQIEPHS
FRYKNRRKESIDVKSISSRGSDAPSLQNRRYPSMARIHSMTIEAPIT
KVINIINAAQENSPVTVAEALDRVLEILRTTELYSPQLGTKDEDPH
TSDLVGGLMTDGLRRLSGNEYVFTKNVHQSHSHLAMPITINDVPP
CISQLLDNEESWDFNIFELEAITHKRPLVYLGLKVFSRFGVCEFLN
CSETTLRAWFQVIEANYHSSNAYHNSTHAADVLHATAFFLGKER
VKGSLDQLDEVAALIAATVHDVDHPGRTNSFLCNAGSELAVLYN
DTAVLESHHTALAFQLTVKDTKCNIFKNIDRNHYRTLRQAIIDMV
LATEMTKHFEHVNKFVNSINKPMAAEIEGSDCECNPAGKNFPEN
QILIKRMMIKCADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQ
GLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPALM
QHLADNYKHWKTLDDLKCKSLRLPSDS
hPDE8BLNCSETTLRAWFQVIEANYHSSNAYHNSTHAADVLHATAFFLGK140
CatalyticERVKGSLDQLDEVAALIAATVHDVDHPGRTNSFLCNAGSELAVL
domain (AminoYNDTAVLESHHTALAFQLTVKDTKCNIFKNIDRNHYRTLRQAIID
acid 590-868 ofMVLATEMTKHFEHVNKFVNSINKPMAAEIEGSDCECNPAGKNFP
PDE8B)ENQILIKRMMIKCADVANPCRPLDLCIEWAGRISEEYFAQTDEEK
RQGLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPAL
MQHLADNYKHW
hPDE9AMGSGSSSYRPKAIYLDIDGRIQKVIFSKYCNSSDIMDLFCIATGLPR141
(Uniprot ID:NTTISLLTTDDAMVSIDPTMPANSERTPYKVRPVAIKQLSAGVED
O76083)KRTTSRGQSAERPLRDRRVVGLEQPRREGAFESGQVEPRPREPQG
CYQEGQRIPPEREELIQSVLAQVAEQFSRAFKINELKAEVANHLA
VLEKRVELEGLKVVEIEKCKSDIKKMREELAARSSRTNCPCKYSF
LDNHKKLTPRRDVPTYPKYLLSPETIEALRKPTFDVWLWEPNEM
LSCLEHMYHDLGLVRDFSINPVTLRRWLFCVHDNYRNNPFHNFR
HCFCVAQMMYSMVWLCSLQEKFSQTDILILMTAAICHDLDHPGY
NNTYQINARIELAVRYNDISPLENHHCAVAFQILAEPECNIFSNIPP
DGFKQIRQGMITLILATDMARHAEIMDSFKEKMENFDYSNEEHM
TLLKMILIKCCDISNEVRPMEVAEPWVDCLLEEYFMQSDREKSEG
LPVAPFMDRDKVTKATAQIGFIKFVLIPMFETVTKLFPMVEEIML
QPLWESRDRYEELKRIDDAMKELQKKTDSLTSGATEKSRERSRD
VKNSEGDCA
hPDE9AFSINPVTLRRWLFCVHDNYRNNPFHNFRHCFCVAQMMYSMVWL142
CatalyticCSLQEKFSQTDILILMTAAICHDLDHPGYNNTYQINARTELAVRY
domain (AminoNDISPLENHHCAVAFQILAEPECNIFSNIPPDGFKQIRQGMITLILAT
acid 288-550 ofDMARHAEIMDSFKEKMENFDYSNEEHMTLLKMILIKCCDISNEV
PDE9A)RPMEVAEPWVDCLLEEYFMQSDREKSEGLPVAPFMDRDKVTKA
TAQIGFIKFVLIPMFETVTKLFPMVEEIMLQPLWESRDRY
hPDE10AMRIEERKSQHLTGLTDEKVKAYLSLHPQVLDEFVSESVSAETVEK143
(Uniprot ID:WLKRKNNKSEDESAPKEVSRYQDTNMQGVVYELNSYIEQRLDT
Q9Y233)GGDNQLLLYELSSIIKIATKADGFALYFLGECNNSLCIFTPPGIKEG
KPRLIPAGPITQGTTVSAYVAKSRKTLLVEDILGDERFPRGTGLES
GTRIQSVLCLPIVTAIGDLIGILELYRHWGKEAFCLSHQEVATANL
AWASVAIHQVQVCRGLAKQIELNDFLLDVSKTYFDNIVAIDSLLE
HIMIYAKNLVNADRCALFQVDHKNKELYSDLFDIGEEKEGKPVF
KKTKEIRFSIEKGIAGQVARTGEVLNIPDAYADPRFNREVDLYTG
YTTRNILCMPIVSRGSVIGVVQMVNKISGSAFSKTDENNFKMFAV
FCALALHCANMYHRIRHSECIYRVTMEKLSYHSICTSEEWQGLM
QFTLPVRLCKEIELFHFDIGPFENMWPGIFVYMVHRSCGTSCFELE
KLCRFIMSVKKNYRRVPYHNWKHAVTVAHCMYAILQNNHTLFT
DLERKGLLIACLCHDLDHRGFSNSYLQKFDHPLAALYSTSTMEQ
HHFSQTVSILQLEGHNIFSTLSSSEYEQVLEIIRKAIIATDLALYFGN
RKQLEEMYQTGSLNLNNQSHRDRVIGLMMTACDLCSVTKLWPV
TKLTANDIYAEFWAEGDEMKKLGIQPIPMMDRDKKDEVPQGQL
GFYNAVAIPCYTTLTQILPPTEPLLKACRDNLSQWEKVIRGEETAT
WISSPSVAQKAAASED
hPDE10ACKEIELFHFDIGPFENMWPGIFVYMVHRSCGTSCFELEKLCRFIMS144
CatalyticVKKNYRRVPYHNWKHAVTVAHCMYAILQNNHTLFTDLERKGLL
domain (AminoIACLCHDLDHRGFSNSYLQKFDHPLAALYSTSTMEQHHFSQTVSI
acid 458-760 ofLQLEGHNIFSTLSSSEYEQVLEIIRKAIIATDLALYFGNRKQLEEMY
PDE10A)QTGSLNLNNQSHRDRVIGLMMTACDLCSVTKLWPVTKLTANDIY
AEFWAEGDEMKKLGIQPIPMMDRDKKDEVPQGQLGFYNAVAIP
CYTTLTQILPPIEPLLKACRDNLSQWEKVIRGEE
hPDE11AMAASRLDFGEVETFLDRHPELFEDYLMRKGKQEMVEKWLQRHS145
(Uniprot ID:QGQGALGPRPSLAGTSSLAHSTCRGGSSVGGGTGPNGSAHSQPLP
Q9HCR9)GGGDCGGVPLSPSWAGGSRGDGNLQRRASQKELRKSFARSKAIH
VNRTYDEQVTSRAQEPLSSVRRRALLRKASSLPPTTAHILSALLES
RVNLPRYPPTAIDYKCHLKKHNERQFFLELVKDISNDLDLTSLSY
KILIFVCLMVDADRCSLFLVEGAAAGKKTLVSKFFDVHAGTPLLP
CSSTENSNEVQVPWGKGIIGYVGEHGETVNIPDAYQDRRFNDEID
KLTGYKTKSLLCMPIRSSDGEIIGVAQAINKIPEGAPFTEDDEKVM
QMYLPFCGIAISNAQLFAASRKEYERSRALLEVVNDLFEEQTDLE
KIVKKIMHRAQTLLKCERCSVLLLEDIESPVVKFTKSFELMSPKCS
ADAENSFKESMEKSSYSDWLINNSIAELVASTGLPVNISDAYQDP
RFDAEADQISGFHIRSVLCVPIWNSNHQIIGVAQVLNRLDGKPFDD
ADQRLFEAFVIFCGLGINNTIMYDQVKKSWAKQSVALDVLSYHA
TCSKAEVDKFKAANIPLVSELAIDDIHFDDFSLDVDAMITAALRM
FMELGMVQKFKIDYETLCRWLLTVRKNYRMVLYHNWRHAFNV
CQLMFAMLTTAGFQDILTEVEILAVIVGCLCHDLDHRGTNNAFQ
AKSGSALAQLYGTSATLEHHHFNHAVMILQSEGHNIFANLSSKEY
SDLMQLLKQSILATDLTLYFERRIEFFELVSKGEYDWNIKNHRDI
FRSMLMTACDLGAVTKPWEISRQVAELVTSEFFEQGDRERLELK
LTPSAIFDRNRKDELPRLQLEWIDSICMPLYQALVKVNVKLKPML
DSVATNRSKWEELHQKRLLASTASSSPASVMVAKEDRN
hPDE11AFKIDYETLCRWLLTVRKNYRMVLYHNWRHAFNVCQLMFAMLT146
CatalyticTAGFQDILTEVEILAVIVGCLCHDLDHRGTNNAFQAKSGSALAQL
DomainYGTSATLEHHHFNHAVMILQSEGHNIFANLSSKEYSDLMQLLKQS
(Amino acidILATDLTLYFERRTEFFELVSKGEYDWNIKNHRDIFRSMLMTACD
640-905 ofLGAVTKPWEISRQVAELVTSEFFEQGDRERLELKLTPSAIFDRNRK
PDE11A)DELPRLQLEWIDSICMPLYQALVKVNVKLKPMLDSVATNRSKW

In some embodiments, the hPDE5 derived destabilizing domains may be derived from variants, and/or isoforms of hPDE5. The three isoforms hPDE5 Isoform 1, hPDE5 Isoform 2, and hPDE5 Isoform 3 differ at their N terminal regions, and all 3 have unique first exons followed by a common sequence of 823 amino acids. Accordingly, hPDE5 derived DDs may be derived from hPDE5 Isoform 1 (SEQ ID NO. 1; encoded by the nucleotide sequence of SEQ ID NO. 2; hPDE5 Isoform 2 (SEQ ID NO. 147; encoded by the nucleotides 113-2611 of the nucleotide sequence of SEQ ID NO. 148 or the nucleotide sequence of SEQ ID NO. 380) and/or hPDE5 Isoform 3 (SEQ ID NO. 149; encoded by the nucleotides 95-2563 of nucleotide sequence of SEQ ID NO. 150 or SEQ ID NO. 381). In some embodiments, the hPDE5 DDs may be derived from hPDE5 Isoform X1 (SEQ ID NO. 382).

In some embodiments, the DD mutations identified herein may be mapped back to the hPDE5 sequence to identify DD hotspots. DD hotspots as used herein refer to amino acids within the hPDE5 of SEQ ID NO. 1 whose mutation results in the “responsive” nature of the stimulus responsive element generated from hPDE5. The DD characteristics may be improved by saturation mutagenesis, which involves mutating the amino acids at the hotspot position to any of the known amino acids, including, but not limited to lysine, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. In some instances, a library of hotspot mutations may be generated by site directed mutagenesis and each of the mutants in the library is fused to a reporter protein e.g. AcGFP (SEQ ID NO. 79) via a linker such as SG. The properties of the DDs may be analyzed in the presence and absence of ligands such as Sildenafil, Vardenafil and Tadalafil. In some embodiments, the arginine at position 732 (also referred to as R732) of the hPDE5 of SEQ ID NO. 1, may be mutated to any of the known amino acids and are provided in Table 5A. The mutations of the amino acid R732 may include but are not limited to R732L, R732A, R732G, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, and R732K. The hPDE5 mutants fused either at the N terminus or the C terminus to a linker and GFP are provided in Table 6. In Table 5A, the mutations are in bold. Table 5B provides the additional components that may be combined with the mutants listed in Table 5A to generate the constructs described in Table 6. In Table 6, asterisk indicates the translation of the stop codon. Table 6 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.

TABLE 5A
hPDE5 R732 mutants
AANA
Construct ID/SEQ IDSEQ ID
DescriptionSequenceNO.NO.
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCAVA151169
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKEL
R732G)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA152170
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRAGEFFELIRKNQFNLEDPHQKEL
R732A)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA153171
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKEL
R732V)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA154172
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT, R732I)TLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELF
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKE
LNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA155173
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT, R732P)TLKIIKQAILATDLALYIKRPGEFFELIRKNQFNLEDPHQKEL
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA156174
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT, R732F)TLKIIKQAILATDLALYIKRFGEFFELIRKNQFNLEDPHQKEL
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA157175
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKEL
R732W)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA158176
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKEL
R732Y)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA159177
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKEL
R732H)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA160178
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT, R732S)TLKIIKQAILATDLALYIKRSGEFFELIRKNQFNLEDPHQKEL
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA161179
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT, R732T)TLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKEL
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA162180
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKEL
R732D)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA163181
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT, R732E)TLKIIKQAILATDLALYIKREGEFFELIRKNQFNLEDPHQKEL
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA164182
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKEL
R732Q)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA165183
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKEL
R732N)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA166184
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKEL
R732M)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA167185
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT, R732C)TLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKEL
FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA168186
(Amino acidALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSE
590-836 ofHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT
WT,TLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKEL
R732K)FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK
ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR383 401;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR402
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732G)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR384 403;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR404
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732A)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRAGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR 12405
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732L)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR385 406;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR407
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732V)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR386408
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732I)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQ
FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATE
FFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQ
LYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR387 409;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR410
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732P)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR388411
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732F)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRFGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR389412
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732W)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR390 413;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR414
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732Y)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR391 415;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR416
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732H)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR392 417;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR418
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732S)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRSGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR393419
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732T)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR394420;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR421
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732D)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR395 422;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR423
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732E)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR396 424;
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR425
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732Q)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR397426
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732N)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR398427
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732M)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR399428
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT, R732C)RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR400429
(Amino acidMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR
535-860 ofHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH
WT,RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN
R732K)QILSGLSIEEYKTTLKIIKQAILATDLALYIKRKGEFFELIRKN
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA
TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
TABLE 5B
Additional hPDE5 R732 construct components
AA SEQNA SEQ
ComponentAmino Acid SequenceID NOID NO
AcGFPVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDA 79372
(Amino acidTYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY
2-239 of WT)PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYN
AHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI
YFGFVTAAAITHGMDELYK
AcGFPMVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGD365373
(Amino acidATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR
1-239 of WT)YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSR
AEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNY
NAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADH
YQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDH
MIYFGFVTAAAITHGMDELYK
linker (SG)SGAGTGGT
linker (GS)GSGGATCC
TABLE 6
hPDE5 R732 constructs
AANA
Construct ID/SEQ IDSEQ ID
DescriptionSequenceNO.NO.
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL187205
037 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001233, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-037)QAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732G);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL188206
038 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001234, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-038)QAILATDLALYIKRAGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732A);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL189207
039 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001235, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-039)QAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732V);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL190208
040 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001236, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-040)QAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFLAMLMT
hPDE5ACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM
(Amino acidNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGI
590-836 ofVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
WT, R732I);VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQER
linker (SG);TIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGN
AcGFPKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLAD
(Amino acid 2-HYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF
239 of WT);VTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL191209
041 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001237, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-041)QAILATDLALYIKRPGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732P);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL192210
042 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001238, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-042)QAILATDLALYIKRFGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732F);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL193211
043 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001239, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-043)QAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732W);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL194212
044 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001240, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-044)QAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732Y);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL195213
045 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001241, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-045)QAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732H);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL196214
046 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001242, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-046)QAILATDLALYIKRSGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732S);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL197215
047 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001243, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-047)QAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732T);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL198216
048 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001244, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-048)QAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732D);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL199217
049 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001245, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-049)QAILATDLALYIKREGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732E);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL200218
050 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001246, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-050)QAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732Q);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL201219
051 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001247, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-051)QAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732N);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL202220
052 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001248, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-052)QAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732M);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL203221
053 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001249, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5 -053)QAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732C);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5N-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAAL204222
054 (OT-KAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL
001250, OT-AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK
hPDE5-054)QAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKELFLAMLM
hPDE5TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
(Amino acidMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFT
590-836 ofGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
WT, R732K);PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQE
linker (SG);RTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILG
AcGFPNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLA
(Amino acid 2-DHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
239 of WT);GFVTAAAITHGMDELYK*
stop
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR430467
064 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001186)AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732G);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR431468
065 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001187)AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRAGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732 A);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR432469
066 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001188)AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732V);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR433470
067 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001189)AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLED
(Amino acidPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD
535-860 ofRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTH
WT, R732I);VSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVPIL
linker (SG);IELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWP
AcGFPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFE
(Amino acid 2-DDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEY
239 of WT);NYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQ
stopNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAA
AITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR434471
068 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001190)AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRPGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732P);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR435472
069 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001191)AFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRFGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732F);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR436473
070 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001192)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732W);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR437474
071 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001193)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732Y);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR438475
072 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001195)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732H);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR439476
073 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001196)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRSGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732S);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR440477
074 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001197)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732T);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR441478
075 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001198)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732D);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR442479
076 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001199)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732E);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR443480
077 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001200)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732Q);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR444481
078 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001201)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732N);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR445482
079 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001202)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732M);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR446483
080 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001203)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732C);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR447484
081 (OT-MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH
001204)AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRG
Methionine;VNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
hPDE5GLSIEEYKTTLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLE
(Amino acidDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG
535-860 ofDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
WT, R732K);HVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVP
linker (SG);ILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
AcGFPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF
(Amino acid 2-FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM
239 of WT);EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
stopQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA
AAITHGMDELYK*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL448485
096 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001279)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732G);ATDLALYIKRGGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL449486
097 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001280)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732A);ATDLALYIKRAGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL450487
098 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001281)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732L);ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL451488
099 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001282)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732M);ATDLALYIKRMGEFFELIRKNQFNLEDPHQKELFLAMLMTAC
Xba I siteDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR
(TCTAGA);EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
stopQKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL452489
100 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001283)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732F);ATDLALYIKRFGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL453490
101 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001284)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732W);ATDLALYIKRWGEFFELIRKNQFNLEDPHQKELFLAMLMTAC
Xba I siteDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR
(TCTAGA);EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
stopQKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL454491
102 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001285)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732K);ATDLALYIKRKGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL455492
103 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001286)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732Q);ATDLALYIKRQGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL456493
104 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001287)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732E);ATDLALYIKREGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL457494
105 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001288)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732S);ATDLALYIKRSGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL458495
106 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001289)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732P);ATDLALYIKRPGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL459496
107 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001290)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732V);ATDLALYIKRVGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL460497
108 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001291)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732I);ATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL461498
109 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001292)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732C);ATDLALYIKRCGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL462499
110 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001293)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732Y);ATDLALYIKRYGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL463500
111 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001294)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732H);ATDLALYIKRHGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL464501
112 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001295)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732N);ATDLALYIKRNGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL465502
113 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001296)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732D);ATDLALYIKRDGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKL466503
114 (OT-TLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK
001297)SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT
AcGFPDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH
(Amino acid 1-NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
239 of WT);EKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVV
linker (GS);PSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
hPDE5EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG
(Amino acidKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLY
535-860 ofCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732T);ATDLALYIKRTGEFFELIRKNQFNLEDPHQKELFLAMLMTACD
Xba I siteLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE
(TCTAGA);KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
stopKWQALAEQQSR*

In some embodiments, any of the mutations taught in Tables 1, 2, and 5A may be combined. In one embodiment, the combination mutations are provided in Table 7. Combination mutations may be linked to AcGFP (Amino acid 2-239 of WT) (SEQ ID NO. 79); encoded by the nucleotide sequence of SEQ ID NO. 372; AcGFP (Amino acid 1-239 of WT) (SEQ ID NO. 365); encoded by the nucleotide sequence of SEQ ID NO. 94; or firefly luciferase, Fluc (N50D, N119G, S548I, K549A, L550V) (SEQ ID NO. 223) encoded by the nucleotide sequence of SEQ ID NO. 224. In some embodiments, the portions of the construct may be linked through a linker e.g. SG linker, encoded by the nucleotide sequence (AGTGGT). In some embodiments, the constructs described in Table 7 may comprise an Xba I restriction site, SR, encoded by the nucleotide sequence, TCTAGA. Table 7 provides the constructs comprising the combination mutations. In Table 7, translation of the stop codon is indicated by asterisk. Also provided in Table 7 are alternate aliases for a given construct ID. These aliases are identified by the prefix OT.

TABLE 7
hPDE5 combination mutations
ConstructAANA
ID/SEQ IDSEQ ID
DescriptionSequenceNO.NO.
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT504519
(Amino acidIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
535-860 ofNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
WT, F736A,HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM
D764N)ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRG
EFAELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPW
PIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNK
IPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQK
WQALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL225231
hPDE5CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQC
WT, F736A,LMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR
D764N)RGEFAELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKP
WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT505520
(Amino acidIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
535-860 ofNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
WT, R732L,HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM
D764N)ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
EFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPWP
IQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQK
WQALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL226232
hPDE5CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQC
WT, R732L,LMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR
D764N)LGEFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKP
WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI227233
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT, R732L,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
F736A)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF
AELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ
QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI506521
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAFHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT, Y612F,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
R732L)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI507522
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAWH
535-860 ofNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
WT, Y612W,HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI
R732L)LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ
QRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI508523
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAAHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSH
WT, Y612A,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
R732L)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI509524
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSA
WT, H653A,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
R732L)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI510525
(Amino acidRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHN
535-860 ofWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLTAALSH
WT, R732L,DLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL
D764A)NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFF
ELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM
QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA
LAEQQ
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC228234
025 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001222, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-025)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
hPDE5GEFAELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPW
(Amino acidPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
535-860 ofPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
WT, F736A,QALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGE
D764N);GEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFS
linker (SG);RYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE
AcGFPVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNV
(Amino acidYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGD
2-239 ofGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAIT
WT); stopHGMDELYK*
OT-hPDE5N-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC229235
026 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001223, OT-HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
hPDE5-026)SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
Methionine;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
hPDE5EFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPWPI
(Amino acidQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
535-860 ofMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
WT, R732L,ALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGEG
D764N);EGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR
linker (SG);YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEV
AcGFPKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVY
(Amino acidIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDG
2-239 ofPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITH
WT); stopGMDELYK*
OT-MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGT230236
hPDE5C-035IAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIV
(OT-001231,VCSENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMG
OT-hPDE5-035)ISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGF
Fluc (N50D,QSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALIMNSSGST
N119G, S548I,GLPKGVALPHRTACVRFSHARDPIFGNQIIPDTAILSVVPFH
K549A, L550V);HGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYKIQS
linker (SG);ALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGE
hPDE5AVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPGAVGKV
(Amino acidVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNN
535-860 ofPEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKY
WT, R732L;KGYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAV
F736A); stopVVLEHGKTMTEKEIVDYVASQVTTAKKLRGGVVFVDEVP
KGLTGKLDARKIREILIKAKKGGKIAVSGEETRELQSLAA
AVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQ
NFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQ
CMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS
YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL
SIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNL
EDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEF
FDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL
QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*
OT-hPDE5-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC511526
029 (OT-TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAY
001225)HNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
Methionine;SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
hPDE5MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
(Amino acidEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWP
535-860 ofIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP
WT, R732L,SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
F736A);QALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGE
Linker (SG);GEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFS
AcGFPRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE
(Amino acidVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNV
2-239 ofYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGD
WT); stopGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAIT
HGMDELYK*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY512527
030 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001226)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); PDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, R732L,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
F736A); stopEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWP
IQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP
SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW
QALAEQQ*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY513528
083 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001205)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); hPDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidFHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, Y612F,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
R732L); stopEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY514529
084 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001206)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); hPDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidWHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, Y612W,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
R732L); stopEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY515530
085 (0T-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001207)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); hPDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidAHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, Y612A,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
R732L); stopEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY516531
090 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001212)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); hPDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, H653 A,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
R732L); stopEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY517532
091 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001213)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG); hPDE5LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
(Amino acidYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
535-860 ofLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, R732L,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
D764A); stopEFFELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPI
QQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ*
OT-hPDE5-MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY518533
094 (OT-GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
001253)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTL
AcGFPVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
(Amino acidNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDN
1-239 ofHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
WT); linkerKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETA
(SG);LCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVA
hPDE5 (AminoYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAA
acid 535-LSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
860 of WT;MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLG
R732L); XbaEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI
I siteQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
(TCTAGA);MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
stopALAEQQSR*

In some embodiments, any of the mutations described herein may be tested in the context of the truncated hPDE5 domains. As used herein truncated hPDE5 domains refers to regions and/or portions of hPDE5 of SEQ ID NO. 1, and are exemplified in Table 8. Also provided in Table 8 are the constructs utilizing the regions or portions of hPDE5, fused to AcGFP via linkers. In Table 8, translation of the stop codon is indicated by asterisk. Table 8 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.

TABLE 8
hPDE5 truncation constructs and its components
ConstructAANA
ID/SEQ IDSEQ ID
DescriptionSequenceNONO
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM237  4
hPDE5FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
(Amino acidTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
535-860 ofIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
WT)TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM238250
hPDE5FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
(Amino acidTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
535-860 ofIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
WT, R732L)TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
Methionine;MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM239251
hPDE5FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
(Amino acidTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
535-836 ofIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
WT, R732L)TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
Methionine;MSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK240252
hPDE5NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
(Amino acidSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS
567-860 ofPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN
WT, R732L)QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF
DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEA
LTHVSEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK241253
(Amino acidAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL
590-860 ofYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732L)ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL
SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
ALAEQQ
hPDE5MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK242254
(Amino acidAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL
590-836 ofYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
WT, R732L)ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL
SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVS
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT  3339
(Amino acidDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
535-860 ofAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
WT)QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT 12536
(Amino acidDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
535-860 ofAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
WT, R732L)QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
CRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT534537
(Amino acidDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
535-836 ofAQCMFAALKAGKIQNKLTDLEILALLTAALSHDLDHRGVNNSYI
WT, R732L)QRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS
hPDE5SDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN535538
(Amino acidVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
567-860 ofHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSP
WT, R732L)GNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQ
FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA1EFFD
QGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALT
HVSEDCFPLLDGCRKNRQKWQALAEQQ
Linker (SG)SGAGT
GGT
AcGFPVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLK 79372
FICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMP
EGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDG
NILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQ
LADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
GFVTAAAITHGMDELYK
OT-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM243255
hPDE5N-FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
019 (OT-TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
001216, OT-IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
hPDE5-019)TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL
Methionine;AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
hPDE5TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
(Amino acidCRKNRQKWQALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKF
535-860 ofSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCF
WT); linkerSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE
(SG);GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
AcGFPNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLS
(Amino acidTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*
2-239 of
WT); stop
OT-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM244256
hPDE5N-FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
020 (OT-TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
001217, OT-IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
hPDE5-020)TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL
Methionine;AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
hPDE5TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG
(Amino acidCRKNRQKWQALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKF
535-860 ofSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCF
WT,SRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE
R732L);GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK
linker (SG);NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLS
AcGFP;TQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*
stop (Amino
acid 2-239
of WT); stop
OT-MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRM245257
hPDE5N-FTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
021 (OT-TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
001218, OT-IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK
hPDE5-021) TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL
Methionine;AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
hPDE5TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAEL
(Amino acidFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGK
535-836 ofLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQER
WT,TIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK
R732L);MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQ
linker (SG);QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAA
AcGFPAITHGMDELYK*
(Amino acid
2-239 of
WT); stop
OT-MSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK246258
hPDE5N-NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAAL
022 (OT-SHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS
001219, OT-PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN
hPDE5-022)QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF
Methionine;DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEA
hPDE5LTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIV
(Amino acidPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPW
567-860 ofPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED
WT,DGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNY
R732L);NAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIG
linker (SG);DGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGM
AcGFPDELYK*
(Amino acid
2-239 of
WT); stop
OT-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK247259
hPDE5N-AGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL
023 (OT-YCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
001220, OT-ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL
hPDE5-023)SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK
hPDE5NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ
(Amino acidALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGD
590-860 ofATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQ
WT,HDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL
R732L);TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR
linker (SG);HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN
AcGFPEKRDHMIYFGFVTAAAITHGMDELYK*
(Amino acid
2-239 of
WT); stop
OT-MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK248260
hPDE5N-AGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQL
024 (OT-YCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
001221, OT-ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDL
hPDE5-024)SAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK
hPDE5NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIEL
(Amino acidNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVT
590-836 ofTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNY
WT,KSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN
R732L);VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPV
linker (SG);LLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELY
AcGFPK*
(Amino acid
2-239 of
WT); stop

Stimulus

Biocircuits of the invention are triggered by one or more stimuli. Stimuli may be selected from a ligand, an externally added or endogenous metabolite, the presence or absence of a defined ligand, pH, temperature, light, ionic strength, radioactivity, cellular location, subject site, microenvironment, the presence or the concentration of one or more metal ions.

In some embodiments, the stimulus is a ligand. Ligands may be nucleic acid-based, protein-based, lipid based, organic, inorganic or any combination of the foregoing. In some embodiments, the ligand is selected from the group consisting of a protein, peptide, nucleic acid, lipid, lipid derivative, sterol, steroid, metabolite derivative and a small molecule. In some embodiments, the stimulus is a small molecule. In some embodiments, the small molecules are cell permeable. Ligands useful in the present invention include without limitation, any of those taught in Table 2 of co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety). In some embodiments, the small molecules are FDA-approved, safe and orally administered.

In some embodiments, the ligand binds to phosphodiesterases. In some embodiments, the ligand binds to and inhibits phosphodiesterase function and is herein referred to as a phosphodiesterase inhibitor.

In some embodiments, the ligand is a small molecule that binds to phosphodiesterase 5. In one embodiment, the small molecule is a hPDE5 inhibitor. Examples of hPDE5 inhibitors include, but are not limited to, Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, Beminafil, SLx-2101, LAS 34179, UK-343,664, UK-357903, UK-371800, and BMS-341400.

In some embodiments, ligands include sildenafil-derived ligands containing portions of the ligand known to mediate binding to hPDE5. Ligands may also be modified to reduce off-target binding to Phosphodiesterases and increase specific binding to hPDE5.

hPDE5 inhibitors cover a broad pharmaco*kinetic space with respect to the approved dose and their duration of action and is described in Table 9. In Table 9, PO stands for per os (i.e. by mouth); QD represents quaque die (i.e. every day); IV represents intravenous; TID represents ter un die (i.e. three times a day); and Cmax represents the peak serum concentration that a drug achieves after its administration.

TABLE 9
Pharmaco*kinetics of hPDE5 inhibitors
Duration
DrugApproved DoseCmaxof action
SildenafilPO: 100 mg QD orPO: 1 μM4-8 hrs
20 mg TIDIV: 1 μM
IV: 10 mg TID
VardenafilPO: 20 mg QD0.1 μM2-8 hrs
TadalafilPO: 40 QD1.5 μM24-36 hrs 

In some embodiments, the ligand selection is determined by the magnitude and duration of expression of the effector modules of the invention using the PK parameters described in Table 9. In some embodiments, high levels of expression of the payload for a short duration of time may be desired. In such instances, vardenafil may be selected as the ligand. In some embodiments, high levels of expression of the payload may be desired for a long duration. In such instances, the ligand, Tadalafil may be selected. In some embodiments, low levels of expression of the payload may be desired for a long duration of time. In such instances, Sildenafil may be selected as the ligand.

In some embodiments, additional hPDE5 inhibitors may be developed to show selectivity towards a specific phosphodiesterase protein; to reduce or increase the duration of treatment with the ligand; and to improve the rate of onset of the ligand.

Ligands may also be selected from the analysis of the dependence of a known hPDE5 ligand's activity on its molecular/chemical structure, through Structure Activity Relationships (SAR) study. Any of the methods related to SAR, known in art may be utilized to identify stabilizing ligands of the invention. SAR may be utilized to improve properties of the ligand such as specificity, potency, pharmaco*kinetics, bioavailability, and safety. SAR analysis of known hPDE5 inhibitors may also be combined with high resolution X ray structures of hPDE5 complexed with ligands. The X ray structure of hPDE5 co-crystallized with Sildenafil, Tadalafil, and Vardenafil have been studied and the binding mode of the inhibitors has been identified (Zhang, K. Y. J. et al. (2004) Mol. Cell, 15, 279; Card, G. L. et al. (2004) Structure. 12, 2233; the contents of each of which are incorporated herein by reference in their entirety). There are several classes of hPDE5 inhibitors described. These include aryl, beryl, heteroaryl or heterobiaryl classes with different scaffold structures. The aryl class includes substituted nitroanilines and the biaryl class includes substituted naphthalenes. The heterobiaryl and heterotriaryl are further sub classified based on its fused system into pyrazolopyrimidinones, triazolopyrimidinones, imidazotriazines, purines, pyrrolopyrimidinones, triazolotrizinones, isoxazolopyrimidinones, β-carbolines, pyrroloquinolones, isoquinolines, quinazolines, imidazoquinazolinones, pyrazolopyridines, pyrazolopyridopyrimidinones. These widely different chemical structures are suggested to have different orientation in the binding site of hPDE5 enzyme. Sildenafil has three main chemical groups, the pyrazolopyrimidinone ring, the ethoxyphenyl ring and the methylpiperazine ring. The pyrazolopyrimidinone group is responsible for the binding of the drug to its active binding site of hPDE5.

Many hPDE inhibitors act by competing with the substrate, cGMP, for the catalytic site of the enzyme. Sildenafil and Vardenafil differ in the heterocyclic ring system used to mimic the purine ring of cGMP. They also differ in the substituent (ethyl/methyl) of a piperazine side chain. Although these are the only structural differences, Vardenafil is more potent than Sildenafil. In some embodiments, the structural differences between different know inhibitors of hPDE may be utilized to design better hPDE inhibitor based ligands. For example, Corbin et al. synthesized an analog of sildenafil that contained the sildenafil ring system but with the appended ethyl group found in vardenafil; and an analog of vardenafil (dimethyl-vardenafil) that contained the vardenafil ring system but with the appended methyl group found in sildenafil was also generated. These studies identified that the ring systems play a critical role in higher potency of vardenafil over sildenafil (Corbin J D et al. (2004) Neurochem Int; 45(6):859-63; the contents of which are incorporated herein by reference in their entirety). Based on the X ray crystal structure of hPDE complexed with sildenafil, the active site region was defined as a sphere within the 6.5 Angstrom from the reference ligand, sildenafil. Surface hydrophobicity (lipophilicity) potential physicochemical property map of the hPDE5 active site may be generated based on this information. The ethoxyphenyl group of sildenafil fits into the hydrophobic pocket formed by Phe 786, Ala783, Leu804, and Val782, and the pyrazolopyrimidinone ring also forms hydrophobic interaction with the side chains of Val782, Tyr612, and Phe820 in the binding pocket.

New hPDE5 inhibitors may also be developed using a series of analogs of known hPDE5 inhibitors. 3D-Quantitative Structure activity analysis (QSAR), CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) may be implemented for this purpose. In one embodiment, the structure of hPDE5 inhibitor may preferentially incorporate an N ethyl group in the pyrrolopyrimidinone ring at N5 position; and a propoxyphenyl group, which bear a substituent; one methylene unit longer, respectively in comparison with the corresponding positions of sildenafil. Any of the modifications to Sildenafil structure taught by Koo J et al. may be useful in the present invention (Koo J et al. (2007) Bioorg. & Med. Chem Lett 17; 4271-4274; the contents of which are incorporated by reference in their entirety).

In some embodiments, the stimulus may be a ligand that binds to more than one phosphodiesterase. In one embodiment, the stimulus is a pan phosphodiesterase inhibitor that may bind to two or more hPDEs such as Aminophyline, Paraxanthine, Pentoxifylline, Theobromine, Dipyridamole, Theophyline, Zaprinast, Icariin, CDP-840, Etazolate and Glaucine.

In some embodiments, the ligand is a hPDE1 inhibitor. Exemplary hPDE1 inhibitor, Vinpocetine may in some instances be used as the ligand in the present invention. In some embodiments, the ligand is a hPDE2 inhibitor. Exemplary hPDE2 inhibitors include EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), Oxindole, PDP and BAY 60-7550. Inhibitors that selectively inhibit a hPDE2 isoform may also be used, for example, substituted pyrido (2,3-b) pyrazines having a hPDE2A selective inhibitory action (See, e.g., U.S. Pat. No. 9,527,841; the contents of which are incorporated by reference in its entirety). In some embodiments, the ligand is a hPDE3 inhibitor. hPDE3 inhibitors useful in the invention include, but are not limited to Amrinone, Cilostazol, Milrinone, Enoximone, and Pimobendan. In some embodiments, the ligand is a hPDE4 inhibitor. Exemplary hPDE4 inhibitors include FDA approved small molecules such as, but not limited to AN2728 (4-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-5-yl)oxy]benzonitrile), Apremilast/CC10004 (N-{2-[(15)-1-(3-Ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl}acetamide), and Roflumilast. Other exemplary hPDE4 inhibitors include Other small molecules that inhibit hPDE4 also include E6005/RVT501, Cilomilast/SB-207,499, Ibudilast (AV-411 or MN-166), Mesembrenone, Piclamilast/RP 73401, Rolipram, Atizoram/CP-80633, Arofylline, CC-1088, Catramilast, CGH-2466, Cipamfylline, Drotaverine, Filaminast/WAY-PDA 641, HT-0712, DNS-001, ICI-63197, Indimilast, Irsogladine/MN 1695, Lirimilast/BAY 19-8004, Oglemilast, Revamilast, Ro 20-1724, Ronomilast, GSK256066, DC-TA-46, AWD 12-281 and YM-976. Any of the hPDE4 inhibitors described in International Patent Publication No. WO2014078220A1 and U.S. Patent Publication No. US20170129887A1 may be useful in the present invention (the contents of each of which are incorporated by reference in their entirety). In some embodiments, the ligand is a hPDE6 inhibitor. In some embodiments, the ligand is a hPDE7 inhibitor. Exemplary hPDE7 inhibitors, include BRL-50481 (N,N,2-Trimethyl-5-nitrobenzenesulfonamide) and ASB16165 (1H-Thieno(2,3-C) pyrazole-5-carboxamide, 1-cyclohexyl-N-(6-(4-hydroxy-1-piperidinyl)-3-pyridinyl)-3-methyl). In some embodiments, the ligand is a hPDE8 inhibitor such as PF-04957325 (Pfizer). In some embodiments, the ligand is a hPDE9 inhibitor. Exemplary hPDE9 inhibitors include, but are not limited to BAY73-6691 (1-(2-chlorophenyl)-6-[(2R)-3,3,3-trifluoro-2-methylpropyl]-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidine-4-one), PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(oxan-4-yl)-2H-pyrazolo[3,4-d]pyrimidin-4-one) and WYQ-C28L. In some embodiments, the ligand is a hPDE10 inhibitor. Exemplary PDE10 inhibitors include, but are not limited to OMS 824, Papaverine and PF-2545920 (2-(4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl) phenoxymethyl) quinolone), and GS-5759 (Gilead).

In one embodiment, the stimuli of the present invention may be FDA approved ligands capable of binding to the specific DDs or target regions within the DDs. In other embodiments, FDA approved ligands may be used to screen potential binders in the human protein. DDs may be designed based on the positive hits from the screen using the portion of the protein that binds to the ligand. In one embodiment, proteins that bind to FDA approved ligands as off target interactions may be used to design DDs of the present invention.

In some embodiments, ligands that do not affect the activity of the immune cell, and/or the chimeric antigen receptor, in the absence of the SREs may be preferably selected.

Stabilizing Domains

In some embodiments, the stimulus response element may be stabilized in the absence of the stimulus but destabilized by the stimulus. In some embodiments, SREs may be derived from protein complexes that comprise at least one protein-protein interaction. In other aspects, the SRE may form a protein-protein interaction with a natural protein within the cell. Protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. Payloads appended to such SREs may stabilized in the absence of the stimulus. In some aspects, the stimulus may be a small molecule that is capable of interrupting or disrupting the protein-protein interactions related to the SRE. In such instances, addition of the stimulus, results in the reduced expression and/or function of the payload. In some embodiments, stimuli that induce conformational change of the SRE may be utilized. In one aspect, the SRE may be stabilized by the conformational change. In another aspect, the SRE may be destabilized by the conformational change. The stimuli may also be small molecules that disrupt post translational modification of SREs which may result in the disruption of the protein-protein interaction related to the SRE. In some embodiments, SREs may be identified using protein interatomic techniques known in the art. Such methods may enable the identification of protein interactions that are therapeutically relevant. Any of the large-scale quantitative proteomics methods described in International Patent Publication NOs. WO2017210427A1, WO2016196994A9, and WO2014200987A3 may be useful in the present invention (the contents of each of which are incorporated by reference in their entirety).

Payloads

In some embodiments, payloads can be any natural protein in an organism genome, a fusion polypeptide, an antibody, or variants, mutants and derivatives thereof. In some embodiments, the effector module of the present invention is a fusion construct comprising a DD of the invention operably linked to at least one payload. In one aspect, the payload may be any natural protein of interest (POI) or variants thereof, an antibody or fragments thereof, a therapeutic agent, or any artificial peptide or polypeptide.

In some embodiments, payloads of the present invention may be immunotherapeutic agents. As used herein, an immunotherapeutic agent is any agent that induces immune responses in an organism. An immunotherapeutic agent may be a natural protein in an organism or it may be an artificial protein such as a fusion protein or an antibody. The immunotherapeutic agent may be, but is not limited to, an antibody and fragments and variants thereof, a MEW molecule, an antigen and fragments thereof, a T cell receptor (TCR) such as a tumor specific TCR and variants thereof, a chimeric antigen receptor (CAR), a chimeric switch receptor, a co-stimulatory molecule, a co-inhibitory molecule, an inhibitor of a co-inhibitory receptor or ligand, an agonist of a co-stimulatory receptor and ligand, a cytokine, chemokine, a cytokine receptor, a chemokine receptor, a soluble growth factor, a metabolic factor, a homing receptor, a safety switch (e.g., a suicide gene), or any agent that induces an immune response. In one embodiment, the immunotherapeutic agent induces an anti-cancer immune response in a cell, or in a subject. In some aspects, the immunotherapeutic agent reduces the tumor burden in a subject.

The payload may be any immunotherapeutic agent used for cancer immunotherapy such as a T cell receptor (TCR), a chimeric agent receptor (CAR) such as CD19 CAR that targets any molecule of tumor cells, an antibody, an antigen binding domain or combination of antigen binding domains, a cytokine such as IL2, IL12, IL15 or IL15/IL15Ra fusion, an antagonist of an immune checkpoint, an agonist of co-stimulatory molecule, a chimeric switch receptor, a safety switch, a metabolic factor, a growth factor, a chemokine, a chemokine receptor, a homing receptor, or any agent that can induce an immune response. The SRE and payload may be operably linked through one or more linkers and the positions of components may vary within the effector module.

1. Protein of Interest

In some embodiments, payloads of the invention may be a natural protein in an organism genome, or variants, mutants, derivatives thereof. The natural protein may be from, for example, a mammalian organism, a bacterium, and a virus.

In one example, the payload may be a protein of interest, or a polypeptide from human genome.

2. Antibodies

In some embodiments, antibodies, fragments and variants thereof are payloads of the present invention. The antibody may be an intact antibody, an antibody light chain, antibody heavy chain, an antibody fragment, an antibody variant, or an antibody derivative.

In some embodiments, payloads of the invention may be an antibody or fragments thereof. Antibodies useful in this method include without limitation, any of those taught in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).

Antibody Fragments and Variants

In some embodiments, antibody fragments and variants may comprise antigen binding regions from intact antibodies. Examples of antibody fragments and variants may include, but are not limited to Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules such as single chain variable fragment (scFv); and multispecific antibodies formed from antibody fragments. Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site. Also produced is a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen-binding sites and is still capable of cross-linking with the antigen. Pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention may comprise one or more of these fragments.

For the purposes herein, an “antibody” may comprise a heavy and light variable domain as well as an Fc region. As used herein, the term “native antibody” usually refers to a heterotetrameric glycoprotein of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Genes encoding antibody heavy and light chains are known and segments making up each have been well characterized and described (Matsuda et al., The Journal of Experimental Medicine. 1998, 188(11): 2151-62 and Li et al., Blood, 2004, 103(12): 4602-4609; the content of each of which are herein incorporated by reference in their entirety). Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.

As used herein, the term “variable domain” refers to specific antibody domains found on both the antibody heavy and light chains that differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. Variable domains comprise hypervariable regions. As used herein, the term “hypervariable region” refers to a region within a variable domain comprising amino acid residues responsible for antigen binding. The amino acids present within the hypervariable regions determine the structure of the complementarity determining regions (CDRs) that become part of the antigen-binding site of the antibody. As used herein, the term “CDR” refers to a region of an antibody comprising a structure that is complimentary to its target antigen or epitope. Other portions of the variable domain, not interacting with the antigen, are referred to as framework (FW) regions. The antigen-binding site (also known as the antigen combining site or paratope) comprises the amino acid residues necessary to interact with a particular antigen. The exact residues making up the antigen-binding site are typically elucidated by co-crystallography with bound antigen, however computational assessments based on comparisons with other antibodies can also be used (Strohl, W. R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p 47-54, the contents of which are herein incorporated by reference in their entirety). Determining residues that make up CDRs may include the use of numbering schemes including, but not limited to, those taught by Kabat (Wu et al., JEM, 1970, 132(2):211-250 and Johnson et al., Nucleic Acids Res. 2000, 28(1): 214-218, the contents of each of which are herein incorporated by reference in their entirety), Chothia (Chothia and Lesk, J. Mol. Biol. 1987, 196, 901, Chothia et al., Nature, 1989, 342, 877, and Al-Lazikani et al., J. Mol. Biol. 1997, 273(4): 927-948, the contents of each of which are herein incorporated by reference in their entirety), Lefranc (Lefranc et al., Immunome Res. 2005, 1:3) and Honegger (Honegger and Pluckthun, J. Mol. Biol. 2001, 309(3): 657-70, the contents of which are herein incorporated by reference in their entirety).

VH and VL domains have three CDRs each. VL CDRs are referred to herein as CDR-L1, CDR-L2 and CDR-L3, in order of occurrence when moving from N- to C-terminus along the variable domain polypeptide. VH CDRs are referred to herein as CDR-H1, CDR-H2 and CDR-H3, in order of occurrence when moving from N- to C-terminus along the variable domain polypeptide. Each of CDRs has favored canonical structures with the exception of the CDR-H3, which comprises amino acid sequences that may be highly variable in sequence and length between antibodies resulting in a variety of three-dimensional structures in antigen-binding domains (Nikoloudis, et al., PeerJ. 2014, 2: e456). In some cases, CDR-H3s may be analyzed among a panel of related antibodies to assess antibody diversity. Various methods of determining CDR sequences are known in the art and may be applied to known antibody sequences (Strohl, W.R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p 47-54, the contents of which are herein incorporated by reference in their entirety).

As used herein, the term “Fv” refers to an antibody fragment comprising the minimum fragment on an antibody needed to form a complete antigen-binding site. These regions consist of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. Fv fragments can be generated by proteolytic cleavage, but are largely unstable. Recombinant methods are known in the art for generating stable Fv fragments, typically through insertion of a flexible linker between the light chain variable domain and the heavy chain variable domain (to form a single chain Fv (scFv)) or through the introduction of a disulfide bridge between heavy and light chain variable domains (Strohl, W.R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p 46-4′7, the contents of which are herein incorporated by reference in their entirety).

As used herein, the term “light chain” refers to a component of an antibody from any vertebrate species assigned to one of two clearly distinct types, called kappa and lambda based on amino acid sequences of constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains, antibodies can be assigned to different classes. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.

As used herein, the term “single chain Fv” or “scFv” refers to a fusion protein of VH and VL antibody domains, wherein these domains are linked together into a single polypeptide chain by a flexible peptide linker. In some embodiments, the Fv polypeptide linker enables the scFv to form the desired structure for antigen binding. In some embodiments, scFvs are utilized in conjunction with phage display, yeast display or other display methods where they may be expressed in association with a surface member (e.g. phage coat protein) and used in the identification of high affinity peptides for a given antigen.

Using molecular genetics, two scFvs can be engineered in tandem into a single polypeptide, separated by a linker domain, called a “tandem scFv” (tascFv). Construction of a tascFv with genes for two different scFvs yields a “bispecific single-chain variable fragments” (bis-scFvs). Only two tascFvs have been developed clinically by commercial firms; both are bispecific agents in active early phase development by Micromet for oncologic indications, and are described as “Bispecific T-cell Engagers (BiTE).” Blinatumomab is an anti-CD19/anti-CD3 bispecific tascFv that potentiates T-cell responses to B-cell non-Hodgkin lymphoma in Phase 2. MT110 is an anti-EP-CAM/anti-CD3 bispecific tascFv that potentiates T-cell responses to solid tumors in Phase 1. Bispecific, tetravalent “TandAbs” are also being researched by Affimed (Nelson, A. L., MAbs, 2010, January-February; 2(1):77-83). maxibodies (bivalent scFv fused to the amino terminus of the Fc (CH2-CH3 domains) of IgG may also be included.

As used herein, the term “bispecific antibody” refers to an antibody capable of binding two different antigens. Such antibodies typically comprise regions from at least two different antibodies. Bispecific antibodies may include any of those described in Riethmuller, G. Cancer Immunity. 2012, 12:12-18, Marvin et al., 2005. Acta Pharmacologica Sinica. 2005, 26(6): 649-658 and Schaefer et al., PNAS. 2011, 108(27):11187-11192, the contents of each of which are herein incorporated by reference in their entirety. In some aspects, bispecific antibodies may be trifunctional antibodies (3 funct) and BiTE (bi-specific T cell engager).

As used herein, the term “diabody” refers to a small antibody fragment with two antigen-binding sites. Diabodies are functional bispecific single-chain antibodies (bscAb). Diabodies comprise a heavy chain variable domain VH connected to a light chain variable domain VL in the same polypeptide chain. By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al. (Hollinger, P. et al., “Diabodies”: Small bivalent and bispecific antibody fragments. PNAS, 1993. 90: 6444-6448); the contents of each of which are incorporated herein by reference in their entirety.

The term “intrabody” refers to a form of antibody that is not secreted from a cell in which it is produced, but instead targets one or more intracellular proteins. Intrabodies may be used to affect a multitude of cellular processes including, but not limited to intracellular trafficking, transcription, translation, metabolic processes, proliferative signaling and cell division. In some embodiments, methods of the present invention may include intrabody-based therapies. In some such embodiments, variable domain sequences and/or CDR sequences disclosed herein may be incorporated into one or more constructs for intrabody-based therapy.

As used herein, the term “monoclonal antibody” refers to an antibody obtained from a population of substantially hom*ogeneous cells (or clones), i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variants that may arise during production of the monoclonal antibodies, such variants generally being present in minor amounts. In contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.

The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially hom*ogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. The monoclonal antibodies herein include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or hom*ologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or hom*ologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies.

As used herein, the term “humanized antibody” refers to a chimeric antibody comprising a minimal portion from one or more non-human (e.g., murine) antibody source(s) with the remainder derived from one or more human immunoglobulin sources. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from the hypervariable region from an antibody of the recipient are replaced by residues from the hypervariable region from an antibody of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity. In one embodiment, the antibody may be a humanized full-length antibody. As a non-limiting example, the antibody may have been humanized using the methods taught in U.S. Patent Publication NO. US20130303399, the contents of which are herein incorporated by reference in its entirety.

As used herein, the term “antibody variant” refers to a modified antibody (in relation to a native or starting antibody) or a biomolecule resembling a native or starting antibody in structure and/or function (e.g., an antibody mimetic). Antibody variants may be altered in their amino acid sequence, composition or structure as compared to a native antibody. Antibody variants may include, but are not limited to, antibodies with altered isotypes (e.g., IgA, IgD, IgE, IgG1, IgG2, IgG3, IgG4, or IgM), humanized variants, optimized variants, multispecific antibody variants (e.g., bispecific variants), and antibody fragments.

In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention may be antibody mimetics. As used herein, the term “antibody mimetic” refers to any molecule which mimics the function or effect of an antibody and which binds specifically and with high affinity to their molecular targets. In some embodiments, antibody mimetics may be monobodies, designed to incorporate the fibronectin type III domain (Fn3) as a protein scaffold (U.S. Pat. Nos. 6,673,901; 6,348,584). In some embodiments, antibody mimetics may be those known in the art including, but are not limited to affibody molecules, affilins, affitins, anticalins, avimers, Centyrins, DARPINS™, Fynomers and Kunitz and domain peptides. In other embodiments, antibody mimetics may include one or more non-peptide regions.

In one embodiment, the antibody may comprise a modified Fc region. As a non-limiting example, the modified Fc region may be made by the methods or may be any of the regions described in U.S. Patent Publication NO. US20150065690, the contents of which are herein incorporated by reference in its entirety.

In some embodiments, payloads of the invention may encode multispecific antibodies that bind more than one epitope. As used herein, the terms “multibody” or “multispecific antibody” refer to an antibody wherein two or more variable regions bind to different epitopes. The epitopes may be on the same or different targets. In one embodiment, the multispecific antibody may be generated and optimized by the methods described in International Patent Publication NO. WO2011109726 and U.S. Patent Publication NO. US20150252119, the contents of which each of which are herein incorporated by reference in their entirety. These antibodies are able to bind to multiple antigens with high specificity and high affinity.

In certain embodiments, a multi-specific antibody is a “bispecific antibody” which recognizes two different epitopes on the same or different antigens. In one aspect, bispecific antibodies are capable of binding two different antigens. Such antibodies typically comprise antigen-binding regions from at least two different antibodies. For example, a bispecific monoclonal antibody (BsMAb, BsAb) is an artificial protein composed of fragments of two different monoclonal antibodies, thus allowing the BsAb to bind to two different types of antigen. Bispecific antibody frameworks may include any of those described in Riethmuller, G., 2012. Cancer Immunity, 2012, 12:12-18; Marvin et al., Acta Pharmacologica Sinica. 2005, 26(6):649-658; and Schaefer et al., PNAS. 2011, 108(27): 11187-11192, the contents of each of which are herein incorporated by reference in their entirety. New generations of BsMAb, called “trifunctional bispecific” antibodies, have been developed. These consist of two heavy and two light chains, one each from two different antibodies, where the two Fab regions (the arms) are directed against two antigens, and the Fc region (the foot) comprises the two heavy chains and forms the third binding site.

In some embodiments, payloads may encode antibodies comprising a single antigen-binding domain. These molecules are extremely small, with molecular weights approximately one-tenth of those observed for full-sized mAbs. Further antibodies may include “nanobodies” derived from the antigen-binding variable heavy chain regions (VHHs) of heavy chain antibodies found in camels and llamas, which lack light chains (Nelson, A. L., MAbs. 2010. January-February; 2(1):77-83).

In some embodiments, the antibody may be “miniaturized”. Among the best examples of mAb miniaturization are the small modular immunopharmaceuticals (SMIPs) from Trubion Pharmaceuticals. These molecules, which can be monovalent or bivalent, are recombinant single-chain molecules containing one VL, one VH antigen-binding domain, and one or two constant “effector” domains, all connected by linker domains. Presumably, such a molecule might offer the advantages of increased tissue or tumor penetration claimed by fragments while retaining the immune effector functions conferred by constant domains. At least three “miniaturized” SMIPs have entered clinical development. TRU-015, an anti-CD20 SMIP developed in collaboration with Wyeth, is the most advanced project, having progressed to Phase 2 for rheumatoid arthritis (RA). Earlier attempts in systemic lupus erythrematosus (SLE) and B cell lymphomas were ultimately discontinued. Trubion and Facet Biotechnology are collaborating in the development of TRU-016, an anti-CD37 SMIP, for the treatment of CLL and other lymphoid neoplasias, a project that has reached Phase 2. Wyeth has licensed the anti-CD20 SMIP SBI-087 for the treatment of autoimmune diseases, including RA, SLE and possibly multiple sclerosis, although these projects remain in the earliest stages of clinical testing. (Nelson, A. L., MAbs, 2010. January-February; 2(1):77-83).

On example of miniaturized antibodies is called “unibody” in which the hinge region has been removed from IgG4 molecules. While IgG4 molecules are unstable and can exchange light-heavy chain heterodimers with one another, deletion of the hinge region prevents heavy chain-heavy chain pairing entirely, leaving highly specific monovalent light/heavy heterodimers, while retaining the Fc region to ensure stability and half-life in vivo. This configuration may minimize the risk of immune activation or oncogenic growth, as IgG4 interacts poorly with FcRs and monovalent unibodies fail to promote intracellular signaling complex formation (see, e.g., Nelson, A. L., MAbs, 2010. January-February; 2(1):77-83).

In some embodiments, payloads of the invention may encode single-domain antibodies (sdAbs, or nanobodies) which are antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind selectively to a specific antigen. In one aspect, a sdAb may be a “Camel Ig or “camelid VHH”. As used herein, the term “camel Ig” refers to the smallest known antigen-binding unit of a heavy chain antibody (Koch-No lte, et al, FASEB J., 2007, 21: 3490-3498). A “heavy chain antibody” or a “camelid antibody” refers to an antibody that contains two VH domains and no light chains (Riechmann L. et al, J. Immunol. Methods, 1999, 231: 25-38; International patent publication NOs.: WO1994/04678 and WO1994/025591; and U.S. Pat. No. 6,005,079). In another aspect, a sdAb may be a “immunoglobulin new antigen receptor” (IgNAR). As used herein, the term “immunoglobulin new antigen receptor” refers to class of antibodies from the shark immune repertoire that consist of hom*odimers of one variable new antigen receptor (VNAR) domain and five constant new antigen receptor (CNAR) domains. IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds and are highly stable and possess efficient binding characteristics. The inherent stability can be attributed to both (i) the underlying Ig scaffold, which presents a considerable number of charged and hydrophilic surface exposed residues compared to the conventional antibody VH and VL domains found in murine antibodies; and (ii) stabilizing structural features in the complementary determining region (CDR) loops including inter-loop disulphide bridges, and patterns of intra-loop hydrogen bonds.

In some embodiments, payloads of the invention may encode intrabodies. Intrabodies are a form of antibody that is not secreted from a cell in which it is produced, but instead targets one or more intracellular proteins. Intrabodies are expressed and function intracellularly, and may be used to affect a multitude of cellular processes including, but not limited to intracellular trafficking, transcription, translation, metabolic processes, proliferative signaling and cell division. In some embodiments, methods described herein include intrabody-based therapies. In some such embodiments, variable domain sequences and/or CDR sequences disclosed herein are incorporated into one or more constructs for intrabody-based therapy. For example, intrabodies may target one or more glycated intracellular proteins or may modulate the interaction between one or more glycated intracellular proteins and an alternative protein.

The intracellular expression of intrabodies in different compartments of mammalian cells allows blocking or modulation of the function of endogenous molecules (Biocca, et al., EMBO J. 1990, 9: 101-108; Colby et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 17616-17621). Intrabodies can alter protein folding, protein-protein, protein-DNA, protein-RNA interactions and protein modification. They can induce a phenotypic knockout and work as neutralizing agents by direct binding to the target antigen, by diverting its intracellular trafficking or by inhibiting its association with binding partners. With high specificity and affinity to target antigens, intrabodies have advantages to block certain binding interactions of a particular target molecule, while sparing others.

Sequences from donor antibodies may be used to develop intrabodies. Intrabodies are often recombinantly expressed as single domain fragments such as isolated VH and VL domains or as a single chain variable fragment (scFv) antibody within the cell. For example, intrabodies are often expressed as a single polypeptide to form a single chain antibody comprising the variable domains of the heavy and light chains joined by a flexible linker polypeptide. Intrabodies typically lack disulfide bonds and are capable of modulating the expression or activity of target genes through their specific binding activity. Single chain intrabodies are often expressed from a recombinant nucleic acid molecule and engineered to be retained intracellularly (e.g., retained in the cytoplasm, endoplasmic reticulum, or periplasm). Intrabodies may be produced using methods known in the art, such as those disclosed and reviewed in: (Marasco et al., PNAS, 1993, 90: 7889-7893; Chen et al., Hum. Gene Ther. 1994, 5:595-601; Chen et al., 1994, PNAS, 91: 5932-5936; Maciejewski et al., 1995, Nature Med., 1: 667-673; Marasco, 1995, Immunotech, 1: 1-19; Mhashilkar, et al., 1995, EMBO J. 14: 1542-51; Chen et al., 1996, Hum. Gene Therap., 7: 1515-1525; Marasco, Gene Ther. 4:11-15, 1997; Rondon and Marasco, 1997, Annu. Rev. Microbiol. 51:257-283; Cohen, et al., 1998, Oncogene 17:2445-56; Proba et al., 1998, J. Mol. Biol. 275:245-253; Cohen et al., 1998, Oncogene 17:2445-2456; Hassanzadeh, et al., 1998, FEBS Lett. 437:81-6; Richardson et al., 1998, Gene Ther. 5:635-44; Ohage and Steipe, 1999, J. Mol. Biol. 291:1119-1128; Ohage et al., 1999, J. Mol. Biol. 291:1129-1134; Wirtz and Steipe, 1999, Protein Sci. 8:2245-2250; Zhu et al., 1999, J. Immunol. Methods 231:207-222; Arafat et al., 2000, Cancer Gene Ther. 7:1250-6; der Maur et al., 2002, J. Biol. Chem. 277:45075-85; Mhashilkar et al., 2002, Gene Ther. 9:307-19; and Wheeler et al., 2003, FASEB J. 17: 1733-5; and references cited therein).

In some embodiments, payloads of the invention may encode biosynthetic antibodies as described in U.S. Pat. No. 5,091,513, the contents of which are herein incorporated by reference in their entirety. Such antibody may include one or more sequences of amino acids constituting a region which behaves as a biosynthetic antibody binding site (BABS). The sites comprise 1) non-covalently associated or disulfide bonded synthetic VH and VL dimers, 2) VH-VL or VL-VH single chains wherein the VH and VL are attached by a polypeptide linker, or 3) individuals VH or VL domains. The binding domains comprise linked CDR and FR regions, which may be derived from separate immunoglobulins. The biosynthetic antibodies may also include other polypeptide sequences which function, e.g., as an enzyme, toxin, binding site, or site of attachment to an immobilization media or radioactive atom. Methods are disclosed for producing the biosynthetic antibodies, for designing BABS having any specificity that can be elicited by in vivo generation of antibody, and for producing analogs thereof.

In some embodiments, payloads may encode antibodies with antibody acceptor frameworks taught in U.S. Pat. No. 8,399,625. Such antibody acceptor frameworks may be particularly well suited accepting CDRs from an antibody of interest.

In one embodiment, the antibody may be a conditionally active biologic protein. An antibody may be used to generate a conditionally active biologic protein which are reversibly or irreversibly inactivated at the wild type normal physiological conditions as well as to such conditionally active biologic proteins and uses of such conditional active biologic proteins are provided. Such methods and conditionally active proteins are taught in, for example, International Publication No. WO2015175375 and WO2016036916 and U.S. Patent Publication No. US20140378660, the contents of each of which are incorporated herein by reference in their entirety.

Antibody Preparations

The preparation of antibodies, whether monoclonal or polyclonal, is known in the art. Techniques for the production of antibodies are well known in the art and described, e.g. in Harlow and Lane “Antibodies, A Laboratory Manual”, Cold Spring Harbor Laboratory Press, 1988; Harlow and Lane “Using Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, 1999 and “Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area in the Pharmaceutical Industry” Woodhead Publishing, 2012.

The antibodies and fragments and variants thereof as described herein can be produced using recombinant polynucleotides. In one embodiment, the polynucleotides have a modular design to encode at least one of the antibodies, fragments or variants thereof. As a non-limiting example, the polynucleotide construct may encode any of the following designs: (1) the heavy chain of an antibody, (2) the light chain of an antibody, (3) the heavy and light chain of the antibody, (4) the heavy chain and light chain separated by a linker, (5) the VH1, CH1, CH2, CH3 domains, a linker and the light chain or (6) the VH1, CH1, CH2, CH3 domains, VL region, and the light chain. Any of these designs may also comprise optional linkers between any domain and/or region. The polynucleotides of the present invention may be engineered to produce any standard class of immunoglobulins using an antibody described herein or any of its component parts as a starting molecule.

Antibodies Used for Immunotherapy

In some embodiments, payloads of the present invention may be antibodies, fragments and variants thereof which are specific to tumor specific antigens (TSAs) and tumor associated antigens (TAAs). Antibodies circulate throughout the body until they find and attach to the TSA/TAA. Once attached, they recruit other parts of the immune system, increasing ADCC (antibody dependent cell-mediated cytotoxicity) and ADCP (antibody dependent cell-mediated phagocytosis) to destroy tumor cells. As used herein, the term “tumor specific antigen (TSA)” means an antigenic substance produced in tumor cells, which can trigger an anti-tumor immune response in a host organism. In one embodiment, a TSA may be a tumor neoantigen. The tumor antigen specific antibody mediates complement-dependent cytotoxic response against tumor cells expressing the same antigen.

Of particular interest is a TSA that is a breast cancer antigen, an ovarian cancer antigen, a prostate cancer antigen, a cervical cancer antigen, a pancreatic carcinoma antigen, a lung cancer antigen, a bladder cancer antigen, a colon cancer antigen, a testicular cancer antigen, a glioblastoma cancer antigen, an antigen associated with a B cell malignancy, an antigen associated with multiple myeloma, an antigen associated with non-Hodgkins lymphoma, or an antigen associated with chronic lymphocytic leukemia.

Suitable antibodies which can immunoactively bind to a TSA may include, but are not limited to, those specific to 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD3δ, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CD S, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, G250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, IL5, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-KB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.

In one embodiment, the payload of the present invention may be an anti-CD47 antibody. CD47 is a ubiquitously expressed immunoregulatory protein that prevents phagocytic removal of healthy cells by the immune system. CD47 is expressed on the surface of many types of cancer cells, thereby disrupting anti-cancer immune responses. CD 47 is also involved in various other important cellular processes, such as angiogenesis, cancer cell death and regulation of T-cell immunity. Anti-CD47 antibodies in several pre-clinical studies have shown therapeutic benefit in solid cancers and most notably B-cell malignancies.

In one embodiment, the payload of the present invention may be an anti-CD22 antibody. As a non-limiting example, the anti-CD22 antibody is any of the antibodies, fragments or variants thereof described in U.S. Patent Publication No. US20150086562. The anti-CD22 antibody may comprise a heavy chain variable region having the amino acid sequences of SEQ ID NO: 49-64 in US20150086562, and/or a light chain variable region having the amino acid sequence of SEQ ID NO: 17-32 in US20150086562; the contents of which are incorporated herein by reference in their entirety.

In some embodiments, payloads of the present invention may be antibodies, fragments and variants thereof which can specifically block an immunoinhibitory signal. These blocking antibodies (also referred to as antagonists) bind to co-inhibitory receptors, therefore blocking their signal transduction. As non-limiting examples, the blocking antibodies may be specific to CTLA-4, PD-1, and PD-L1/L2. In one embodiment, the anti-CTLA-4 antibody is Ipilimumab. In another embodiment, the anti-PD-1 antibody is Nivolumab. Antibodies that bind to PD-L1 and enhance T cell immune response may include antibodies taught in U.S. patent publication NO.: 2016/0108123; the contents of which are incorporated by reference herein in their entirety. Other inhibitory immunomodulatory targets may include B7-H3, which can increase cancer cell metabolism such as glucose uptakes and lactate production (Lim et al., Cancer Res., 2016, 76(8): 1-12). Antibodies that block B7-H3 are disclosed in U.S. Pat. No. 9,150,656; the contents of which are incorporated by reference herein in their entirety.

In one aspect, payloads of the present invention may be antagonistic antibodies specific to VSIG8 (v-set and immunoglobulin domain containing 8) comprising the amino acid sequences of SEQ ID NOs: 1, 2 and 3 in U.S. patent publication NO.: US2016/0159927; the contents of which are incorporated by reference herein in their entirety. Antagonistic antibodies may also include a chimeric IL2 receptor (CD25) antibody (Basiliximab) (U.S. Patent Publication NO.: 20080171017; the contents of which are incorporated herein by reference in their entirety), and antagonizing antibodies which bind to human TIM-3 (U.S. patent publication NO.: US2015/0218274; the contents of which are incorporated herein by reference in their entirety), BTLA, VISTA and LAG-3 (See, e.g., U.S. patent publication NO.: US2015/0259420; the contents of which are incorporated herein by reference in their entirety).

In one aspect, the payload of the present invention may be an anti-CSF-IR antibody, which is characterized in binding to the dimerization domains D4 to D5 of the extracellular domain of human CSF-IR. This antibody inhibitor can inhibit cell proliferation and survival in CSF-IR ligand-dependent and CSF-1 ligand-independent CSF-IR expressing tumor cells, monocytes and infiltrating macrophages (See, e.g., International Patent Publication NO.: WO2013/132044; the contents of which are incorporated herein by reference in their entirety).

In another aspect, the payload of the present invention may be an antagonistic antibody against CXCL12. The anti-CXCL12 antibody blocks the interaction of CXCL12 with its receptor CXCR4, thereby inhibiting CXCR4 signaling. The CXCR4 signaling inhibitor increases the proximity or the frequency of T-cells among cancer cells in the tumor tissue (See, International Patent Publication NO.: WO 2015/019284; the contents of which are incorporated by reference herein in their entirety).

In some embodiments, payloads of the present invention may be agonistic antibodies, fragments and variants thereof, which trigger immune responses, including antibodies specific to co-stimulatory molecules, including but not limited to 4-1BB (CD137), OX40 (CD134), CD40, GITR and CD27.

In one embodiment, the payload of the present invention may be an agonistic CD40 antibody. In another embodiment, the agonistic antibody specific to 4-1BB (CD137) may be Uremab, a fully human IgG4 monoclonal antibody which specifically binds to and activates 4-1BB (CD137) expressing immune cells, stimulating an immune response, in particular a cytotoxic T cell response, against tumor cells; or Utomilumab, a fully human IgG2 monoclonal antibody; or anti-CD137 antibody described in International Patent Publication NO.: WO2006/088447; the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the payload of the present invention may be an antagonistic antibody against Amphiregulin. Amphiregulin (AREG) is an EGF-like growth factor which binds to the EGFR receptor and enhances T regulatory cell function. AREG is produced in a phenotypically and functionally distinct subtype of CD4+ regulatory T cells (Tregs) which have a distinct T cell receptor (TCR) repertoire and express the IL33R. AREG promotes immune suppression in the tumor environment. The anti-Amphiregulin antibody may comprise a heavy chain variable region having the amino acid sequences of SEQ ID NO.: 2,4, and 12 in U.S. Pat. No. 7,223,393, and/or a light chain variable region having the amino acid sequence of SEQ ID NO.: 3, 5, and 14 in U.S. Pat. No. 7,223,393; the contents of which are incorporated herein by reference in their entirety.

In some embodiments, antibodies specific to co-inhibitory molecules and co-stimulatory molecules may be secreted scFv antibodies.

In some embodiments, antibody payloads of the present invention may be T-cell bispecific antibodies (e.g. T cell-engaging BiTE™ antibodies CDS-CD 19, CD3-EpCam, and CD3-EGFR). Other bispecific antibodies used for immunotherapy may also be included as payloads of the present invention, for example, bispecific anti-TNF-α and anti-IL6 antibody (EP3062818), bispecific antibodies to an immune cell antigen and TAG-72 (WO2016/089610), anti-ovarian and D3 bispecific antibodies in U.S. Pat. No. 7,262,276; bispecific antibodies against CD133 and CD3 in WO2014/128185; bispecific antibodies against CTLA-4 and PD-1 discussed in US2016/0145355, bispecific antibodies against CD3 and CD19 disclosed in WO2015/006749, and U.S. Pat. Nos. 7,635,472; 7,112,324; bispecific antibodies against Her2 and CD3 in US2014/0170149; bispecific antibodies against CD19 and CD16 in US2005/0089519; the contents of each of which are incorporated by reference herein in their entirety.

In some embodiments, antibodies with decreased affinity may be selected over antibodies with high affinity for the same antigen. Such low affinity antibodies are more effective in discriminating tumors which express high levels of the antigen and normal tissues that express the same antigen at lower levels, while maintaining similar antitumor response.

In some embodiments, the targeting moieties of the present invention may include variable heavy chain and variable light chain comprising the amino acid sequences selected from those in Table 10.

TABLE 10
Variable Heavy and Light Chain Sequences
AntibodySEQ
TargetchainID NOSource
5T4VH539SEQ ID NO. 2 in WO2016022939
5T4VH540SEQ ID NO. 4 in WO2016022939
AGR2VH541SEQ ID NO. 10 in WO2016040321
AGR2VH542SEQ ID NO. 18 in WO2016040321
ALKVH543SEQ ID NO. 11 in WO2015069922
ALKVH544SEQ ID NO. 13 in WO2015069922
ALKVH545SEQ ID NO. 15 in WO2015069922
ALKVH546SEQ ID NO. 7 in WO2015069922
ALKVH547SEQ ID NO. 9 in WO2015069922
ALKVH548SEQ ID NO: 1 in US20160280798A1
ALKVH549SEQ ID NO: 11 in US20160280798A1
ALKVH550SEQ ID NO: 13 in US20160280798A1
ALKVH551SEQ ID NO: 15 in US20160280798A1
ALKVH552SEQ ID NO: 3 in US20160280798A1
ALKVH553SEQ ID NO: 5 in US20160280798A1
ALKVH554SEQ ID NO: 7 in US20160280798A1
ALKVH555SEQ ID NO: 9 in US20160280798A1
ALKVH556SEQ ID NO. 1 in WO2015069922
ALKVH557SEQ ID NO. 3 in WO2015069922
ALKVH558SEQ ID NO. 5 in WO2015069922
AMCVH559SEQ ID NO. 17 in WO2016161390
AMCVH560SEQ ID NO. 18 in WO2016161390
AMCVH561SEQ ID NO. 19 in WO2016161390
AMCVH562SEQ ID NO. 20 in WO2016161390
AMCVH563SEQ ID NO. 21 in WO2016161390
AMCVH564SEQ ID NO. 22 in WO2016161390
AMCVH565SEQ ID NO. 23 in WO2016161390
AMCVH566SEQ ID NO. 24 in WO2016161390
AMCVH567SEQ ID NO. 25 in WO2016161390
AMCVH568SEQ ID NO. 26 in WO2016161390
ANG2VH569SEQ ID NO. 1 in WO2015091655
ANG2VH570SEQ ID NO. 3 in WO2015091655
APCDD1VH571SEQ ID NO: 10 in WO2012019061
APCDD1VH572SEQ ID NO: 102 in WO2012019061
APCDD1VH573SEQ ID NO: 106 in WO2012019061
APCDD1VH574SEQ ID NO: 110 in WO2012019061
APCDD1VH575SEQ ID NO: 114 in WO2012019061
APCDD1VH576SEQ ID NO: 118 in WO2012019061
APCDD1VH577SEQ ID NO: 122 in WO2012019061
APCDD1VH578SEQ ID NO: 126 in WO2012019061
APCDD1VH579SEQ ID NO: 130 in WO2012019061
APCDD1VH580SEQ ID NO: 134 in WO2012019061
APCDD1VH581SEQ ID NO: 14 in WO2012019061
APCDD1VH582SEQ ID NO: 6 in WO2012019061
APCDD1VH583SEQ ID NO: 98 in WO2012019061
APRILVH584SEQ ID NO. 12 in US20160264674
APRILVH585SEQ ID NO. 14 in US20160264674
APRILVH586SEQ ID NO. 16 in US20160264674
APRILVH587SEQ ID NO. 18 in US20160264674
APRILVH588SEQ ID NO. 3 in US20160264674
APRILVH589SEQ ID NO. 32 in US20160264674
APRILVH590SEQ ID NO. 34 in US20160264674
APRILVH591SEQ ID NO. 36 in US20160264674
APRILVH592SEQ ID NO. 38 in US20160264674
APRILVH593SEQ ID NO. 40 in US20160264674
APRILVH594SEQ ID NO. 42 in US20160264674
APRILVH595SEQ ID NO. 44 in US20160264674
APRILVH596SEQ ID NO. 46 in US20160264674
APRILVH597SEQ ID NO. 48 in US20160264674
APRILVH598SEQ ID NO. 52 in US20160264674
AXLVH599SEQ ID NO. 21 in WO2016097370
AXLVH600SEQ ID NO. 3 in WO2016097370
AXLVH601SEQ ID NO. 45 in WO2016097370
B2MGVH602SEQ ID NO: 28 in WO2016126213A1
B7H1VH603SEQ ID NO: 12 in US20130034559
B7H1VH604SEQ ID NO: 32 in US20130034559
B7H1VH605SEQ ID NO: 42 in US20130034559
B7H1VH606SEQ ID NO: 52 in US20130034559
B7H1VH607SEQ ID NO: 72 in US20130034559
B7H1VH608SEQ ID NO: 2 in US20130034559
B7H1VH609SEQ ID NO: 62 in US20130034559
B7H3VH610SEQ ID NO. 10 in WO2016033225
B7H3VH611SEQ ID NO. 11 in WO2016033225
B7H3VH612SEQ ID NO. 12 in WO2016033225
B7H3VH613SEQ ID NO. 13 in WO2016033225
B7H3VH614SEQ ID NO. 14 in WO2016033225
B7H3VH615SEQ ID NO. 15 in WO2016033225
B7H3VH616SEQ ID NO. 16 in WO2016033225
B7H3VH617SEQ ID NO. 9 in WO2016033225
B7H3(CD276)VH618SEQ ID NO. 17 in WO2016044383
B7H3(CD276)VH619SEQ ID NO. 26 in WO2016044383
B7H3(CD276)VH620SEQ ID NO. 7 in WO2016044383
B7H4VH621SEQ ID NO. 100 in US20160159910
B7H4VH622SEQ ID NO. 101 in US20160159910
B7H4VH623SEQ ID NO. 102 in US20160159910
B7H4VH624SEQ ID NO. 103 in US20160159910
B7H4VH625SEQ ID NO. 107 in US20160159910
B7H4VH626SEQ ID NO. 108 in US20160159910
B7H4VH627SEQ ID NO. 109 in US20160159910
B7H4VH628SEQ ID NO. 110 in US20160159910
B7H4VH629SEQ ID NO. 111 in US20160159910
B7H4VH630SEQ ID NO. 112 in US20160159910
B7H4VH631SEQ ID NO. 113 in US20160159910
B7H4VH632SEQ ID NO. 114 in US20160159910
B7H4VH633SEQ ID NO. 12 in US20160159910
B7H4VH634SEQ ID NO. 127 in US20160159910
B7H4VH635SEQ ID NO. 13 in WO2016160620
B7H4VH636SEQ ID NO. 130 in US20160159910
B7H4VH637SEQ ID NO. 131 in US20160159910
B7H4VH638SEQ ID NO. 132 in US20160159910
B7H4VH639SEQ ID NO. 133 in US20160159910
B7H4VH640SEQ ID NO. 137 in US20160159910
B7H4VH641SEQ ID NO. 2 in US20160159910
B7H4VH642SEQ ID NO. 20 in US20160159910
B7H4VH643SEQ ID NO. 28 in US20160159910
B7H4VH644SEQ ID NO. 36 in US20160159910
B7H4VH645SEQ ID NO. 37 in US20160159910
B7H4VH646SEQ ID NO. 38 in US20160159910
B7H4VH647SEQ ID NO. 4 in US20160159910
B7H4VH648SEQ ID NO. 56 in US20160159910
B7H4VH649SEQ ID NO. 99 in US20160159910
B7H4VH650SEQ ID NO. 144 in US20160159910
B7H4VH651SEQ ID NO. 15 in WO2016160620
B7H4VH652SEQ ID NO. 17 in WO2016160620
BAT1VH653SEQ ID NO. 5 in WO2013014668
BAT1VH654SEQ ID NO. 6 in WO2013014668
BAT1VH655SEQ ID NO. 7 in WO2013014668
BAT1VH656SEQ ID NO. 8 in WO2013014668
BAT1VH657SEQ ID NO. 9 in WO2013014668
BCMAVH658SEQ ID NO: 26 in WO2016168773A3
BCMAVH659SEQ ID NO: 142 in WO2016168595A1
BCMAVH660SEQ ID NO: 148 in WO2016168595A1
BCMAVH661SEQ ID NO: 154 in WO2016168595A1
BCMAVH662SEQ ID NO: 160 in WO2016168595A1
BCMAVH663SEQ ID NO: 166 in WO2016168595A1
BCMAVH664SEQ ID NO: 172 in WO2016168595A1
BCMAVH665SEQ ID NO: 178 in WO2016168595A1
BCMAVH666SEQ ID NO: 184 in WO2016168595A1
BCMAVH667SEQ ID NO: 190 in WO2016168595A1
BCMAVH668SEQ ID NO: 196 in WO2016168595A1
BCMAVH669SEQ ID NO: 202 in WO2016168595A1
BCMAVH670SEQ ID NO: 208 in WO2016168595A1
BCMAVH671SEQ ID NO: 214 in WO2016168595A1
BCMAVH672SEQ ID NO: 220 in WO2016168595A1
BCMAVH673SEQ ID NO: 226 in WO2016168595A1
BCMAVH674SEQ ID NO: 232 in WO2016168595A1
BCMAVH675SEQ ID NO: 238 in WO2016168595A1
BCMAVH676SEQ ID NO: 244 in WO2016168595A1
BCMAVH677SEQ ID NO: 250 in WO2016168595A1
BCMAVH678SEQ ID NO: 256 in WO2016168595A1
BCMAVH679SEQ ID NO: 262 in WO2016168595A1
BCMAVH680SEQ ID NO: 268 in WO2016168595A1
BCMAVH681SEQ ID NO: 274 in WO2016168595A1
BCMAVH682SEQ ID NO: 280 in WO2016168595A1
BCMAVH683SEQ ID NO: 286 in WO2016168595A1
BCMAVH684SEQ ID NO: 292 in WO2016168595A1
BCMAVH685SEQ ID NO: 298 in WO2016168595A1
BCMAVH686SEQ ID NO: 304 in WO2016168595A1
BCMAVH687SEQ ID NO: 310 in WO2016168595A1
BCMAVH688SEQ ID NO: 316 in WO2016168595A1
BCMAVH689SEQ ID NO: 322 in WO2016168595A1
BCMAVH690SEQ ID NO: 328 in WO2016168595A1
BCMAVH691SEQ ID NO: 334 in WO2016168595A1
BCMAVH692SEQ ID NO: 340 in WO2016168595A1
BCMAVH693SEQ ID NO: 346 in WO2016168595A1
BCMAVH694SEQ ID NO: 352 in WO2016168595A1
BCMAVH695SEQ ID NO: 8 in WO2016094304A3
BCMAVH696SEQ ID NO. 171 WO2016014565
BCMAVH697SEQ ID NO. 172 WO2016014565
BCMAVH698SEQ ID NO. 173 WO2016014565
BCMAVH699SEQ ID NO. 174 WO2016014565
BCMAVH700SEQ ID NO. 175 WO2016014565
BCMAVH701SEQ ID NO. 176 WO2016014565
BCMAVH702SEQ ID NO. 177 WO2016014565
BCMAVH703SEQ ID NO. 178 WO2016014565
BCMAVH704SEQ ID NO. 179 WO2016014565
BCMAVH705SEQ ID NO. 180 WO2016014565
BCMAVH706SEQ ID NO. 181 WO2016014565
BCMAVH707SEQ ID NO. 182 WO2016014565
BCMAVH708SEQ ID NO. 183 WO2016014565
BCMAVH709SEQ ID NO. 184 WO2016014565
BCMAVH710SEQ ID NO. 185 WO2016014565
BCMAVH711SEQ ID NO. 186 WO2016014565
BCMAVH712SEQ ID NO. 187 WO2016014565
BCMAVH713SEQ ID NO. 190 WO2016014565
BCMAVH714SEQ ID NO. 255 WO2016014565
BCMAVH715SEQ ID NO. 257 WO2016014565
BCMAVH716SEQ ID NO. 258 WO2016014565
BCMAVH717SEQ ID NO. 69WO2016014565
BCMAVH718SEQ ID NO. 70WO2016014565
BCMAVH719SEQ ID NO. 71 WO2016014565
BCMAVH720SEQ ID NO. 72 WO2016014565
BCMAVH721SEQ ID NO. 73 WO2016014565
BCMAVH722SEQ ID NO. 74 WO2016014565
BCMAVH723SEQ ID NO. 75 WO2016014565
BCMAVH724SEQ ID NO. 76 WO2016014565
BCMAVH725SEQ ID NO. 77 WO2016014565
BCMAVH726SEQ ID NO. 78 WO2016014565
BCMAVH727SEQ ID NO. 79 WO2016014565
BCMAVH728SEQ ID NO. 80 WO2016014565
BCMAVH729SEQ ID NO. 81 WO2016014565
BCMAVH730SEQ ID NO: 38 in EP3057994A1
BCMAVH731SEQ ID NO: 55 in WO2016187349A1
BCMAVH732SEQ ID NO. 1 in WO2016090320
BCMAVH733SEQ ID NO. 10 in WO2016014789
BCMAVH734SEQ ID NO. 101 in WO2016120216
BCMAVH735SEQ ID NO. 11 in WO2015158671A1
BCMAVH736SEQ ID NO. 11 in WO2016014789
BCMAVH737SEQ ID NO. 12 in WO2016014789
BCMAVH738SEQ ID NO. 13 in WO2016014789
BCMAVH739SEQ ID NO. 13 in WO2016090320
BCMAVH740SEQ ID NO. 14 in WO2016014789
BCMAVH741SEQ ID NO. 17 in WO2015158671A1
BCMAVH742SEQ ID NO. 17 in WO2016090320
BCMAVH743SEQ ID NO. 174 in WO2016120216
BCMAVH744SEQ ID NO. 21 in WO2016090320
BCMAVH745SEQ ID NO. 25 in WO2016090320
BCMAVH746SEQ ID NO. 29 in WO2016090320
BCMAVH747SEQ ID NO. 33 in WO2016090320
BCMAVH748SEQ ID NO. 37 in WO2016090320
BCMAVH749SEQ ID NO. 41 in WO2016090320
BCMAVH750SEQ ID NO. 45 in WO2016090320
BCMAVH751SEQ ID NO. 49 in WO2016090320
BCMAVH752SEQ ID NO. 5 in WO2016090320
BCMAVH753SEQ ID NO. 53 in WO2016090320
BCMAVH754SEQ ID NO. 57 in WO2016090320
BCMAVH755SEQ ID NO. 61 in WO2016090320
BCMAVH756SEQ ID NO. 65 in WO2016090320
BCMAVH757SEQ ID NO. 9 in WO2016090320
BCMAVH758SEQ ID NO. 95 in WO2016120216
BCMAVH759SEQ ID NO. 97 in WO2016120216
BCMAVH760SEQ ID NO. 99 in WO2016120216
BCMAVH761SEQ ID NO: 15 in WO2016168766A1
BMPR1AVH762SEQ ID NO. 12 in WO2011116212
CA19.9VH763SEQ ID NO: 117 in US20160333114A1
Campath1VH764SEQ ID NO: 34 in US20160333114A1
CD105VH765SEQ ID NO. 13 in WO2014039682
CD105VH766SEQ ID NO. 14 in WO2014039682
CD105VH767SEQ ID NO. 16 in WO2014039682
CD123VH768SEQ ID NO. 11 in WO2015140268A1
CD123VH769SEQ ID NO. 113 in WO2016120216
CD123VH770SEQ ID NO. 115 in WO2016120216
CD123VH771SEQ ID NO. 12 in WO2016120220
CD123VH772SEQ ID NO. 13 in WO2015140268A1
CD123VH773SEQ ID NO. 14 in WO2015140268A1
CD123VH774SEQ ID NO. 21 in WO2015140268A1
CD123VH775SEQ ID NO. 24 in WO2016120220
CD123VH776SEQ ID NO. 25 in WO2016120220
CD123VH777SEQ ID NO. 26 in WO2016120220
CD123VH778SEQ ID NO. 27 in WO2016120220
CD123VH779SEQ ID NO. 28 in WO2016120220
CD123VH780SEQ ID NO. 29 in WO2016120220
CD123VH781SEQ ID NO. 30 in WO2016120220
CD123VH782SEQ ID NO. 57 in WO2016120216
CD123VH783SEQ ID NO. 59 in WO2016120216
CD123VH784SEQ ID NO. 63 in WO2016120216
CD123VH785SEQ ID NO: 216 in WO2016028896
CD123VH786SEQ ID NO: 217 in WO2016028896
CD123VH787SEQ ID NO: 218 in WO2016028896
CD123VH788SEQ ID NO: 219 in WO2016028896
CD123VH789SEQ ID NO: 274 in WO2016028896
CD123VH790SEQ ID NO: 9 in WO2016120220
CD123VH791SEQ ID NO: 9 in WO2016120220
CD123VH792SEQ ID NO: 9 in WO2016120220
CD123VH793SEQ ID NO: 9 in WO2016120220
CD148VH794SEQ ID NO 10 in WO2005118643
CD148VH795SEQ ID NO 14 in WO2005118643
CD148VH796SEQ ID NO 18 in WO2005118643
CD148VH797SEQ ID NO 2 in WO2005118643
CD148VH798SEQ ID NO 22 in WO2005118643
CD148VH799SEQ ID NO 26 in WO2005118643
CD148VH800SEQ ID NO 30 in WO2005118643
CD148VH801SEQ ID NO 6 in WO2005118643
CD16VH802SEQ ID NO. 25 in WO2015158868
CD19VH803SEQ ID NO: 28 in WO2016168773A3
CD19VH804SEQ ID NO: 29 in WO2016168773A3
CD19VH805SEQ ID NO: 32 in WO2016168773A3
CD19VH806SEQ ID NO: 33 in WO2016168773A3
CD19VH807SEQ ID NO: 34 in WO2016168773A3
CD19VH808SEQ ID NO: 35 in WO2016168773A3
CD19VH809SEQ ID NO: 51 in WO2016187349A1
CD19VH810SEQ ID NO: 20 in US20160039942
CD19VH811SEQ ID NO. 1 in WO2014184143
CD19VH812SEQ ID NO. 5 in US20160145337A1
CD19VH813SEQ ID NO: 15 US20160319020
CD19VH814SEQ ID NO: 166 US20160152723
CD19VH815SEQ ID NO: 167 US20160152723
CD19VH816SEQ ID NO: 168 US20160152723
CD19VH817SEQ ID NO: 17 in EP3057991A1
CD19VH818SEQ ID NO: 172 US20160152723
CD19VH819SEQ ID NO: 176 US20160152723
CD19VH820SEQ ID NO: 177 US20160152723
CD19VH821SEQ ID NO: 181 US20160152723
CD19VH822SEQ ID NO: 183 US20160152723
CD19VH823SEQ ID NO: 184 US20160152723
CD19VH824SEQ ID NO: 185 US20160152723
CD19VH825SEQ ID NO: 62 US20160152723
CD19VH826SEQ ID NO: 62 in WO2016097231
CD19VH827SEQ ID NO. 12 in WO2016134284
CD19VH828SEQ ID NO: 111 in US20160333114A1
CD19VH829SEQ ID NO: 113 in US20160333114A1
CD19VH830SEQ ID NO: 33 in EP3057994A1
CD19VH831SEQ ID NO: 34 in EP3057994A1
CD19VH832SEQ ID NO: 35 in EP3057994A1
CD2VH833SEQ ID NO. 103 in WO2016122701
CD2VH834SEQ ID NO. 117 in WO2016122701
CD2VH835SEQ ID NO. 119 in WO2016122701
CD20VH836SEQ ID NO: 45 in WO2016097231
CD20VH837SEQ ID NO. 11 in WO2017004091
CD20VH838SEQ ID NO. 13 in WO2017004091
CD20VH839SEQ ID NO. 14 in WO2017004091
CD20VH840SEQ ID NO. 15 in WO2017004091
CD20VH841SEQ ID NO. 16 in WO2017004091
CD20VH842SEQ ID NO. 17 in WO2017004091
CD20VH843SEQ ID NO. 18 in WO2017004091
CD20VH844SEQ ID NO. 19 in WO2017004091
CD20VH845SEQ ID NO. 20 in WO2017004091
CD20VH846SEQ ID NO. 21 in WO2017004091
CD20VH847SEQ ID NO. 22 in WO2017004091
CD20VH848SEQ ID NO. 23 in WO2017004091
CD20VH849SEQ ID NO. 24 in WO2017004091
CD20VH850SEQ ID NO. 25 in WO2017004091
CD20VH851SEQ ID NO. 26 in WO2017004091
CD20VH852SEQ ID NO. 27 in WO2017004091
CD20VH853SEQ ID NO. 28 in WO2017004091
CD20VH854SEQ ID NO. 29 in WO2017004091
CD20VH855SEQ ID NO. 30 in WO2017004091
CD20VH856SEQ ID NO. 31 in WO2017004091
CD20VH857SEQ ID NO. 32 in WO2017004091
CD20VH858SEQ ID NO. 33 in WO2017004091
CD20VH859SEQ ID NO. 7 in WO2017004091
CD20VH860SEQ ID NO. 9 in WO2017004091
CD20(Ofatumumab)VH861SEQ ID NO: 54 in US20160333114A1
CD22VH862SEQ ID NO: 10 in US20150239974
CD22VH863SEQ ID NO: 11 in US20150239974
CD22VH864SEQ ID NO: 12 in US20150239974
CD22VH865SEQ ID NO: 7 in US20150239974
CD22VH866SEQ ID NO: 9 in US20150239974
CD22VH867SEQ ID NO. 8 in US20150299317
CD22VH868SEQ ID NO: 201 in WO2016164731A2
CD22VH869SEQ ID NO: 671 in WO2016164731A41
CD22VH870SEQ ID NO: 672 in WO2016164731A42
CD22VH871SEQ ID NO: 673 in WO2016164731A43
CD22VH872SEQ ID NO: 676 in WO2016164731A46
CD22VH873SEQ ID NO: 678 in WO2016164731A48
CD22VH874SEQ ID NO: 679 in WO2016164731A49
CD22VH875SEQ ID NO: 680 in WO2016164731A50
CD22VH876SEQ ID NO: 700 in WO2016164731A2
CD22VH877SEQ ID NO: 701 in WO2016164731A3
CD22VH878SEQ ID NO: 702 in WO2016164731A4
CD22VH879SEQ ID NO: 703 in WO2016164731A5
CD22VH880SEQ ID NO: 704 in WO2016164731A6
CD22VH881SEQ ID NO: 705 in WO2016164731A7
CD22VH882SEQ ID NO: 706 in WO2016164731A8
CD22VH883SEQ ID NO: 707 in WO2016164731A9
CD22VH884SEQ ID NO: 708 in WO2016164731A10
CD22VH885SEQ ID NO: 709 in WO2016164731A11
CD22VH886SEQ ID NO: 711 in WO2016164731A13
CD22VH887SEQ ID NO: 712 in WO2016164731A14
CD22VH888SEQ ID NO: 713 in WO2016164731A15
CD22VH889SEQ ID NO: 714 in WO2016164731A16
CD22VH890SEQ ID NO: 715 in WO2016164731A17
CD22VH891SEQ ID NO: 716 in WO2016164731A18
CD22VH892SEQ ID NO: 717 in WO2016164731A19
CD22VH893SEQ ID NO: 718 in WO2016164731A20
CD22VH894SEQ ID NO: 719 in WO2016164731A21
CD22VH895SEQ ID NO: 720 in WO2016164731A22
CD22VH896SEQ ID NO: 721 in WO2016164731A23
CD22VH897SEQ ID NO: 722 in WO2016164731A24
CD22VH898SEQ ID NO: 723 in WO2016164731A25
CD22VH899SEQ ID NO: 724 in WO2016164731A26
CD22VH900SEQ ID NO: 725 in WO2016164731A27
CD22VH901SEQ ID NO: 726 in WO2016164731A28
CD22VH902SEQ ID NO: 727 in WO2016164731A29
CD22VH903SEQ ID NO: 728 in WO2016164731A30
CD22VH904SEQ ID NO: 729 in WO2016164731A31
CD22VH905SEQ ID NO: 730 in WO2016164731A32
CD22VH906SEQ ID NO: 731 in WO2016164731A33
CD22VH907SEQ ID NO: 732 in WO2016164731A34
CD22VH908SEQ ID NO: 733 in WO2016164731A35
CD22VH909SEQ ID NO: 734 in WO2016164731A36
CD22VH910SEQ ID NO: 735 in WO2016164731A37
CD22VH911SEQ ID NO: 736 in WO2016164731A38
CD22VH912SEQ ID NO: 737 in WO2016164731A39
CD22VH913SEQ ID NO: 738 in WO2016164731A40
CD276VH914SEQ ID NO. 17 in US20160053017
CD276VH915SEQ ID NO. 26 in US20160053017
CD276VH916SEQ ID NO. 7 in US20160053017
CD3VH917SEQ ID NO. 108 in WO2016122701
CD3VH918SEQ ID NO. 112 in WO2016122701
CD3VH919SEQ ID NO. 115 in WO2016122701
CD3VH920SEQ ID NO: 29 in WO2014144722A2
CD3VH921SEQ ID NO: 12 in WO2016126213A1
CD30VH922SEQ ID NO. 14 in WO2016134284
CD30VH923SEQ ID NO. 16 in WO2016134284
CD324VH924SEQ ID NO. 21 in U.S. Pat. No. 9,534,058
CD324VH925SEQ ID NO. 23 in U.S. Pat. No. 9,534,058
CD324VH926SEQ ID NO. 25 in U.S. Pat. No. 9,534,058
CD324VH927SEQ ID NO. 27 in U.S. Pat. No. 9,534,058
CD324VH928SEQ ID NO. 29 in U.S. Pat. No. 9,534,058
CD324VH929SEQ ID NO. 31 in U.S. Pat. No. 9,534,058
CD324VH930SEQ ID NO. 33 in U.S. Pat. No. 9,534,058
CD324VH931SEQ ID NO. 35 in U.S. Pat. No. 9,534,058
CD324VH932SEQ ID NO. 37 in U.S. Pat. No. 9,534,058
CD324VH933SEQ ID NO. 39 in U.S. Pat. No. 9,534,058
CD324VH934SEQ ID NO. 41 in U.S. Pat. No. 9,534,058
CD324VH935SEQ ID NO. 43 in U.S. Pat. No. 9,534,058
CD324VH936SEQ ID NO. 45 in U.S. Pat. No. 9,534,058
CD324VH937SEQ ID NO. 47 in U.S. Pat. No. 9,534,058
CD324VH938SEQ ID NO. 49 in U.S. Pat. No. 9,534,058
CD324VH939SEQ ID NO. 51 in U.S. Pat. No. 9,534,058
CD324VH940SEQ ID NO. 53 in U.S. Pat. No. 9,534,058
CD324VH941SEQ ID NO. 55 in U.S. Pat. No. 9,534,058
CD324VH942SEQ ID NO. 57 in U.S. Pat. No. 9,534,058
CD324VH943SEQ ID NO. 59 in U.S. Pat. No. 9,534,058
CD324VH944SEQ ID NO. 61 in U.S. Pat. No. 9,534,058
CD324VH945SEQ ID NO. 63 in U.S. Pat. No. 9,534,058
CD324VH946SEQ ID NO. 65 in U.S. Pat. No. 9,534,058
CD324VH947SEQ ID NO. 67 in U.S. Pat. No. 9,534,058
CD324VH948SEQ ID NO. 69 in U.S. Pat. No. 9,534,058
CD324VH949SEQ ID NO. 71 in U.S. Pat. No. 9,534,058
CD32BVH950SEQ ID NO. 127 in WO2016122701
CD33VH951SEQ ID NO. 11 in WO2015150526A2
CD33VH952SEQ ID NO. 13 in WO2015150526A2
CD33VH953SEQ ID NO. 15 in WO2015150526A2
CD33VH954SEQ ID NO. 17 in WO2015150526A2
CD33VH955SEQ ID NO. 57 in WO2016014576
CD33VH956SEQ ID NO. 58 in WO2016014576
CD33VH957SEQ ID NO. 59 in WO2016014576
CD33VH958SEQ ID NO. 60 in WO2016014576
CD33VH959SEQ ID NO. 61 in WO2016014576
CD33VH960SEQ ID NO. 62 in WO2016014576
CD33VH961SEQ ID NO. 63 in WO2016014576
CD33VH962SEQ ID NO. 64 in WO2016014576
CD33VH963SEQ ID NO. 65 in WO2016014576
CD38VH964SEQ ID NO. 2 in WO2009080830
CD38VH965SEQ ID No. 10 in WO2015121454
CD3sVH966SEQ ID NO: 7 in WO2014144722A2
CD40VH967SEQ ID NO. 1 in WO2016069919
CD40VH968SEQ ID NO. 5 in WO2015091655
CD40VH969SEQ ID NO. 7 in WO2015091655
CD40VH970SEQ ID NO. 8 in WO2015091655
CD45VH971SEQ ID NO: 24 in WO2016126213A1
CD46VH972SEQ ID NO: 39 in WO2012031273
CD46VH973SEQ ID NO: 47 in WO2012031273
CD46VH974SEQ ID NO: 59 in WO2012031273
CD46VH975SEQ ID NO: 15 in WO2012031273
CD46VH976SEQ ID NO: 19 in WO2012031273
CD46VH977SEQ ID NO: 23 in WO2012031273
CD46VH978SEQ ID NO: 27 in WO2012031273
CD46VH979SEQ ID NO: 31 in WO2012031273
CD46VH980SEQ ID NO: 35 in WO2012031273
CD46VH981SEQ ID NO: 43 in WO2012031273
CD46VH982SEQ ID NO: 51 in WO2012031273
CD46VH983SEQ ID NO: 55 in WO2012031273
CD46VH984SEQ ID NO: 63 in WO2012031273
CD46VH985SEQ ID NO: 67 in WO2012031273
CD46VH986SEQ ID NO: 71 in WO2012031273
CD46VH987SEQ ID NO: 75 in WO2012031273
CD46VH988SEQ ID NO: 79 in WO2012031273
CD46VH989SEQ ID NO: 83 in WO2012031273
CD46VH990SEQ ID NO. 1 in WO2016040683
CD46VH991SEQ ID NO. 10 in WO2016040683
CD46VH992SEQ ID NO. 11 in WO2016040683
CD46VH993SEQ ID NO. 12 in WO2016040683
CD46VH994SEQ ID NO. 13 in WO2016040683
CD46VH995SEQ ID NO. 14 in WO2016040683
CD46VH996SEQ ID NO. 15 in WO2016040683
CD46VH997SEQ ID NO. 16 in WO2016040683
CD46VH998SEQ ID NO. 17 in WO2016040683
CD46VH999SEQ ID NO. 3 in WO2016040683
CD46VH1000SEQ ID NO. 5 in WO2016040683
CD46VH1001SEQ ID NO. 6 in WO2016040683
CD46VH1002SEQ ID NO. 7 in WO2016040683
CD46VH1003SEQ ID NO. 9 in WO2016040683
CD46VH1004SEQ ID NO. 18 in WO2016040683
CD46VH1005SEQ ID NO. 19 in WO2016040683
CD46VH1006SEQ ID NO. 20 in WO2016040683
CD46VH1007SEQ ID NO. 21 in WO2016040683
CD46VH1008SEQ ID NO: 69 in WO2012031273
CD46VH1009SEQ ID NO: 71 in WO2012031273
CD46VH1010SEQ ID NO: 83 in WO2012031273
CD4BSVH1011SEQ ID NO: 15 in US20160194375A1
CD4BSVH1012SEQ ID NO: 3 in US20160194375A1
CD4iVH1013SEQ ID NO: 5 in US20160194375A1
CD52VH1014SEQ ID NO: 103 in WO2010132659
CD52VH1015SEQ ID NO: 136 in WO2010132659
CD52VH1016SEQ ID NO: 137 in WO2010132659
CD64VH1017SEQ ID NO. 129 in WO2016122701
CD7VH1018SEQ ID NO: 16 in WO2016126213A1
CD7VH1019SEQ ID NO: 20 in WO2016126213A1
CD70VH1020SEQ ID No. 81 in WO2015121454
CD70VH1021SEQ ID NO. 85 in WO2015121454
CD70VH1022SEQ ID NO. 89 in WO2015121454
CD71VH1023SEQ ID NO. 1 in US20160355599
CD71VH1024SEQ ID NO. 3 in US20160355599
CD71VH1025SEQ ID NO. 325 in US20160355599
CD71VH1026SEQ ID NO. 4 in US20160355599
CD71VH1027SEQ ID NO. 5 in US20160355599
CD71VH1028SEQ ID NO. 699 in US20160355599
CD73VH1029SEQ ID NO. 135 in US20160145350
CD73VH1030SEQ ID NO. 40 in US20160145350
CD73VH1031SEQ ID NO. 21 in WO2016055609A1
CD73VH1032SEQ ID NO. 3 in WO2016055609A1
CD73VH1033SEQ ID NO. 28 in WO2016055609A1
CD73VH1034SEQ ID NO. 36 in WO2016055609A1
CD74VH1035FIG. 1A in WO2003074567
CD74VH1036FIG. 2A in WO2003074567
CD74VH1037FIG. 4A in WO2003074567
CD74VH1038SEQ ID NO. 6 in US20100284906A1
CD74VH1039SEQ ID NO 10 in US20040115193A1
CD74VH1040SEQ ID NO 11 in US20040115193A1
CD74VH1041SEQ ID NO 9 in US20040115193A1
CD76bVH1042SEQ ID NO. 15 in US20160159906
CD76bVH1043SEQ ID NO. 17 in US20160159906
CD76bVH1044SEQ ID NO. 19 in US20160159906
CD76bVH1045SEQ ID NO. 23 in US20160159906
CD76bVH1046SEQ ID NO. 27 in US20160159906
CD76bVH1047SEQ ID NO. 29 in US20160159906
CD76bVH1048SEQ ID NO. 37 in US20160159906
CD76bVH1049SEQ ID NO. 57 in US20160159906
CD76bVH1050SEQ ID NO. 59 in US20160159906
CD76bVH1051SEQ ID NO. 61 in US20160159906
CD80VH1052SEQ ID NO. 131 in WO2016122701
CDIMVH1053SEQ ID NO. 1 in WO2013120012
CDIMVH1054SEQ ID NO. 10 in WO2013120012
CDIMVH1055SEQ ID NO. 11 in WO2013120012
CDIMVH1056SEQ ID NO. 12 in WO2013120012
CDIMVH1057SEQ ID NO. 13 in WO2013120012
CDIMVH1058SEQ ID NO. 14 in WO2013120012
CDIMVH1059SEQ ID NO. 15 in WO2013120012
CDIMVH1060SEQ ID NO. 16 in WO2013120012
CDIMVH1061SEQ ID NO. 17 in WO2013120012
CDIMVH1062SEQ ID NO. 18 in WO2013120012
CDIMVH1063SEQ ID NO. 19 in WO2013120012
CDIMVH1064SEQ ID NO. 2 in WO2013120012
CDIMVH1065SEQ ID NO. 20 in WO2013120012
CDIMVH1066SEQ ID NO. 21 in WO2013120012
CDIMVH1067SEQ ID NO. 22 in WO2013120012
CDIMVH1068SEQ ID NO. 3 in WO2013120012
CDIMVH1069SEQ ID NO. 4 in WO2013120012
CDIMVH1070SEQ ID NO. 5 in WO2013120012
CDIMVH1071SEQ ID NO. 6 in WO2013120012
CDIMVH1072SEQ ID NO. 7 in WO2013120012
CDIMVH1073SEQ ID NO. 8 in WO2013120012
CDIMVH1074SEQ ID NO. 9 in WO2013120012
CEAVH1075SEQ ID NO: 8 in U.S. Pat. No. 8,287,865
ClaudinVH1076SEQ ID NO. 101 in WO2016073649A1
ClaudinVH1077SEQ ID NO. 103 in WO2016073649A1
ClaudinVH1078SEQ ID NO. 105 in WO2016073649A1
ClaudinVH1079SEQ ID NO. 107 in WO2016073649A1
ClaudinVH1080SEQ ID NO. 109 in WO2016073649A1
ClaudinVH1081SEQ ID NO. 111 in WO2016073649A1
ClaudinVH1082SEQ ID NO. 113 in WO2016073649A1
ClaudinVH1083SEQ ID NO. 115 in WO2016073649A1
ClaudinVH1084SEQ ID NO. 117 in WO2016073649A1
ClaudinVH1085SEQ ID NO. 119 in WO2016073649A1
ClaudinVH1086SEQ ID NO. 121 in WO2016073649A1
ClaudinVH1087SEQ ID NO. 122 in WO2016073649A1
ClaudinVH1088SEQ ID NO. 123 in WO2016073649A1
ClaudinVH1089SEQ ID NO. 124 in WO2016073649A1
ClaudinVH1090SEQ ID NO. 125 in WO2016073649A1
ClaudinVH1091SEQ ID NO. 126 in WO2016073649A1
ClaudinVH1092SEQ ID NO. 127 in WO2016073649A1
ClaudinVH1093SEQ ID NO. 128 in WO2016073649A1
ClaudinVH1094SEQ ID NO. 129 in WO2016073649A1
ClaudinVH1095SEQ ID NO. 130 in WO2016073649A1
ClaudinVH1096SEQ ID NO. 131 in WO2016073649A1
ClaudinVH1097SEQ ID NO. 132 in WO2016073649A1
ClaudinVH1098SEQ ID NO. 133 in WO2016073649A1
ClaudinVH1099SEQ ID NO. 134 in WO2016073649A1
ClaudinVH1100SEQ ID NO. 135 in WO2016073649A1
ClaudinVH1101SEQ ID NO. 136 in WO2016073649A1
ClaudinVH1102SEQ ID NO. 137 in WO2016073649A1
ClaudinVH1103SEQ ID NO. 138 in WO2016073649A1
ClaudinVH1104SEQ ID NO. 139 in WO2016073649A1
ClaudinVH1105SEQ ID NO. 140 in WO2016073649A1
ClaudinVH1106SEQ ID NO. 141 in WO2016073649A1
ClaudinVH1107SEQ ID NO. 142 in WO2016073649A1
ClaudinVH1108SEQ ID NO. 143 in WO2016073649A1
ClaudinVH1109SEQ ID NO. 144 in WO2016073649A1
ClaudinVH1110SEQ ID NO. 145 in WO2016073649A1
ClaudinVH1111SEQ ID NO. 146 in WO2016073649A1
ClaudinVH1112SEQ ID NO. 147 in WO2016073649A1
ClaudinVH1113SEQ ID NO. 148 in WO2016073649A1
ClaudinVH1114SEQ ID NO. 149 in WO2016073649A1
ClaudinVH1115SEQ ID NO. 150 in WO2016073649A1
ClaudinVH1116SEQ ID NO. 23 in WO2016073649A1
ClaudinVH1117SEQ ID NO. 27 in WO2016073649A1
ClaudinVH1118SEQ ID NO. 31 in WO2016073649A1
ClaudinVH1119SEQ ID NO. 35 in WO2016073649A1
ClaudinVH1120SEQ ID NO. 39 in WO2016073649A1
ClaudinVH1121SEQ ID NO. 43 in WO2016073649A1
ClaudinVH1122SEQ ID NO. 47 in WO2016073649A1
ClaudinVH1123SEQ ID NO. 51 in WO2016073649A1
ClaudinVH1124SEQ ID NO. 55 in WO2016073649A1
ClaudinVH1125SEQ ID NO. 59 in WO2016073649A1
ClaudinVH1126SEQ ID NO. 63 in WO2016073649A1
ClaudinVH1127SEQ ID NO. 67 in WO2016073649A1
ClaudinVH1128SEQ ID NO. 71 in WO2016073649A1
ClaudinVH1129SEQ ID NO. 75 in WO2016073649A1
ClaudinVH1130SEQ ID NO. 79 in WO2016073649A1
ClaudinVH1131SEQ ID NO. 81 in WO2016073649A1
ClaudinVH1132SEQ ID NO. 83 in WO2016073649A1
ClaudinVH1133SEQ ID NO. 85 in WO2016073649A1
ClaudinVH1134SEQ ID NO. 87 in WO2016073649A1
ClaudinVH1135SEQ ID NO. 89 in WO2016073649A1
ClaudinVH1136SEQ ID NO. 91 in WO2016073649A1
ClaudinVH1137SEQ ID NO. 93 in WO2016073649A1
ClaudinVH1138SEQ ID NO. 95 in WO2016073649A1
ClaudinVH1139SEQ ID NO. 97 in WO2016073649A1
ClaudinVH1140SEQ ID NO. 99 in WO2016073649A1
CLL1VH1141SEQ ID NO. 13 in WO2016120219
CLL1VH1142SEQ ID NO. 14 in WO2016120219
CLL1VH1143SEQ ID NO. 15 in WO2016120219
CLL1VH1144SEQ ID NO. 17 in WO2016120219
CLL1VH1145SEQ ID NO. 19 in WO2016120219
CLL1VH1146SEQ ID NO. 195 in WO2016014535
CLL1VH1147SEQ ID NO. 21 in WO2016120219
CLL1VH1148SEQ ID NO. 23 in WO2016120219
CLL1VH1149SEQ ID NO. 25 in WO2016120219
CLL1VH1150SEQ ID NO. 27 in WO2016120219
CLL1VH1151SEQ ID NO. 29 in WO2016120219
CLL1VH1152SEQ ID NO. 31 in WO2016120219
CLL1VH1153SEQ ID NO. 33 in WO2016120219
CLL1VH1154SEQ ID NO. 35 in WO2016120219
CLL1VH1155SEQ ID NO. 65 in WO2016014535
CLL1VH1156SEQ ID NO. 66 in WO2016014535
CLL1VH1157SEQ ID NO. 67 in WO2016014535
CLL1VH1158SEQ ID NO. 68 in WO2016014535
CLL1VH1159SEQ ID NO. 69 in WO2016014535
CLL1VH1160SEQ ID NO. 70 in WO2016014535
CLL1VH1161SEQ ID NO. 71 in WO2016014535
CLL1VH1162SEQ ID NO. 72 in WO2016014535
CLL1VH1163SEQ ID NO. 73 in WO2016014535
CLL1VH1164SEQ ID NO. 74 in WO2016014535
CLL1VH1165SEQ ID NO. 75 in WO2016014535
CLL1VH1166SEQ ID NO. 76 in WO2016014535
CLL1VH1167SEQ ID NO. 77 in WO2016014535
CLL1VH1168SEQ ID NO. 31 in US20160075787
CLL1VH1169SEQ ID NO. 33 in US20160075787
CLL1VH1170SEQ ID NO. 34 in US20160075787
CLL1VH1171SEQ ID NO. 36 in US20160075787
CLL1VH1172SEQ ID NO. 38 in US20160075787
CLL1VH1173SEQ ID NO. 40 in US20160075787
CLL1VH1174SEQ ID NO. 42 in US20160075787
CLL1VH1175SEQ ID NO. 46 in US20160075787
CLL1VH1176SEQ ID NO: 150 in WO2016179319A1
CLL1VH1177SEQ ID NO: 103 in WO2016179319A1
CLL1VH1178SEQ ID NO: 105 in WO2016179319A1
CLL1VH1179SEQ ID NO: 107 in WO2016179319A1
CLL1VH1180SEQ ID NO: 109 in WO2016179319A1
CLL1VH1181SEQ ID NO: 111 in WO2016179319A1
CLL1VH1182SEQ ID NO: 113 in WO2016179319A1
CLL1VH1183SEQ ID NO: 115 in WO2016179319A1
CLL1VH1184SEQ ID NO: 117 in WO2016179319A1
CLL3VH1185SEQ ID NO. 101 in US2017000901
CLL3VH1186SEQ ID NO. 103 in US20170000901
CLL3VH1187SEQ ID NO. 105 in US20170000901
CLL3VH1188SEQ ID NO. 107 in US20170000901
CLL3VH1189SEQ ID NO. 109 in US20170000901
CLL3VH1190SEQ ID NO. 111 in US20170000901
CLL3VH1191SEQ ID NO. 113 in US20170000901
CLL3VH1192SEQ ID NO. 115 in US20170000901
CLL3VH1193SEQ ID NO. 117 in US20170000901
CLL3VH1194SEQ ID NO. 119 in US20170000901
CLL3VH1195SEQ ID NO. 121 in US20170000901
CLL3VH1196SEQ ID NO. 123 in US20170000901
CLL3VH1197SEQ ID NO. 125 in US20170000901
CLL3VH1198SEQ ID NO. 127 in US20170000901
CLL3VH1199SEQ ID NO. 129 in US20170000901
CLL3VH1200SEQ ID NO. 131 in US20170000901
CLL3VH1201SEQ ID NO. 133 in US20170000901
CLL3VH1202SEQ ID NO. 135 in US20170000901
CLL3VH1203SEQ ID NO. 137 in US20170000901
CLL3VH1204SEQ ID NO. 139 in US20170000901
CLL3VH1205SEQ ID NO. 141 in US20170000901
CLL3VH1206SEQ ID NO. 145 in US20170000901
CLL3VH1207SEQ ID NO. 147 in US20170000901
CLL3VH1208SEQ ID NO. 149 in US20170000901
CLL3VH1209SEQ ID NO. 151 in US20170000901
CLL3VH1210SEQ ID NO. 153 in US20170000901
CLL3VH1211SEQ ID NO. 155 in US20170000901
CLL3VH1212SEQ ID NO. 157 in US20170000901
CLL3VH1213SEQ ID NO. 159 in US20170000901
CLL3VH1214SEQ ID NO. 161 in US20170000901
CLL3VH1215SEQ ID NO. 163 in US20170000901
CLL3VH1216SEQ ID NO. 165 in US20170000901
CLL3VH1217SEQ ID NO. 167 in US20170000901
CLL3VH1218SEQ ID NO. 169 in US20170000901
CLL3VH1219SEQ ID NO. 171 in US20170000901
CLL3VH1220SEQ ID NO. 173 in US20170000901
CLL3VH1221SEQ ID NO. 175 in US20170000901
CLL3VH1222SEQ ID NO. 177 in US20170000901
CLL3VH1223SEQ ID NO. 179 in US20170000901
CLL3VH1224SEQ ID NO. 181 in US20170000901
CLL3VH1225SEQ ID NO. 183 in US20170000901
CLL3VH1226SEQ ID NO. 185 in US20170000901
CLL3VH1227SEQ ID NO. 187 in US20170000901
CLL3VH1228SEQ ID NO. 191 in US20170000901
CLL3VH1229SEQ ID NO. 193 in US20170000901
CLL3VH1230SEQ ID NO. 195 in US20170000901
CLL3VH1231SEQ ID NO. 197 in US20170000901
CLL3VH1232SEQ ID NO. 199 in US20170000901
CLL3VH1233SEQ ID NO. 201 in US20170000901
CLL3VH1234SEQ ID NO. 203 in US20170000901
CLL3VH1235SEQ ID NO. 205 in US20170000901
CLL3VH1236SEQ ID NO. 207 in US20170000901
CLL3VH1237SEQ ID NO. 209 in US20170000901
CLL3VH1238SEQ ID NO. 21 in US20170000901
CLL3VH1239SEQ ID NO. 211 in US20170000901
CLL3VH1240SEQ ID NO. 213 in US20170000901
CLL3VH1241SEQ ID NO. 23 in US20170000901
CLL3VH1242SEQ ID NO. 25 in US20170000901
CLL3VH1243SEQ ID NO. 27 in US20170000901
CLL3VH1244SEQ ID NO. 29 in US20170000901
CLL3VH1245SEQ ID NO. 31 in US20170000901
CLL3VH1246SEQ ID NO. 33 in US20170000901
CLL3VH1247SEQ ID NO. 35 in US20170000901
CLL3VH1248SEQ ID NO. 37 in US20170000901
CLL3VH1249SEQ ID NO. 39 in US20170000901
CLL3VH1250SEQ ID NO. 41 in US20170000901
CLL3VH1251SEQ ID NO. 43 in US20170000901
CLL3VH1252SEQ ID NO. 45 in US20170000901
CLL3VH1253SEQ ID NO. 47 in US20170000901
CLL3VH1254SEQ ID NO. 49 in US20170000901
CLL3VH1255SEQ ID NO. 51 in US20170000901
CLL3VH1256SEQ ID NO. 53 in US20170000901
CLL3VH1257SEQ ID NO. 55 in US20170000901
CLL3VH1258SEQ ID NO. 57 in US20170000901
CLL3VH1259SEQ ID NO. 59 in US20170000901
CLL3VH1260SEQ ID NO. 61 in US20170000901
CLL3VH1261SEQ ID NO. 63 in US20170000901
CLL3VH1262SEQ ID NO. 65 in US20170000901
CLL3VH1263SEQ ID NO. 67 in US20170000901
CLL3VH1264SEQ ID NO. 69 in US20170000901
CLL3VH1265SEQ ID NO. 71 in US20170000901
CLL3VH1266SEQ ID NO. 73 in US20170000901
CLL3VH1267SEQ ID NO. 75 in US20170000901
CLL3VH1268SEQ ID NO. 77 in US20170000901
CLL3VH1269SEQ ID NO. 79 in US20170000901
CLL3VH1270SEQ ID NO. 81 in US20170000901
CLL3VH1271SEQ ID NO. 83 in US20170000901
CLL3VH1272SEQ ID NO. 85 in US20170000901
CLL3VH1273SEQ ID NO. 87 in US20170000901
CLL3VH1274SEQ ID NO. 89 in US20170000901
CLL3VH1275SEQ ID NO. 91 in US20170000901
CLL3VH1276SEQ ID NO. 93 in US2017000901
CLL3VH1277SEQ ID NO. 95 in US20170000901
CLL3VH1278SEQ ID NO. 97 in US20170000901
CLL3VH1279SEQ ID NO. 99 in US20170000901
collagenVH1280SEQ ID NO. 21 in WO2007024921
collagenVH1281SEQ ID NO. 4 in WO2007024921
collagenVH1282SEQ ID NO. 15 in WO2007024921
collagenVH1283SEQ ID NO. 17 in WO2007024921
collagenVH1284SEQ ID NO. 18 in WO2007024921
collagenVH1285SEQ ID NO. 19 in WO2007024921
collagenVH1286SEQ ID NO. 20 in WO2007024921
collagenVH1287SEQ ID NO. 5 in WO2007024921
collagenVH1288SEQ ID NO. 6 in WO2007024921
collagenVH1289SEQ ID NO. 7 in WO2007024921
collagenVH1290SEQ ID NO: 1 in WO2007024921
collagenVH1291SEQ ID NO: 2 in WO2007024921
collagenVH1292SEQ ID NO: 3 in WO2007024921
CS1VH1293SEQ ID NO: 22 in WO2016168773A3
CS1VH1294SEQ ID NO. 103 in WO2016120216
CS1VH1295SEQ ID NO. 105 in WO2016120216
CS1VH1296SEQ ID NO. 107 in WO2016120216
CS1VH1297SEQ ID NO. 109 in WO2016120216
CS1VH1298SEQ ID NO. 13 in WO2015166056A1
CS1VH1299SEQ ID NO. 15 in WO2015166056A1
CS1VH1300SEQ ID NO. 17 in WO2015166056A1
CS1VH1301SEQ ID NO. 19 in WO2015166056A1
CS1VH1302SEQ ID No. 38 in WO2015121454
CS1VH1303SEQ ID No. 40 in WO2015121454
CS1VH1304SEQ ID No. 42 in WO2015121454
CS1VH1305SEQ ID No. 44 in WO2015121454
CS1VH1306SEQ ID No. 46 in WO2015121454
CS1VH1307SEQ ID NO. 26 in US20160075784A1
CSFVH1308SEQ ID NO 10 in US20050059113A1
CSFVH1309SEQ ID NO 102 in US20050059113A1
CSFVH1310SEQ ID NO 14 in US20050059113A1
CSFVH1311SEQ ID NO 18 in US20050059113A1
CSFVH1312SEQ ID NO 2 in US20050059113A1
CSFVH1313SEQ ID NO 22 in US20050059113A1
CSFVH1314SEQ ID NO 26 in US20050059113A1
CSFVH1315SEQ ID NO 30 in US20050059113A1
CSFVH1316SEQ ID NO 34 in US20050059113A1
CSFVH1317SEQ ID NO 38 in US20050059113A1
CSFVH1318SEQ ID NO 46 in US20050059113A1
CSFVH1319SEQ ID NO 50 in US20050059113A1
CSFVH1320SEQ ID NO 54 in US20050059113A1
CSFVH1321SEQ ID NO 58 in US20050059113A1
CSFVH1322SEQ ID NO 6 in US20050059113A1
CSFVH1323SEQ ID NO 62 in US20050059113A1
CSFVH1324SEQ ID NO 66 in US20050059113A1
CSFVH1325SEQ ID NO 70 in US20050059113A1
CSFVH1326SEQ ID NO 74 in US20050059113A1
CSFVH1327SEQ ID NO 78 in US20050059113A1
CSFVH1328SEQ ID NO 82 in US20050059113A1
CSFVH1329SEQ ID NO 86 in US20050059113A1
CSFVH1330SEQ ID NO 90 in US20050059113A1
CSFVH1331SEQ ID NO 94 in US20050059113A1
CSFVH1332SEQ ID NO 98 in US20050059113A1
CSPG4VH1333SEQ ID NO. 8 in WO2016164429
CTLA4VH1334SEQ ID NO. 3 in US20140105914
CTLA4VH1335SEQ ID NO. 31 in US20140105914
CTLA4VH1336SEQ ID NO. 32 in US20140105914
CTLA4VH1337SEQ ID NO. 33 in US20140105914
CTLA4VH1338SEQ ID NO. 34 in US20140105914
CTLA4VH1339SEQ ID NO. 35 in US20140105914
CTLA4VH1340SEQ ID NO. 4 in U.S. Pat. No. 8,697,845
CTLA4VH1341SEQ ID NO. 41 in US20140105914
CTLA4VH1342SEQ ID NO. 42 in US20140105914
CTLA4VH1343SEQ ID NO. 43 in US20140105914
CTLA4VH1344SEQ ID NO. 44 in US20140105914
CTLA4VH1345SEQ ID NO. 45 in US20140105914
CTLA4VH1346SEQ ID NO. 7 in US20140105914
CTLA4(Ipilimumab)VH1347SEQ ID NO. 19 in US20150283234
CTLA4(Ipilimumab)VH1348SEQ ID NO. 17 in WO2014066532
CXCR4VH1349SEQ ID NO: 72 in US20110020218
CXCR4VH1350SEQ ID NO: 73 in US20110020218
CXCR4VH1351SEQ ID NO: 74 in US20110020218
CXCR4VH1352SEQ ID NO: 75 in US20110020218
CXCR4VH1353SEQ ID NO: 84 in US20110020218
DaclizumabVH1354SEQ ID NO: 44 in US20160333114A1
DaclizumabVH1355SEQ ID NO: 46 in US20160333114A1
DR5VH1356SEQ ID NO. 18 in WO2016122701
DR5VH1357SEQ ID NO. 82 in WO2016122701
DR5VH1358SEQ ID NO. 90 in WO2016122701
DR5VH1359SEQ ID NO. 98 in WO2016122701
DR5VH1360SEQ ID NO. 8 in WO2016122701
DR5(Conatumumab)VH1361SEQ ID NO. 66 in WO2016122701
DR5(Drozitumab)VH1362SEQ ID NO. 58 in WO2016122701
DR5(Tigatuzumab)VH1363SEQ ID NO. 74 in WO2016122701
E7MCVH1364SEQ ID NO: 15 in WO2016182957A1
E7MCVH1365SEQ ID NO: 16 in WO2016182957A1
E7MCVH1366SEQ ID NO: 17 in WO2016182957A1
E7MCVH1367SEQ ID NO: 18 in WO2016182957A1
E7MCVH1368SEQ ID NO: 19 in WO2016182957A1
E7MCVH1369SEQ ID NO: 20 in WO2016182957A1
E7MCVH1370SEQ ID NO: 21 in WO2016182957A1
E7MCVH1371SEQ ID NO: 22 in WO2016182957A1
E7MCVH1372SEQ ID NO: 23 in WO2016182957A1
E7MCVH1373SEQ ID NO: 233 in WO2016182957A1
E7MCVH1374SEQ ID NO: 234 in WO2016182957A1
E7MCVH1375SEQ ID NO: 235 in WO2016182957A1
E7MCVH1376SEQ ID NO: 236 in WO2016182957A1
E7MCVH1377SEQ ID NO: 237 in WO2016182957A1
E7MCVH1378SEQ ID NO: 24 in WO2016182957A1
E7MCVH1379SEQ ID NO: 25 in WO2016182957A1
E7MCVH1380SEQ ID NO: 26 in WO2016182957A1
E7MCVH1381SEQ ID NO: 27 in WO2016182957A1
E7MCVH1382SEQ ID NO: 28 in WO2016182957A1
E7MCVH1383SEQ ID NO: 29 in WO2016182957A1
E7MCVH1384SEQ ID NO: 30 in WO2016182957A1
E7MCVH1385SEQ ID NO: 31 in WO2016182957A1
E7MCVH1386SEQ ID NO: 32 in WO2016182957A1
E7MCVH1387SEQ ID NO: 33 in WO2016182957A1
E7MCVH1388SEQ ID NO: 34 in WO2016182957A1
E7MCVH1389SEQ ID NO: 35 in WO2016182957A1
EFNAVH1390SEQ ID NO: 149 in WO2012118547
EFNAVH1391SEQ ID NO: 153 in WO2012118547
EFNAVH1392SEQ ID NO: 157 in WO2012118547
EFNAVH1393SEQ ID NO: 161 in WO2012118547
EFNA4VH1394SEQ ID NO. 13 in US20150125472
EFNA4VH1395SEQ ID NO. 39 in US20150125472
EGFRVH1396SEQ ID NO. 14 in WO2015143382
EGFRVH1397SEQ ID NO. 50 in WO2015143382
EGFRVH1398SEQ ID NO. 9 in WO2015143382
EGFRVH1399SEQ ID NO. 12 in US20100008978A1
EGFRVH1400SEQ ID NO. 14 in US20100008978A1
EGFRVH1401SEQ ID NO. 15 in US20100008978A1
EGFRVH1402SEQ ID NO. 21 in US20100008978A1
EGFRVH1403
EGFRVH1404
EGFRVH1405
EGFRVH1406
EGFRVH1407
EGFRVH1408
EGFRVH1409
EGFRVH1410
EGFRVH1411
EGFRVH1412
EGFRVH1413
EGFRVH1414
EGFRVH1415
EGFRVH1416
EGFRVH1417
EGFRVH1418
EGFRVH1419
EGFRVH1420
EGFRVH1421
EGFRVH1422
EGFRVH1423
EGFRVH1424
EGFRVH1425
EGFRVH1426
EGFRVH1427
EGFRVH1428
EGFRVH1429
EGFRVH1430
EGFRVH1431
EGFRVH1432
EGFRVH1433
EGFRVH1434
EGFRVH1435
EGFRVH1436
EGFRVH1437
EGFRVH1438
EGFRVH1439
EGFRVH1440
EGFRVH1441
EGFRVH1442
EGFRVH1443
EGFRVH1444
EGFRVH1445
EGFRVH1446
EGFRVH1447
EGFRVH1448
EGFRVH1449
EGFRVH1450
EGFRVH1451
EGFRVH1452
EGFRVH1453
EGFRVH1454
EGFRVH1455
EGFRVH1456
EGFRVH1457
EGFRVH1458
EGFRVH1459
EGFRVH1460
EGFRVH1461
EGFRVH1462
EGFRVH1463
EGFRVH1464
EGFRVH1465
EGFRVH1466
EGFRVH1467
EGFRVH1468
EGFRVH1469
EGFRVH1470
EGFRVH1471
EGFRVH1472
EGFRVH1473
EGFRVH1474
EGFRVH1475
EGFRVH1476
EGFRVH1477
EGFRVH1478
EGFRVH1479
EGFRVH1480
EGFRVH1481
EGFRVH1482
EGFRVH1483
EGFRVH1484
EGFRVH1485
EGFRVH1486
EGFRVH1487
EGFRVH1488
EGFRVH1489
EGFRVH1490
EGFRVH1491
EGFRVH1492
EGFRVH1493
EGFRVH1494
EGFRVH1495
EGFRVH1496
EGFRVH1497
EGFRVH1498
EGFRVH1499
EGFRVH1500
EGFRVH1501
EGFRVH1502
EGFRVH1503
EGFRVH1504
EGFRVH1505
EGFRVH1506
EGFRVH1507
EGFRVH1508
EGFRVH1509
EGFRVH1510
EGFRVH1511
EGFRVH1512
EGFRVH1513
EGFRVH1514
EGFRVH1515
EGFRVH1516
EGFRVH1517
EGFRVH1518
EGFRVH1519
EGFRVH1520
EGFRVH1521
EGFRVH1522
EGFRVH1523
EGFRVH1524
EGFRVH1525
EGFRVH1526
EGFRVH1527
EGFRVH1528
EGFRVH1529
EGFRVH1530
EGFRVH1531
EGFRVH1532
EGFRVH1533
EGFRVH1534
EGFRVH1535
EGFRVH1536
EGFRVH1537
EGFRVH1538
EGFRVH1539
EGFRVH1540
EGFRVH1541
EGFRVH1542
EGFRVH1543
EGFRVH1544
EGFRVH1545
EGFRVH1546
EGFRVH1547
EGFRVH1548
EGFRVH1549
EGFRVH1550
EGFRVH1551
EGFRVH1552
EGFRVH1553
EGFRVH1554
EGFRVH1555
EGFRVH1556
EGFRVH1557
EGFRVH1558
EGFRVH1559
EGFRVH1560
EGFRVH1561
EGFRVH1562
EGFRVH1563
EGFRVH1564
EGFRVH1565
EGFRVH1566
EGFRVH1567
EGFRVH1568
EGFRVH1569
EGFRVH1570
EGFRVH1571
EGFRVH1572
EGFRVH1573
EGFRVH1574
EGFRVH1575
EGFRVH1576
EGFRVH1577
EGFRVH1578
EGFRVH1579
EGFRVH1580
EGFRVH1581
EGFRVH1582
EGFRVH1583
EGFRVH1584
EGFRVH1585
EGFRVH1586
EGFRVH1587
EGFRVH1588
EGFRVH1589
EGFRVH1590
EGFRVH1591
EGFRVH1592
EGFRVH1593
EGFRVH1594
EGFRVH1595
EGFRVH1596
EGFRVH1597
EGFRVH1598
EGFRVH1599
EGFRVH1600
EGFRVH1601
EGFRVH1602
EGFRVH1603
EGFRVH1604
EGFRVH1605
EGFRVH1606
EGFRVH1607
EGFRVH1608
EGFRVH1609
EGFRVH1610
EGFRVH1611
EGFRVH1612
EGFRVH1613
EGFRVH1614
EGFRVH1615
EGFRVH1616
EGFRVH1617
EGFRVH1618
EGFRVH1619
EGFRVH1620
EGFRVH1621
EGFRVH1622
EGFRVH1623
EGFRVH1624
EGFRVH1625
EGFRVH1626
EGFRVH1627
EGFRVH1628
EGFRVH1629
EGFRVH1630
EGFRVH1631
EGFRVH1632
EGFRVH1633
EGFRVH1634
EGFRVH1635
EGFRVH1636
EGFRVH1637
EGFRVH1638
EGFRVH1639
EGFRVH1640
EGFRVH1641
EGFRVH1642
EGFRVH1643
EGFRVH1644
EGFRVH1645
EGFRVH1646
EGFRVH1647
EGFRVH1648
EGFRVH1649
EGFRVH1650
EGFRVH1651
EGFRVH1652
EGFRVH1653
EGFRVH1654
EGFRVH1655
EGFRVH1656
EGFRVH1657
EGFRVH1658
EGFRVH1659
EGFRVH1660
EGFRVH1661
EGFRVH1662
EGFRVH1663
EGFRVH1664
EGFRVH1665
EGFRVH1666
EGFRVH1667
EGFRVH1668
EGFRVH1669
EGFRVH1670
EGFRVH1671
EGFRVH1672
EGFRVH1673
EGFRVH1674
EGFRVH1675
EGFRVH1676
EGFRVH1677
EGFRVH1678
EGFRVH1679
EGFRVH1680
EGFRVH1681
EGFRVH1682
EGFRVH1683
EGFRVH1684
EGFRVH1685
EGFRVH1686
EGFRVH1687
EGFRVH1688
EGFRVH1689
EGFRVH1690
EGFRVH1691
EGFRVH1692
EGFRVH1693
EGFRVH1694
EGFRVH1695
EGFRVH1696
EGFRVH1697
EGFRVH1698
EGFRVH1699
EGFRVH1700
EGFRVH1701
EGFRVH1702
EGFRVH1703
EGFRVH1704
EGFRVH1705
EGFRVH1706
EGFRVH1707
EGFRVH1708
EGFRVH1709
EGFRVH1710
EGFRVH1711
EGFRVH1712
EGFRVH1713
EGFRVH1714
EGFRVH1715
EGFRVH1716
EGFRVH1717
EGFRVH1718
EGFRVH1719
EGFRVH1720
EGFRVH1721
EGFRVH1722
EGFRVH1723
EGFRVH1724
EGFRVH1725
EGFRVH1726
EGFRVH1727
EGFRVH1728
EGFRVH1729
EGFRVH1730
EGFRVH1731
EGFRVH1732
EGFRVH1733
EGFRVH1734
EGFRVH1735
EGFRVH1736
EGFRVH1737
EGFRVH1738
EGFRVH1739
EGFRVH1740
EGFRVH1741
EGFRVH1742
EGFRVH1743
EGFRVH1744
EGFRVH1745
EGFRVH1746
EGFRVH1747
EGFRVH1748
EGFRVH1749
EGFRVH1750
EGFRVH1751
EGFRVH1752
EGFRVH1753
EGFRVH1754
EGFRVH1755
EGFRVH1756
EGFRVH1757
EGFRVH1758
EGFRVH1759
EGFRVH1760
EGFRVH1761
EGFRVH1762
EGFRVH1763
EGFRVH1764
EGFRVH1765
EGFRVH1766
EGFRVH1767
EGFRVH1768
EGFRVH1769
EGFRVH1770
EGFRVH1771
EGFRVH1772
EGFRVH1773
EGFRVH1774
EGFRVH1775
EGFRVH1776
EGFRVH1777
EGFRVH1778
EGFRVH1779
EGFRVH1780
EGFRVH1781
EGFRVH1782
EGFRVH1783
EGFRVH1784
EGFRVH1785
EGFRVH1786
EGFRVH1787
EGFRVH1788
EGFRVH1789
EGFRVH1790
EGFRVH1791
EGFRVH1792
EGFRVH1793
EGFRVH1794
EGFRVH1795
EGFRVH1796
EGFRVH1797
EGFRVH1798
EGFRVH1799
EGFRVH1800
EGFRVH1801
EGFRVH1802
EGFRVH1803
EGFRVH1804
EGFRVH1805
EGFRVH1806
EGFRVH1807
EGFRVH1808
EGFRVH1809
EGFRVH1810
EGFRVH1811
EGFRVH1812
EGFRVH1813
EGFRVH1814
EGFRVH1815
EGFRVH1816
EGFRVH1817
EGFRVH1818
EGFRVH1819
EGFRVH1820
EGFRVH1821
EGFRVH1822
EGFRVH1823
EGFRVH1824
EGFRVH1825
EGFRVH1826
EGFRVH1827
EGFRVH1828
EGFRVH1829
EGFRVH1830
EGFRVH1831
EGFRVH1832
EGFRVH1833
EGFRVH1834
EGFRVH1835
EGFRVH1836
EGFRVH1837
EGFRVH1838
EGFRVH1839
EGFRVH1840
EGFRVH1841
EGFRVH1842
EGFRVH1843
EGFRVH1844
EGFRVH1845
EGFRVH1846
EGFRVH1847
EGFRVH1848
EGFRVH1849
EGFRVH1850
EGFRVH1851
EGFRVH1852
EGFRVH1853
EGFRVH1854
EGFRVH1855
EGFRVH1856
EGFRVH1857
EGFRVH1858
EGFRVH1859
EGFRVH1860
EGFRVH1861
EGFRVH1862
EGFRVH1863
EGFRVH1864
EGFRVH1865
EGFRVH1866
EGFRVH1867
EGFRVH1868
EGFRVH1869
EGFRVH1870
EGFRVH1871
EGFRVH1872
EGFRVH1873
EGFRVH1874
EGFRVH1875
EGFRVH1876
EGFRVH1877
EGFRVH1878
EGFRVH1879
EGFRVH1880
EGFRVH1881
EGFRVH1882
EGFRVH1883
EGFRVH1884
EGFRVH1885
EGFRVH1886
EGFRVH1887
EGFRVH1888
EGFRVH1889
EGFRVH1890
EGFRVH1891
EGFRVH1892
EGFRVH1893
EGFRVH1894
EGFRVH1895
EGFRVH1896
EGFRVH1897
EGFRVH1898
EGFRVH1899
EGFRVH1900
EGFRVH1901
EGFRVH1902
EGFRVH1903
EGFRVH1904
EGFRVH1905
EGFRVH1906
EGFRVH1907
EGFRVH1908
EGFRVH1909
EGFRVH1910
EGFRVH1911
EGFRVH1912
EGFRVH1913
EGFRVH1914
EGFRVH1915
EGFRVH1916
EGFRVH1917
EGFRVH1918
EGFRVH1919
EGFRVH1920
EGFRVH1921
EGFRVH1922
EGFRVH1923
EGFRVH1924
EGFRVH1925
EGFRVH1926
EGFRVH1927
EGFRVH1928
EGFRVH1929
EGFRVH1930
EGFRVH1931
EGFRVH1932
EGFRVH1933
EGFRVH1934
EGFRVH1935
EGFRVH1936
EGFRVH1937
EGFRVH1938
EGFRVH1939
EGFRVH1940
EGFRVH1941
EGFRVH1942
EGFRVH1943
EGFRVH1944
EGFRVH1945
EGFRVH1946
EGFRVH1947
EGFRVH1948
EGFRVH1949
EGFRVH1950
EGFRVH1951
EGFRVH1952
EGFRVH1953
EGFRVH1954
EGFRVH1955
EGFRVH1956
EGFRVH1957
EGFRVH1958
EGFRVH1959
EGFRVH1960
EGFRVH1961
EGFRVH1962
EGFRVH1963
EGFRVH1964
EGFRVH1965
EGFRVH1966
EGFRVH1967
EGFRVH1968
EGFRVH1969
EGFRVH1970
EGFRVH1971
EGFRVH1972
EGFRVH1973
EGFRVH1974
EGFRVH1975
EGFRVH1976
EGFRVH1977
EGFRVH1978
EGFRVH1979
EGFRVH1980
EGFRVH1981
EGFRVH1982
EGFRVH1983
EGFRVH1984
EGFRVH1985
EGFRVH1986
EGFRVH1987
EGFRVH1988
EGFRVH1989
EGFRVH1990
EGFRVH1991
EGFRVH1992
EGFRVH1993
EGFRVH1994
EGFRVH1995
EGFRVH1996
EGFRVH1997
EGFRVH1998
EGFRVH1999
EGFRVH2000
EGFRVH2001
EGFRVH2002
EGFRVH2003
EGFRVH2004
EGFRVH2005
EGFRVH2006
EGFRVH2007
EGFRVH2008
EGFRVH2009
EGFRVH2010
EGFRVH2011
EGFRVH2012
EGFRVH2013
EGFRVH2014
EGFRVH2015
EGFRVH2016
EGFRVH2017
EGFRVH2018
EGFRVH2019
EGFRVH2020
EGFRVH2021
EGFRVH2022
EGFRVH2023
EGFRVH2024
EGFRVH2025
EGFRVH2026
EGFRVH2027
EGFRVH2028
EGFRVH2029
EGFRVH2030
EGFRVH2031
EGFRVH2032
EGFRVH2033
EGFRVH2034
EGFRVH2035
EGFRVH2036
EGFRVH2037
EGFRVH2038
EGFRVH2039
EGFRVH2040
EGFRVH2041
EGFRVH2042
EGFRVH2043
EGFRVH2044
EGFRVH2045
EGFRVH2046
EGFRVH2047
EGFRVH2048
EGFRVH2049
EGFRVH2050
EGFRVH2051
EGFRVH2052
EGFRVH2053
EGFRVH2054
EGFRVH2055
EGFRVH2056
EGFRVH2057
EGFRVH2058
EGFRVH2059
EGFRVH2060
EGFRVH2061
EGFRVH2062
EGFRVH2063
EGFRVH2064
EGFRVH2065
EGFRVH2066
EGFRVH2067
EGFRVH2068
EGFRVH2069
EGFRVH2070
EGFRVH2071
EGFRVH2072
EGFRVH2073
EGFRVH2074
EGFRVH2075
EGFRVH2076
EGFRVH2077
EGFRVH2078
EGFRVH2079
EGFRVH2080
EGFRVH2081
EGFRVH2082
EGFRVH2083
EGFRVH2084
EGFRVH2085
EGFRVH2086
EGFRVH2087
EGFRVH2088
EGFRVH2089
EGFRVH2090
EGFRVH2091
EGFRVH2092
EGFRVH2093
EGFRVH2094
EGFRVH2095
EGFRVH2096
EGFRVH2097
EGFRVH2098
EGFRVH2099
EGFRVH2100
EGFRVH2101
EGFRVH2102
EGFRVH2103
EGFRVH2104
EGFRVH2105
EGFRVH2106
EGFRVH2107
EGFRVH2108
EGFRVH2109
EGFRVH2110
EGFRVH2111
EGFRVH2112
EGFRVH2113
EGFRVH2114
EGFRVH2115
EGFRVH2116
EGFRVH2117
EGFRVH2118
EGFRVH2119
EGFRVH2120
EGFRVH2121
EGFRVH2122
EGFR(Cetuximab)VH2123
EGFR(Cetuximab)VH2124
EGFR(EGFRvIII)VH2125
EGFR(EGFRvIII)VH2126
EGFR(EGFRvIII)VH2127
EGFR(EGFRvIII)VH2128
EGFR(EGFRvIII)VH2129
EGFR(EGFRvIII)VH2130
EGFR(EGFRvIII)VH2131
EGFR(EGFRvIII)VH2132
EGFR(EGFRvIII)VH2133
EGFR(EGFRvIII)VH2134
EGFR(EGFRvIII)VH2135
EGFR(EGFRvIII)VH2136
EGFR(EGFRvIII)VH2137
EGFR(EGFRvIII)VH2138
EGFR(EGFRvIII)VH2139
EGFR(EGFRvIII)VH2140
EGFR(EGFRvIII)VH2141
EGFR(EGFRvIII)VH2142
EGFR(EGFRvIII)VH2143
EGFR(EGFRvIII)VH2144
EGFR(EGFRvIII)VH2145
EGFR(EGFRvIII)VH2146
EGFRvIIIVH2147SEQ ID NO. 13 in WO2016016341
EGFRvIIIVH2148SEQ ID NO: 24 in WO2016168773A3
EGFRvIIIVH2149SEQ ID NO. 34 in US20160304615
EGFRvIIIVH2150SEQ ID NO: 2 in US20160200819A1
EndoglinVH2151SEQ ID NO. 41 in US20160009811
EndoglinVH2152SEQ ID NO. 42 in US20160009811
EndoglinVH2153SEQ ID NO. 43 in US20160009811
EndoglinVH2154SEQ ID NO. 71 in US20160009811
EndoglinVH2155SEQ ID NO. 73 in US20160009811
EndoglinVH2156SEQ ID NO. 75 in US20160009811
EndoglinVH2157SEQ ID NO. 88 in US20160009811
EndoglinVH2158SEQ ID NO. 89 in US20160009811
EndoglinVH2159SEQ ID NO. 90 in US20160009811
EndoglinVH2160SEQ ID NO. 91 in US20160009811
EndoglinVH2161SEQ ID NO. 92 in US20160009811
EphA2receptorVH2162US20150274824 SEQ ID NO: 20
EphA2receptorVH2163US20150274824 SEQ ID NO: 22
EphA2receptorVH2164US20150274824 SEQ ID NO: 24
EphA2receptorVH2165US20150274824 SEQ ID NO: 32
EphA2receptorVH2166US20150274824 SEQ ID NO: 34
EphA2receptorVH2167US20150274824 SEQ ID NO: 36
EphA2receptorVH2168US20150274824 SEQ ID NO: 37
EphA2receptorVH2169US20150274824 SEQ ID NO: 38
EphA2receptorVH2170US20150274824 SEQ ID NO: 40
EphA2receptorVH2171US20150274824 SEQ ID NO: 42
EphA2receptorVH2172US20150274824 SEQ ID NO: 43
EphA2receptorVH2173US20150274824 SEQ ID NO: 45
EphA2receptorVH2174US20150274824 SEQ ID NO: 74
EphA2receptorVH2175US20150274824 SEQ ID NO: 76
ERBB2VH2176US20110129464 SEQ ID NO: 2
ERBB2VH2177US20110129464 SEQ ID NO: 4
ERBB2VH2178US20130089544 SEQ ID NO: 10
ERBB2VH2179US20130089544 SEQ ID NO: 2
ERBB2VH2180US20130089544 SEQ ID NO: 26
ERBB2VH2181US20130089544 SEQ ID NO: 30
ERBB2VH2182US20130089544 SEQ ID NO: 38
ERBB2VH2183US20130089544 SEQ ID NO: 4
ERBB2VH2184US20130089544 SEQ ID NO: 40
ERBB2VH2185US20130089544 SEQ ID NO: 42
ERBB2VH2186US20130089544 SEQ ID NO: 52
ERBB2VH2187US20130089544 SEQ ID NO: 54
ERBB2VH2188US20130089544 SEQ ID NO: 56
ERBB2VH2189US20130089544 SEQ ID NO: 57
ERBB2VH2190US20130089544 SEQ ID NO: 58
ERBB2VH2191US20130089544 SEQ ID NO: 6
ERBB2VH2192US20130266564 SEQ ID NO: 8
ERBB2VH2193US20150104443 SEQ ID NO: 1
FactorDVH2194SEQ ID NO. 17 in US20160017052
FactorDVH2195SEQ ID NO. 20 in US20160017052
FactorDVH2196SEQ ID NO. 27 in US20160017052
FactorDVH2197SEQ ID NO. 29 in US20160017052
FactorDVH2198SEQ ID NO. 30 in US20160017052
FactorDVH2199SEQ ID NO. 31 in US20160017052
FactorDVH2200SEQ ID NO. 32 in US20160017052
FactorDVH2201SEQ ID NO. 33 in US20160017052
FactorDVH2202SEQ ID NO. 4 in US20160017052
FactorXIIVH2203SEQ ID NO. 15 in WO2014089493
FAPVH2204SEQ ID NO. 1 in WO2015118030
FAPVH2205SEQ ID NO. 5 in WO2015118030
FAPVH2206SEQ ID NO. 170 in WO2016120216
FAPVH2207SEQ ID NO. 172 in WO2016120216
FcRL5(FcReceptorLike5)VH2208SEQ ID NO: 12 WO2016090337
FcRL5(FcReceptorLike5)VH2209SEQ ID NO: 16 WO2016090337
FcRL5(FcReceptorLike5)VH2210SEQ ID NO: 20 WO2016090337
FcRL5(FcReceptorLike5)VH2211SEQ ID NO: 24 WO2016090337
FcRL5(FcReceptorLike5)VH2212SEQ ID NO: 28 WO2016090337
FcRL5(FcReceptorLike5)VH2213SEQ ID NO: 32 WO2016090337
FcRL5(FcReceptorLike5)VH2214SEQ ID NO: 36 WO2016090337
FcRL5(FcReceptorLike5)VH2215SEQ ID NO: 4 WO2016090337
FcRL5(FcReceptorLike5)VH2216SEQ ID NO: 40 WO2016090337
FcRL5(FcReceptorLike5)VH2217SEQ ID NO: 44 WO2016090337
FcRL5(FcReceptorLike5)VH2218SEQ ID NO: 48 WO2016090337
FcRL5(FcReceptorLike5)VH2219SEQ ID NO: 8 WO2016090337
FcRL5(FcReceptorLike5)VH2220SEQ ID NO: 915 WO2016090337
FcRL5(FcReceptorLike5)VH2221SEQ ID NO: 919 WO2016090337
FGFR3VH2222SEQ ID NO. 132 in U.S. Pat. No. 9,499,623
FGFR3VH2223SEQ ID NO. 134 in U.S. Pat. No. 9,499,623
FGFR3VH2224SEQ ID NO. 136 in U.S. Pat. No. 9,499,623
FGFR4VH2225SEQ ID NO. 7 in US20160237157
Frizzled ReceptorVH2226SEQ ID NO. 10 in WO2010037041
GAHVH2227SEQ ID NO 7 in US20060057147A1
GCC1VH2228SEQ ID NO. 1 in US20160030595A1
GD2VH2229SEQ ID NO. 10 in WO2015132604
GD2VH2230SEQ ID NO. 3 in US20130216528
GD2VH2231SEQ ID NO. 4 in US20130216528
GD2VH2232SEQ ID NO. 6 in US20130216528
GD2VH2233SEQ ID NO. 8 in US20130216528
GD2VH2234SEQ ID NO. 9 in WO2015132604
GD3VH2235SEQ ID NO: 11 in WO2016185035A1
GD3VH2236SEQ ID NO: 13 in WO2016185035A1
GD3VH2237SEQ ID NO: 15 in WO2016185035A1
GD3VH2238SEQ ID NO: 17 in WO2016185035A1
Glyco epitope and ErbBBIVH2239SEQ ID No. 7 in WO2012007167A1
Specific
Glyco epitope and ErbBBIVH2240SEQ ID No. 9 in WO2012007167A1
Specific
GM2VH2241US20090028877 SEQ ID NO: 20
GM2VH2242US20090028877 SEQ ID NO: 22
GM2VH2243US20090028877 SEQ ID NO: 23
GM2VH2244US20090028877 SEQ ID NO: 26
GM2VH2245US20090028877 SEQ ID NO: 27
GM2VH2246US20090028877 SEQ ID NO: 28
GM2VH2247US20090028877 SEQ ID NO: 29
GM2VH2248US20090028877 SEQ ID NO: 30
GPC3VH2249SEQ ID NO: 10 in US20160208015A1
GPC3VH2250SEQ ID NO: 14 in US20160208015A1
GPC3VH2251SEQ ID NO: 2 in US20160208015A1
GPC3VH2252SEQ ID NO: 3 in US20160208015A1
GPC3VH2253SEQ ID NO: 4 in US20160208015A1
GPC3VH2254SEQ ID NO: 5 in US20160208015A1
GPC3VH2255SEQ ID NO: 6 in US20160208015A1
GPC3VH2256SEQ ID NO: 7 in US20160208015A1
GPC3VH2257SEQ ID NO: 8 in US20160208015A1
GPC3VH2258SEQ ID NO: 9 in US20160208015A1
GPRC5DVH2259SEQ ID NO. 13 in WO2016090312
GPRC5DVH2260SEQ ID NO. 17 in WO2016090312
GPRC5DVH2261SEQ ID NO. 21 in WO2016090312
GPRC5DVH2262SEQ ID NO. 25 in WO2016090312
GPRC5DVH2263SEQ ID NO. 29 in WO2016090312
GPRC5DVH2264SEQ ID NO. 314 in WO2016090312
GPRC5DVH2265SEQ ID NO. 326 in WO2016090312
GPRC5DVH2266SEQ ID NO. 33 in WO2016090312
GPRC5DVH2267SEQ ID NO. 338 in WO2016090312
GPRC5DVH2268SEQ ID NO. 350 in WO2016090312
GPRC5DVH2269SEQ ID NO. 362 in WO2016090312
GPRC5DVH2270SEQ ID NO. 37 in WO2016090312
GPRC5DVH2271SEQ ID NO. 374 in WO2016090312
GPRC5DVH2272SEQ ID NO. 386 in WO2016090312
GPRC5DVH2273SEQ ID NO. 41 in WO2016090312
GPRC5DVH2274SEQ ID NO. 45 in WO2016090312
GPRC5DVH2275SEQ ID NO. 49 in WO2016090312
GPRC5DVH2276SEQ ID NO. 5 in WO2016090312
GPRC5DVH2277SEQ ID NO. 53 in WO2016090312
GPRC5DVH2278SEQ ID NO. 57 in WO2016090312
GPRC5DVH2279SEQ ID NO. 61 in WO2016090312
GPRC5DVH2280SEQ ID NO. 65 in WO2016090312
GPRC5DVH2281SEQ ID NO. 69 in WO2016090312
GPRC5DVH2282SEQ ID NO. 73 in WO2016090312
GPRC5DVH2283SEQ ID NO. 77 in WO2016090312
GPRC5DVH2284SEQ ID NO. 81 in WO2016090312
GPRC5DVH2285SEQ ID NO. 85 in WO2016090312
GPRC5DVH2286SEQ ID NO. 89 in WO2016090312
GPRC5DVH2287SEQ ID NO. 93 in WO2016090312
GPRC5DVH2288SEQ ID NO. 1 in WO2016090312
GPRC5DVH2289SEQ ID NO. 9 in WO2016090312
Her1/her3VH2290SEQ ID NO: 8 of WO2016073629
Her2VH2291SEQ ID NO: 141 in WO2016054555A2
Her2VH2292SEQ ID NO: 262 in WO2016168773A3
Her2VH2293SEQ ID NO: 264 in WO2016168773A3
Her2VH2294SEQ ID NO: 266 in WO2016168773A3
Her2VH2295SEQ ID NO: 268 in WO2016168773A3
Her2VH2296SEQ ID NO: 270 in WO2016168773A3
HER2VH2297SEQ ID NO. 11 in U.S. Pat. No. 9,518,118
HER2VH2298SEQ ID NO: 62 in US20160333114A1
HLAGVH2299SEQ ID NO. 10 in WO2016160622A2
HLAGVH2300SEQ ID NO. 8 in WO2016160622A2
HSP70VH2301SEQ ID NO. 11 in WO2016120217
HSP70VH2302SEQ ID NO. 12 in WO2016120217
humanCD79bVH2303SEQ ID NO. 27 in WO2016112870
humanCD79bVH2304SEQ ID NO. 29 in WO2016112870
Human chorionicVH2305SEQ ID NO. 2 in WO2007019541
gonadotropin
Human chorionicVH2306SEQ ID NO. 4 in WO2007019541
gonadotropin
Human chorionicVH2307SEQ ID NO. 6 in WO2007019541
gonadotropin
Human collagen VIIVH2308SEQ ID NO. 31 in WO2016112870
humanERBB3VH2309SEQ ID NO: 19 in WO2013052745
humanERBB3VH2310SEQ ID NO: 29 in WO2013052745
humanERBB3VH2311SEQ ID NO: 38 in WO2013052745
humanERBB3VH2312SEQ ID NO: 45 in WO2013052745
humanERBB3VH2313SEQ ID NO: 55 in WO2013052745
humanERBB3VH2314SEQ ID NO: 61 in WO2013052745
humanERBB3VH2315SEQ ID NO: 9 in WO2013052745
ICOSVH2316SEQ ID NO. 15 in US20160215059
ICOSVH2317SEQ ID NO. 16 in US20160215059
ICOSVH2318SEQ ID NO. 19 in US20160215059
ICOSVH2319SEQ ID NO. 23 in US20160215059
ICOSVH2320SEQ ID NO. 7 in US20160215059
IGFIVH2321SEQ ID NO. 1 in WO2007118214
IGFIVH2322SEQ ID NO. 3 in WO2007118214
IGFIVH2323SEQ ID NO. 7 in WO2007118214
IGFR1VH2324SEQ ID NO: 7 in WO2015073575A2
IL13VH2325SEQ ID NO 302. in US20160168242
IL13Ra2VH2326SEQ ID NO. 7 in WO2016123143
IL13Ra2VH2327SEQ ID NO. 8 in WO2016123143
IL1RAPVH2328SEQ ID NO. 1 in WO2016020502
IL1RAPVH2329SEQ ID NO. 10 in WO2016020502
IL1RAPVH2330SEQ ID NO. 19 in WO2016020502
IL1RAPVH2331SEQ ID NO. 8 in WO2016020502
IL1RAPVH2332SEQ ID NO. 9 in WO2016020502
IL1RAPVH2333SEQ ID NO: 120 in WO2016179319A1
IL1RAPVH2334SEQ ID NO: 122 in WO2016179319A1
IL1RAPVH2335SEQ ID NO: 124 in WO2016179319A1
IL21VH2336SEQ ID NO. 2 in US20160145332
IL21VH2337SEQ ID NO. 3 in US20160145332
IL33VH2338SEQ ID NO 134. in US20160168242
IL33VH2339SEQ ID NO 136. in US20160168242
IL33VH2340SEQ ID NO 138. in US20160168242
IL33VH2341SEQ ID NO 183. in US20160168242
IL33VH2342SEQ ID NO 185. in US20160168242
IL33VH2343SEQ ID NO 187. in US20160168242
IL33VH2344SEQ ID NO 189. in US20160168242
IL33VH2345SEQ ID NO 216. in US20160168242
IL33VH2346SEQ ID NO 218. in US20160168242
IL33VH2347SEQ ID NO 220. in US20160168242
IL33VH2348SEQ ID NO 221. in US20160168242
IL33VH2349SEQ ID NO 236. in US20160168242
IL33VH2350SEQ ID NO 246. in US20160168242
IL33VH2351SEQ ID NO 282. in US20160168242
IL33VH2352SEQ ID NO 284. in US20160168242
IL33VH2353SEQ ID NO 286. in US20160168242
IL33VH2354SEQ ID NO 36. in US20160168242
IL33VH2355SEQ ID NO 38. in US20160168242
IL33VH2356SEQ ID NO 40. in US20160168242
IL33VH2357SEQ ID NO 84. in US20160168242
IL33VH2358SEQ ID NO 86. in US20160168242
IL33VH2359SEQ ID NO 88. in US20160168242
IL3alphaVH2360SEQ ID NO. 22 in WO2008127735
IntegrinVH2361SEQ ID NO. 3 in US 20140161794
IntegrinVH2362SEQ ID NO. 4 in US 20140161794
IntegrinVH2363SEQ ID NO. 5 in US 20140161794
KDRVH2364SEQ ID NO. 20 IN WO2003075840
KDRVH2365SEQ ID NO. 24 IN WO2003075840
KDRVH2366SEQ ID NO. 26 IN WO2003075840
KDRVH2367SEQ ID NO. 29 IN WO2003075840
KDRVH2368SEQ ID NO. 31 IN WO2003075840
KDRVH2369SEQ ID NO. 33 IN WO2003075840
KIR(Lirilumab)VH2370SEQ ID NO. 3 in US20150290316
KIR(Lirilumab)VH2371SEQ ID NO. 1 in WO2014055648
KIR2DL1andKIR2DL2/3VH2372SEQ ID NO: 36 in WO2016126213A1
Klon43VH2373SEQ ID NO: 47 in WO2016097231
KMAVH2374SEQ ID NO: 22 in WO2016172703A2
LAG3VH2375SEQ ID NO. 100 in US20150259420
LAG3VH2376SEQ ID NO. 104 in US20150259420
LAG3VH2377SEQ ID NO. 108 in US20150259420
LAG3VH2378SEQ ID NO. 28 in US20150259420
LAG3VH2379SEQ ID NO. 64 in US20150259420
LAG3VH2380SEQ ID NO. 68 in US20150259420
LAG3VH2381SEQ ID NO. 72 in US20150259420
LAG3VH2382SEQ ID NO. 76 in US20150259420
LAG3VH2383SEQ ID NO. 8 in US20150259420
LAG3VH2384SEQ ID NO. 80 in US20150259420
LAG3VH2385SEQ ID NO. 1 in WO2015042246
leukocytegenA0VH2386SEQ ID NO. 9 in WO2010065962A2
leukocytegenA2VH2387SEQ ID NO. 25 in WO2010065962A2
LGR4VH2388SEQ ID NO. 12 in US20160046723
LGR4VH2389SEQ ID NO. 13 in US20160046723
LGR4VH2390SEQ ID NO. 5 in US20160046723
LGR4VH2391SEQ ID NO. 9 in US20160046723
LGR5VH2392SEQ ID NO. 10 in US20160102146
LGR5VH2393SEQ ID NO. 12 in US20160102146
LGR5VH2394SEQ ID NO. 16 in US20160102146
LGR5VH2395SEQ ID NO. 18 in US20160102146
LGR5VH2396SEQ ID NO. 20 in US20160102146
LGR5VH2397SEQ ID NO. 22 in US20160102146
LGR5VH2398SEQ ID NO. 24 in US20160102146
LGR5VH2399SEQ ID NO. 26 in US20160102146
LGR5VH2400SEQ ID NO. 4 in US20160102146
LHRVH2401SEQ ID NO: 1 in WO2016160618A3
LHRVH2402SEQ ID NO: 2 in WO2016160618A3
LHRVH2403SEQ ID NO: 3 in WO2016160618A3
LHRVH2404SEQ ID NO: 4 in WO2016160618A3
LHRVH2405SEQ ID NO: 5 in WO2016160618A3
LHRVH2406SEQ ID NO: 6 in WO2016160618A3
LHRVH2407SEQ ID NO: 7 in WO2016160618A3
LHRVH2408SEQ ID NO: 8 in WO2016160618A3
1L4RVH2409SEQ ID NO. 10 in WO2009121847
1L4RVH2410SEQ ID NO. 11 in WO2009121847
1L4RVH2411SEQ ID NO. 14 in WO2009121847
1L4RVH2412SEQ ID NO. 15 in WO2009121847
1L4RVH2413SEQ ID NO. 9 in WO2009121847
Lymphotoxin beta receptorVH2414SEQ ID NO. 10 in WO2004002431
Lymphotoxin beta receptorVH2415SEQ ID NO. 12 in WO2004002431
Lymphotoxin beta receptorVH2416SEQ ID NO. 14 in WO2004002431
Lymphotoxin beta receptorVH2417SEQ ID NO. 16 in WO2004002431
Lymphotoxin beta receptorVH2418SEQ ID NO. 2 in WO2004002431
Lysyloxidaselike2VH2419SEQ ID NO. 42 in WO2011097513
Lysyloxidaselike2VH2420SEQ ID NO. 44 in WO2011097513
Malignant Variable ReceptorVH2421SEQ ID NO. 1 in WO2015133817A1
MCAMVH2422SEQ ID NO. 115 in US20150259419
MCAMVH2423SEQ ID NO. 116 in US20150259419
MCAMVH2424SEQ ID NO. 117 in US20150259419
MCAMVH2425SEQ ID NO. 118 in US20150259419
MCAMVH2426SEQ ID NO. 119 in US20150259419
MCAMVH2427SEQ ID NO. 157 in US20150259419
MCAMVH2428SEQ ID NO. 158 in US20150259419
MCAMVH2429SEQ ID NO. 159 in US20150259419
MCAMVH2430SEQ ID NO. 160 in US20150259419
MCAMVH2431SEQ ID NO. 161 in US20150259419
MCAMVH2432SEQ ID NO. 178 in US20150259419
MCAMVH2433SEQ ID NO. 179 in US20150259419
MCAMVH2434SEQ ID NO. 35 in US20150239980
MCAMVH2435SEQ ID NO. 45 in US20150239980
MCAMVH2436SEQ ID NO. 55 in US20150239980
MCAMVH2437SEQ ID NO. 65 in US20150239980
MCAMVH2438SEQ ID NO. 77 in US20150239980
MCAMVH2439SEQ ID NO. 89 in US20150239980
MCSFVH2440SEQ ID NO 102 in WO2005030124
MCSFVH2441SEQ ID NO 10 in WO2005030124
MCSFVH2442SEQ ID NO 14 in WO2005030124
MCSFVH2443SEQ ID NO 18 in WO2005030124
MCSFVH2444SEQ ID NO 2 in WO2005030124
MCSFVH2445SEQ ID NO 22 in WO2005030124
MCSFVH2446SEQ ID NO 26 in WO2005030124
MCSFVH2447SEQ ID NO 30 in WO2005030124
MCSFVH2448SEQ ID NO 34 in WO2005030124
MCSFVH2449SEQ ID NO 38 in WO2005030124
MCSFVH2450SEQ ID NO 46 in WO2005030124
MCSFVH2451SEQ ID NO 50 in WO2005030124
MCSFVH2452SEQ ID NO 54 in WO2005030124
MCSFVH2453SEQ ID NO 58 in WO2005030124
MCSFVH2454SEQ ID NO 6 in WO2005030124
MCSFVH2455SEQ ID NO 66 in WO2005030124
MCSFVH2456SEQ ID NO 70 in WO2005030124
MCSFVH2457SEQ ID NO 74 in WO2005030124
MCSFVH2458SEQ ID NO 78 in WO2005030124
MCSFVH2459SEQ ID NO 82 in WO2005030124
MCSFVH2460SEQ ID NO 86 in WO2005030124
MCSFVH2461SEQ ID NO 90 in WO2005030124
MCSFVH2462SEQ ID NO 94 in WO2005030124
MCSFVH2463SEQ ID NO 98 in WO2005030124
MesothelinVH2464SEQ ID NO. 1 WO2015188141
MesothelinVH2465SEQ ID NO. 6 WO2015188141
MesothelinVH2466SEQ ID NO: 119 in US20160333114A1
MesothelinVH2467SEQ ID NO: 5 in WO2013142034
MesothelinVH2468SEQ ID NO: 50 in US20160333114A1
MesothelinVH2469SEQ ID NO: 6 in WO2013142034
MesothelinVH2470SEQ ID NO: 15 in U.S. Pat. No. 9,416,190B2
MesothelinVH2471SEQ ID NO: 2 in U.S. Pat. No. 9,416,190B2
MNVH2472SEQ ID NO. 133 in WO2007070538
MNVH2473SEQ ID NO. 135 in WO2007070538
MNVH2474SEQ ID NO. 137 in WO2007070538
MNVH2475SEQ ID NO. 139 in WO2007070538
MNVH2476SEQ ID NO. 141 in WO2007070538
MNVH2477SEQ ID NO. 143 in WO2007070538
MNVH2478SEQ ID NO. 145 in WO2007070538
MNVH2479SEQ ID NO. 147 in WO2007070538
MNVH2480SEQ ID NO. 149 in WO2007070538
MNVH2481SEQ ID NO. 151 in WO2007070538
MPERVH2482SEQ ID NO: 13 in US20160194375A1
MUC1VH2483SEQ ID NO. 5 in US20160130357
MUC1VH2484SEQ ID NO: 2 in WO2013023162
MUC1VH2485SEQ ID NO: 14 in WO2013023162
MUC1VH2486SEQ ID NO. 15 in WO2015116753
MUC1VH2487SEQ ID NO. 19 in WO2015116753
MUC1VH2488SEQ ID NO. 23 in WO2015116753
MUC1VH2489SEQ ID NO. 60 in WO2015116753
MUC1VH2490SEQ ID NO. 64 in WO2015116753
MUC1VH2491SEQ ID NO. 68 in WO2015116753
MUC16VH2492SEQ ID NO. 1 in WO2016149368
MUC16VH2493SEQ ID NO. 11 in US20130171152
MUC16VH2494SEQ ID NO. 21 in WO2016149368
MUC16VH2495SEQ ID NO. 41 in WO2016149368
MUC16VH2496SEQ ID NO. 81 in WO2016149368
MUC16VH2497SEQ ID NO. 4 in US20130171152
MUC16VH2498SEQ ID NO. 6 in US20130171152
MUC16VH2499SEQ ID NO. 61 in WO2016149368
MUC16VH2500SEQ ID NO. 8 in US20130171152
MUCIN1VH2501SEQ ID NO: 101 in EP3049812A2
MUCIN1VH2502SEQ ID NO: 106 in EP3049812A2
MUCIN1VH2503SEQ ID NO: 109 in EP3049812A2
MUCIN1VH2504SEQ ID NO: 115 in EP3049812A2
MUCIN1VH2505SEQ ID NO: 119 in EP3049812A2
MUCIN1VH2506SEQ ID NO: 123 in EP3049812A2
MUCIN1VH2507SEQ ID NO: 127 in EP3049812A2
MUCIN1VH2508SEQ ID NO: 141 in EP3049812A2
MUCIN1VH2509SEQ ID NO: 15 in EP3049812A2
MUCIN1VH2510SEQ ID NO: 23 in EP3049812A2
MUCIN1VH2511SEQ ID NO: 28 in EP3049812A2
MUCIN1VH2512SEQ ID NO: 33 in EP3049812A2
MUCIN1VH2513SEQ ID NO: 39 in EP3049812A2
MUCIN1VH2514SEQ ID NO: 42 in EP3049812A2
MUCIN1VH2515SEQ ID NO: 47 in EP3049812A2
MUCIN1VH2516SEQ ID NO: 5 in EP3049812A2
MUCIN1VH2517SEQ ID NO: 57 in EP3049812A2
MUCIN1VH2518SEQ ID NO: 66 in EP3049812A2
MUCIN1VH2519SEQ ID NO: 70 in EP3049812A2
MUCIN1VH2520SEQ ID NO: 75 in EP3049812A2
MUCIN1VH2521SEQ ID NO: 80 in EP3049812A2
MUCIN1VH2522SEQ ID NO: 83 in EP3049812A2
MUCIN1VH2523SEQ ID NO: 87 in EP3049812A2
MUCIN1VH2524SEQ ID NO: 92 in EP3049812A2
MVRVH2525SEQ ID NO: 1 in US20160257762A1
N GlycanVH2526SEQ ID NO: 7 in US20160194375A1
N GlycanVH2527SEQ ID NO: 9 in US20160194375A1
NKG2AVH2528SEQ ID NO: 32 in WO2016126213A1
NKG2AVH2529SEQ ID NO. 2 in WO2016041947
NKG2AVH2530SEQ ID NO. 3 in WO2016041947
NKG2AVH2531SEQ ID NO. 4 in WO2016041947
NKG2AVH2532SEQ ID NO. 5 in WO2016041947
NKG2AVH2533SEQ ID NO. 6 in WO2016041947
NKG2DVH2534SEQ ID NO. 135 in WO2016122701
NKG2DVH2535SEQ ID NO. 137 in WO2016122701
NOTCH1VH2536SEQ ID NO: 12 in WO2013074596
NOTCH2/3VH2537SEQ ID NO: 29 in WO2013074596
Notch 1VH2538SEQ ID NO: 58 in US20160333114A1
NotumVH2539SEQ ID NO: 56 in WO2012027723
NotumVH2540SEQ ID NO: 331 in WO2012027723
Olfml3VH2541SEQ ID NO. 1 in WO2015054441A1
Olfml3VH2542SEQ ID NO. 19 in WO2015054441A1
Olfml3VH2543SEQ ID NO. 3 in WO2015054441A1
OsteonectinVH2544SEQ ID NO. 58 in WO2016112870
OX40VH2545SEQ ID NO. 101 in WO2016196228
OX40VH2546SEQ ID NO. 103 in WO2016196228
OX40VH2547SEQ ID NO. 105 in WO2016196228
OX40VH2548SEQ ID NO. 107 in WO2016196228
OX40VH2549SEQ ID NO. 109 in WO2016196228
OX40VH2550SEQ ID NO. 111 in WO2016196228
OX40VH2551SEQ ID NO. 113 in WO2016196228
OX40VH2552SEQ ID NO. 115 in WO2016196228
OX40VH2553SEQ ID NO. 117 in WO2016196228
OX40VH2554SEQ ID NO. 119 in WO2016196228
OX40VH2555SEQ ID NO. 121 in WO2016196228
OX40VH2556SEQ ID NO. 123 in WO2016196228
OX40VH2557SEQ ID NO. 124 in WO2016196228
OX40VH2558SEQ ID NO. 125 in WO2016196228
OX40VH2559SEQ ID NO. 15 in U.S. Pat. No. 9,428,570
OX40VH2560SEQ ID NO. 17 in WO2016196228
OX40VH2561SEQ ID NO. 28 in WO2016196228
OX40VH2562SEQ ID NO. 29 in WO2016196228
OX40VH2563SEQ ID NO. 31 in US20150190506
OX40VH2564SEQ ID NO. 318 in WO2016196228
OX40VH2565SEQ ID NO. 33 in US20160137740
OX40VH2566SEQ ID NO. 34 in US20150190506
OX40VH2567SEQ ID NO. 35 in US20160137740
OX40VH2568SEQ ID NO. 36 in US20150190506
OX40VH2569SEQ ID NO. 37 in US20160137740
OX40VH2570SEQ ID NO. 37 in WO2016196228
OX40VH2571SEQ ID NO. 38 in US20150190506
OX40VH2572SEQ ID NO. 39 in US20160137740
OX40VH2573SEQ ID NO. 40 in US20150190506
OX40VH2574SEQ ID NO. 41 in US20160137740
OX40VH2575SEQ ID NO. 42 in US20150190506
OX40VH2576SEQ ID NO. 43 in US20160137740
OX40VH2577SEQ ID NO. 44 in US20150190506
OX40VH2578SEQ ID NO. 44 in U.S. Pat. No. 8,283,450
OX40VH2579SEQ ID NO. 45 in US20160137740
OX40VH2580SEQ ID NO. 46 in US20150190506
OX40VH2581SEQ ID NO. 46 in U.S. Pat. No. 8,283,450
OX40VH2582SEQ ID NO. 47 in US20160137740
OX40VH2583SEQ ID NO. 48 in US20150190506
OX40VH2584SEQ ID NO. 48 in U.S. Pat. No. 8,283,450
OX40VH2585SEQ ID NO. 48 in WO2016196228
OX40VH2586SEQ ID NO. 49 in US20160137740
OX40VH2587SEQ ID NO. 50 in US20150190506
OX40VH2588SEQ ID NO. 50 in WO2016196228
OX40VH2589SEQ ID NO. 51 in US20160137740
OX40VH2590SEQ ID NO. 53 in US20150190506
OX40VH2591SEQ ID NO. 53 in US20160137740
OX40VH2592SEQ ID NO. 54 in US20150190506
OX40VH2593SEQ ID NO. 55 in US20150190506
OX40VH2594SEQ ID NO. 55 in US20160137740
OX40VH2595SEQ ID NO. 57 in US20160137740
OX40VH2596SEQ ID NO. 58 in US20150190506
OX40VH2597SEQ ID NO. 58 in WO2016196228
OX40VH2598SEQ ID NO. 59 in US20150190506
OX40VH2599SEQ ID NO. 59 in US20160137740
OX40VH2600SEQ ID NO. 61 in US20150190506
OX40VH2601SEQ ID NO. 61 in US20160137740
OX40VH2602SEQ ID NO. 63 in US20160137740
OX40VH2603SEQ ID NO. 65 in US20160137740
OX40VH2604SEQ ID NO. 66 in WO2016196228
OX40VH2605SEQ ID NO. 67 in US20160137740
OX40VH2606SEQ ID NO. 7 in U.S. Pat. No. 8,283,450
OX40VH2607SEQ ID NO. 71 in US20160137740
OX40VH2608SEQ ID NO. 74 in WO2016196228
OX40VH2609SEQ ID NO. 85 in WO2016196228
OX40VH2610SEQ ID NO. 9 in U.S. Pat. No. 9,428,570
OX40VH2611SEQ ID NO. 9 in U.S. Pat. No. 8,283,450
OX40VH2612SEQ ID NO. 93 in WO2016196228
OX40VH2613SEQ ID NO. 95 in WO2016196228
OX40VH2614SEQ ID NO. 97 in WO2016196228
OX40VH2615SEQ ID NO. 99 in WO2016196228
PD1VH2616SEQ ID NO. 19 in US20150290316
PD1VH2617SEQ ID NO. 25 in US20130291136
PD1VH2618SEQ ID NO. 26 in US20130291136
PD1VH2619SEQ ID NO. 27 in US20130291136
PD1VH2620SEQ ID NO. 28 in US20130291136
PD1VH2621SEQ ID NO. 29 in US 20160159905
PD1VH2622SEQ ID NO. 29 in US20130291136
PD1VH2623SEQ ID NO. 3 in US 20160159905
PD1VH2624SEQ ID NO. 38 in US 20160159905
PD1VH2625SEQ ID NO. 38 in WO2015112900
PD1VH2626SEQ ID NO. 4 in US 20160159905
PD1VH2627SEQ ID NO. 5 in US 20160159905
PD1VH2628SEQ ID NO. 50 in WO2015112900
PD1VH2629SEQ ID NO. 6 in US 20160159905
PD1VH2630SEQ ID NO. 82 in WO2015112900
PD1VH2631SEQ ID NO. 86 in WO2015112900
PD1VH2632SEQ ID NO. 17 in WO2014055648
PD1(Nivolumab)VH2633SEQ ID NO. 2 in WO2016040892
PD1(Nivolumab)VH2634SEQ ID NO. 10 in US20150190506
PD1(Pembrolizumab)VH2635SEQ ID NO. 4 in WO2016040892
PD1(Pembrolizumab)VH2636SEQ ID NO. 12 in US20150190506
PDK1VH2637SEQ ID NO. 2 in WO2016090365
PDL1VH2638SEQ ID NO. 10 in US20160319022
PDL1VH2639SEQ ID NO. 18 in WO2016061142
PDL1VH2640SEQ ID NO. 29 in US20150190506
PDL1VH2641SEQ ID NO. 30 in WO2016061142
PDL1VH2642SEQ ID NO. 32 in US20160319022
PDL1VH2643SEQ ID NO. 38 in WO2016061142
PDL1VH2644SEQ ID NO. 46 in WO2016061142
PDL1VH2645SEQ ID NO. 50 in WO2016061142
PDL1VH2646SEQ ID NO. 54 in WO2016061142
PDL1VH2647SEQ ID NO. 62 in WO2016061142
PDL1VH2648SEQ ID NO. 7 in US20150190506
PDL1VH2649SEQ ID NO. 70 in WO2016061142
PDL1VH2650SEQ ID NO. 78 in WO2016061142
PDL1VH2651SEQ ID NO. 8 in US20160319022
PDL1VH2652US20160108123 SEQ ID NO: 16
PDL1VH2653US20160108123 SEQ ID NO: 18
PDL1VH2654US20160108123 SEQ ID NO: 197
PDL1VH2655US20160108123 SEQ ID NO: 247
PDL1VH2656US20160108123 SEQ ID NO: 248
PDL1VH2657US20160108123 SEQ ID NO: 250
PDL1VH2658US20160108123 SEQ ID NO: 251
PDL1VH2659US20160108123 SEQ ID NO: 252
PDL1VH2660US20160108123 SEQ ID NO: 253
PDL1VH2661US20160108123 SEQ ID NO: 254
PDL1VH2662US20160108123 SEQ ID NO: 255
PDL1VH2663US20160108123 SEQ ID NO: 256
PDL1VH2664US20160108123 SEQ ID NO: 257
PDL1VH2665US20160108123 SEQ ID NO: 258
PDL1VH2666US20160108123 SEQ ID NO: 259
PDL1VH2667US20160108123 SEQ ID NO: 260
PDL1VH2668US20160108123 SEQ ID NO: 30
PDL1VH2669US20160108123 SEQ ID NO: 308
PDL1VH2670US20160108123 SEQ ID NO: 310
PDL1VH2671US20160108123 SEQ ID NO: 312
PDL1VH2672US20160108123 SEQ ID NO: 319
PDL1VH2673US20160108123 SEQ ID NO: 32
PDL1VH2674US20160108123 SEQ ID NO: 324
PDL1VH2675US20160108123 SEQ ID NO: 339
PDL1VH2676US20160108123 SEQ ID NO: 356
PDL1VH2677US20160108123 SEQ ID NO: 38
PDL1VH2678US20160108123 SEQ ID NO: 40
PDL1VH2679US20160108123 SEQ ID NO: 46
PDL1VH2680US20160108123 SEQ ID NO: 48
PDL1VH2681US20160108123 SEQ ID NO: 50
PDL1VH2682US20160108123 SEQ ID NO: 52
PDL1VH2683US20160108123 SEQ ID NO: 54
PDL1VH2684US20160108123 SEQ ID NO: 6
PDL1VH2685US20160108123 SEQ ID NO: 62
PDL1VH2686US20160108123 SEQ ID NO: 70
PDL1VH2687US20160108123 SEQ ID NO: 72
PDL1VH2688US20160108123 SEQ ID NO: 78
PDL1VH2689US20160108123 SEQ ID NO: 80
PDL1VH2690US20160108123 SEQ ID NO: 91
PDL1VH2691US20160108123 SEQ ID NO: 96
PDL2VH2692SEQ ID NO. 43 in US20130291136
PDL2VH2693SEQ ID NO. 44 in US20130291136
PDL2VH2694SEQ ID NO. 45 in US20130291136
PDL2VH2695SEQ ID NO. 46 in US20130291136
PG16VH2696SEQ ID NO: 13 in EP3074419A2
PG9VH2697SEQ ID NO: 11 in EP3074419A2
PGT1VH2698SEQ ID NO: 15 in EP3074419A2
PGT2VH2699SEQ ID NO: 17 in EP3074419A2
PGT3VH2700SEQ ID NO: 19 in EP3074419A2
PGT4VH2701SEQ ID NO: 21 in EP3074419A2
PGT5VH2702SEQ ID NO: 23 in EP3074419A2
PRAMEVH2703SEQ ID NO: 50 in WO2016191246A2
PRAMEVH2704SEQ ID NO: 52 in WO2016191246A2
PRAMEVH2705SEQ ID NO: 54 in WO2016191246A2
PRAMEVH2706SEQ ID NO: 56 in WO2016191246A2
PRAMEVH2707SEQ ID NO: 58 in WO2016191246A2
PRAMEVH2708SEQ ID NO: 60 in WO2016191246A2
PRAMEVH2709SEQ ID NO: 62 in WO2016191246A2
PRPVH2710SEQ ID NO: 42 in US20160333114A1
PSMAVH2711SEQ ID NO: 43 in WO2016097231
PTK7VH2712SEQ ID NO. 21 in WO2012112943A1
PTK7VH2713SEQ ID NO. 23 in WO2012112943A1
PTK7VH2714SEQ ID NO. 25 in WO2012112943A1
PTK7VH2715SEQ ID NO. 27 in WO2012112943A1
PTK7VH2716SEQ ID NO. 29 in WO2012112943A1
PTK7VH2717SEQ ID NO. 31 in WO2012112943A1
PTK7VH2718SEQ ID NO. 33 in WO2012112943A1
PTK7VH2719SEQ ID NO. 35 in WO2012112943A1
PTK7VH2720SEQ ID NO. 37 in WO2012112943A1
PTK7VH2721SEQ ID NO. 39 in WO2012112943A1
PTK7VH2722SEQ ID NO. 41 in WO2012112943A1
PTK7VH2723SEQ ID NO. 43 in WO2012112943A1
PTK7VH2724SEQ ID NO. 45 in WO2012112943A1
PTK7VH2725SEQ ID NO. 47 in WO2012112943A1
PTK7VH2726SEQ ID NO. 49 in WO2012112943A1
PTK7VH2727SEQ ID NO. 51 in WO2012112943A1
PTK7VH2728SEQ ID NO. 53 in WO2012112943A1
PTK7VH2729SEQ ID NO. 55 in WO2012112943A1
PTK7VH2730SEQ ID NO. 57 in WO2012112943A1
PTK7VH2731SEQ ID NO. 59 in WO2012112943A1
PTK7VH2732SEQ ID NO. 61 in WO2012112943A1
PTK7VH2733SEQ ID NO. 63 in WO2012112943A1
PTK7VH2734SEQ ID NO. 65 in WO2012112943A1
PTK7VH2735SEQ ID NO. 67 in WO2012112943A1
PTK7VH2736SEQ ID NO. 69 in WO2012112943A1
RASVH2737SEQ ID NO. 17 in WO2016154047
RASVH2738SEQ ID NO. 47 in WO2016154047
RASVH2739SEQ ID NO. 57 in WO2016154047
RASVH2740SEQ ID NO. 67 in WO2016154047
RASVH2741SEQ ID NO. 7 in WO2016154047
RASVH2742SEQ ID NO. 77 in WO2016154047
RHAMMVH2743SEQ ID NO. 4 in US20020127227A1
RHAMM antagonist bodyVH2744SEQ ID NO 2 in WO2000029447
heavy chain
RituximabVH2745SEQ ID NO: 66 in US20160333114A1
ROR1VH2746SEQ ID NO. 12 WO2016016343A1
ROR1VH2747SEQ ID NO. 20 WO2016016343A1
ROR1VH2748SEQ ID NO. 28 WO2016016343A1
ROR1VH2749SEQ ID NO. 36 WO2016016343A1
ROR1VH2750SEQ ID NO. 44 WO2016016343A1
ROR1VH2751SEQ ID NO. 60 WO2016016343A1
ROR1VH2752SEQ ID NO. 68 WO2016016343A1
ROR1VH2753SEQ ID NO. 57 in WO2016016344A1
ROR1VH2754SEQ ID NO. 19 in WO2016016344A1
ROR1VH2755SEQ ID NO. 31 in WO2016016344A1
ROR1VH2756SEQ ID NO. 45 in WO2016016344A1
ROR1VH2757SEQ ID NO. 53 in WO2016016344A1
ROR1VH2758SEQ ID NO. 71 in WO2016016344A1
ROR1VH2759SEQ ID NO. 85 in WO2016120216
ROR1VH2760SEQ ID NO. 87 in WO2016120216
ROR1VH2761SEQ ID NO. 89 in WO2016120216
ROR1VH2762SEQ ID NO: 122 in US20160208018A1
ROR1VH2763SEQ ID NO: 125 in US20160208018A1
ROR1VH2764SEQ ID NO: 175 in US20160208018A1
ROR1VH2765SEQ ID NO: 176 in US20160208018A1
ROR1VH2766SEQ ID NO: 179 in US20160208018A1
ROR1VH2767SEQ ID NO: 180 in US20160208018A1
ROR1VH2768SEQ ID NO: 181 in US20160208018A1
ROR1VH2769SEQ ID NO: 182 in US20160208018A1
ROR1VH2770SEQ ID NO: 183 in US20160208018A1
ROR1VH2771SEQ ID NO: 184 in US20160208018A1
ROR1VH2772SEQ ID NO: 185 in US20160208018A1
ROR1VH2773SEQ ID NO: 186 in US20160208018A1
ROR1VH2774SEQ ID NO: 187 in US20160208018A1
ROR1VH2775SEQ ID NO: 188 in US20160208018A1
ROR1VH2776SEQ ID NO: 189 in US20160208018A1
ROR1VH2777SEQ ID NO: 190 in US20160208018A1
ROR1VH2778SEQ ID NO: 191 in US20160208018A1
ROR1VH2779SEQ ID NO: 192 in US20160208018A1
ROR1VH2780SEQ ID NO: 193 in US20160208018A1
ROR1VH2781SEQ ID NO: 194 in US20160208018A1
ROR1VH2782SEQ ID NO: 195 in US20160208018A1
ROR1VH2783SEQ ID NO: 196 in US20160208018A1
ROR1VH2784SEQ ID NO: 197 in US20160208018A1
ROR1VH2785SEQ ID NO: 198 in US20160208018A1
ROR1VH2786SEQ ID NO: 199 in US20160208018A1
ROR1VH2787SEQ ID NO: 200 in US20160208018A1
ROR1VH2788SEQ ID NO: 201 in US20160208018A1
ROR1VH2789SEQ ID NO: 202 in US20160208018A1
ROR1VH2790SEQ ID NO: 203 in US20160208018A1
ROR1VH2791SEQ ID NO: 204 in US20160208018A1
ROR1VH2792SEQ ID NO: 205 in US20160208018A1
ROR1VH2793SEQ ID NO: 206 in US20160208018A1
ROR1VH2794SEQ ID NO: 207 in US20160208018A1
ROR1VH2795SEQ ID NO: 208 in US20160208018A1
ROR1VH2796SEQ ID NO: 209 in US20160208018A1
ROR1VH2797SEQ ID NO: 55 in EP3083671A1
ROR1VH2798SEQ ID NO: 104 in WO2016187216A1
ROR1VH2799SEQ ID NO: 112 in WO2016187216A1
ROR1VH2800SEQ ID NO: 120 in WO2016187216A1
ROR1VH2801SEQ ID NO: 128 in WO2016187216A1
ROR1VH2802SEQ ID NO: 152 in WO2016187216A1
ROR1VH2803SEQ ID NO: 16 in WO2016187216A1
ROR1VH2804SEQ ID NO: 160 in WO2016187216A1
ROR1VH2805SEQ ID NO: 168 in WO2016187216A1
ROR1VH2806SEQ ID NO: 176 in WO2016187216A1
ROR1VH2807SEQ ID NO: 184 in WO2016187216A1
ROR1VH2808SEQ ID NO: 192 in WO2016187216A1
ROR1VH2809SEQ ID NO: 200 in WO2016187216A1
ROR1VH2810SEQ ID NO: 208 in WO2016187216A1
ROR1VH2811SEQ ID NO: 216 in WO2016187216A1
ROR1VH2812SEQ ID NO: 224 in WO2016187216A1
ROR1VH2813SEQ ID NO: 232 in WO2016187216A1
ROR1VH2814SEQ ID NO: 24 in WO2016187216A1
ROR1VH2815SEQ ID NO: 240 in WO2016187216A1
ROR1VH2816SEQ ID NO: 248 in WO2016187216A1
ROR1VH2817SEQ ID NO: 256 in WO2016187216A1
ROR1VH2818SEQ ID NO: 264 in WO2016187216A1
ROR1VH2819SEQ ID NO: 272 in WO2016187216A1
ROR1VH2820SEQ ID NO: 280 in WO2016187216A1
ROR1VH2821SEQ ID NO: 288 in WO2016187216A1
ROR1VH2822SEQ ID NO: 296 in WO2016187216A1
ROR1VH2823SEQ ID NO: 304 in WO2016187216A1
ROR1VH2824SEQ ID NO: 312 in WO2016187216A1
ROR1VH2825SEQ ID NO: 32 in WO2016187216A1
ROR1VH2826SEQ ID NO: 320 in WO2016187216A1
ROR1VH2827SEQ ID NO: 336 in WO2016187216A1
ROR1VH2828SEQ ID NO: 344 in WO2016187216A1
ROR1VH2829SEQ ID NO: 352 in WO2016187216A1
ROR1VH2830SEQ ID NO: 360 in WO2016187216A1
ROR1VH2831SEQ ID NO: 40 in WO2016187216A1
ROR1VH2832SEQ ID NO: 48 in WO2016187216A1
ROR1VH2833SEQ ID NO: 56 in WO2016187216A1
ROR1VH2834SEQ ID NO: 64 in WO2016187216A1
ROR1VH2835SEQ ID NO: 72 in WO2016187216A1
ROR1VH2836SEQ ID NO: 8 in WO2016187216A1
ROR1VH2837SEQ ID NO: 80 in WO2016187216A1
ROR1VH2838SEQ ID NO: 88 in WO2016187216A1
SEMAPHORIN4DVH2839SEQ ID NO. 10 in US20160115240A1
SEMAPHORIN4DVH2840SEQ ID NO. 25 in US20160115240A1
SEMAPHORIN4DVH2841SEQ ID NO. 9 in US20160115240A1
TAG72VH2842SEQ ID NO: 115 in US20160333114A1
TCRVH2843SEQ ID NO. 133 in WO2016122701
TEM8VH2844SEQ ID NO: 1 in US20160264662A1
TEM8VH2845SEQ ID NO: 3 in US20160264662A1
TEM8VH2846SEQ ID NO: 5 in US20160264662A1
TEM8VH2847SEQ ID NO: 7 in US20160264662A1
TieVH2848SEQ ID NO 723 in US20060057138A1
TIGITVH2849SEQ ID NO. 10 in US20160355589
TIGITVH2850SEQ ID NO. 11 in US20160355589
TIGITVH2851SEQ ID NO. 12 in US20160355589
TIGITVH2852SEQ ID NO. 124 in US20160355589
TIGITVH2853SEQ ID NO. 125 in US20160355589
TIGITVH2854SEQ ID NO. 126 in US20160355589
TIGITVH2855SEQ ID NO. 127 in US20160355589
TIGITVH2856SEQ ID NO. 128 in US20160355589
TIGITVH2857SEQ ID NO. 129 in US20160355589
TIGITVH2858SEQ ID NO. 13 in US20160355589
TIGITVH2859SEQ ID NO. 136 in US20160355589
TIGITVH2860SEQ ID NO. 138 in US20160355589
TIGITVH2861SEQ ID NO. 14 in US20160355589
TIGITVH2862SEQ ID NO. 143 in US20160355589
TIGITVH2863SEQ ID NO. 144 in US20160355589
TIGITVH2864SEQ ID NO. 149 in US20160355589
TIGITVH2865SEQ ID NO. 15 in US20160355589
TIGITVH2866SEQ ID NO. 150 in US20160355589
TIGITVH2867SEQ ID NO. 16 in US20160355589
TIGITVH2868SEQ ID NO. 17 in US20160355589
TIGITVH2869SEQ ID NO. 18 in US20160355589
TIGITVH2870SEQ ID NO. 19 in US20160355589
TIGITVH2871SEQ ID NO. 20 in US20160355589
TIGITVH2872SEQ ID NO. 21 in US20160355589
TIGITVH2873SEQ ID NO. 22 in US20160355589
TIGITVH2874SEQ ID NO. 23 in US20160355589
TIGITVH2875SEQ ID NO. 24 in US20160355589
TIGITVH2876SEQ ID NO. 37 in US20160355589
TIGITVH2877SEQ ID NO. 38 in US20160355589
TIGITVH2878SEQ ID NO. 39 in US20160355589
TIGITVH2879SEQ ID NO. 40 in US20160355589
TIGITVH2880SEQ ID NO. 41 in US20160355589
TIGITVH2881SEQ ID NO. 42 in US20160355589
TIGITVH2882SEQ ID NO. 43 in US20160355589
TIGITVH2883SEQ ID NO. 44 in US20160355589
TIGITVH2884SEQ ID NO. 45 in US20160355589
TIGITVH2885SEQ ID NO. 46 in US20160355589
TIGITVH2886SEQ ID NO. 47 in US20160355589
TIGITVH2887SEQ ID NO. 63 in US20160355589
TIGITVH2888SEQ ID NO. 94 in US20160355589
TIGITVH2889SEQ ID NO. 7 in US20160355589
TIGITVH2890SEQ ID NO. 9 in US20160355589
TIM3VH2891SEQ ID NO: 82 in WO2013006490
TIM3VH2892SEQ ID NO: 13 in WO2016179319A1
TIM3VH2893SEQ ID NO: 21 in WO2016179319A1
TIM3VH2894SEQ ID NO: 29 in WO2016179319A1
TIM3VH2895SEQ ID NO: 37 in WO2016179319A1
TIM3VH2896SEQ ID NO: 45 in WO2016179319A1
TIM3VH2897SEQ ID NO: 5 in WO2016179319A1
TIM3VH2898SEQ ID NO: 53 in WO2016179319A1
TIM3VH2899SEQ ID NO: 61 in WO2016179319A1
TIM3VH2900SEQ ID NO: 69 in WO2016179319A1
TIM3VH2901SEQ ID NO: 77 in WO2016179319A1
TIM3VH2902SEQ ID NO: 85 in WO2016179319A1
TIM3VH2903SEQ ID NO: 93 in WO2016179319A1
Tissue factorVH2904SEQ ID NO 10 in WO2004094475
Tissue factorVH2905SEQ ID NO 19 in WO2004094475
Tissue factorVH2906SEQ ID NO 23 in WO2004094475
Tissue factorVH2907SEQ ID NO 27 in WO2004094475
Tissue factorVH2908SEQ ID NO 29 in WO2004094475
Tissue factorVH2909SEQ ID NO 6 in WO2004094475
Tissue factorVH2910SEQ ID NO: 38 in US20160333114A1
Tn GlycopeptideVH2911SEQ ID NO. 20 in WO2015120180
Tn GlycopeptideVH2912SEQ ID NO. 19 in WO2015120180
TRBC1VH2913SEQ ID NO. 1 in WO2015132598
Trophoblast Glycoprotein5T4VH2914SEQ ID NO. 17 in WO2016034666A1
TrophoblastVH2915SEQ ID NO. 13 in WO2016034666A1
Glycoprotein5T4VH
TrophoblastVH2916SEQ ID NO. 15 in WO2016034666A1
Glycoprotein5T4VH
TrophoblastVH2917SEQ ID NO. 11 in WO2016034666A1
Glycoprotein5T4VH
uPARVH2918SEQ ID NO: 72 in US20160333114A1
V2VH2919SEQ ID NO: 11 in US20160194375A1
VEGFVH2920SEQ ID NO 4 in WO2000034337
VEGFVH2921SEQ ID NO 8 in WO2000034337
VEGFVH2922SEQ ID NO 12 in WO2006012688A1
VEGFVH2923SEQ ID NO 20 in WO2006012688A1
VEGFVH2924SEQ ID NO 4 in WO2006012688A1
VEGFVH2925SEQ ID NO 44 in WO2006012688A1
VEGFVH2926SEQ ID NO. 7 in US20030175276A1
VEGFVH2927US20160090427 SEQ ID NO: 152
VEGFVH2928US20160090427 SEQ ID NO: 153
VEGFVH2929US20160090427 SEQ ID NO: 154
VEGFVH2930US20160090427 SEQ ID NO: 155
VEGFVH2931US20160090427 SEQ ID NO: 156
VEGFVH2932US20160090427 SEQ ID NO: 157
VEGFVH2933US20160090427 SEQ ID NO: 158
VEGFVH2934US20160090427 SEQ ID NO: 159
VEGFR2VH2935SEQ ID NO. 100 In WO2017004254
VEGFR2VH2936SEQ ID NO. 101 In WO2017004254
VEGFR2VH2937SEQ ID NO. 102 In WO2017004254
VEGFR2VH2938SEQ ID NO. 103 In WO2017004254
VEGFR2VH2939SEQ ID NO. 114 in WO2017004254
VEGFR2VH2940SEQ ID NO. 115 in WO2017004254
VEGFR2VH2941SEQ ID NO. 116 in WO2017004254
VEGFR2VH2942SEQ ID NO. 117 in WO2017004254
VEGFR2VH2943SEQ ID NO. 118 in WO2017004254
VEGFR2VH2944SEQ ID NO. 119 in WO2017004254
VEGFR2VH2945SEQ ID NO. 120 in WO2017004254
VEGFR2VH2946SEQ ID NO. 121 in WO2017004254
VEGFR2VH2947SEQ ID NO. 122 in WO2017004254
VEGFR2VH2948SEQ ID NO. 123 in WO2017004254
VEGFR2VH2949SEQ ID NO. 124 in WO2017004254
VEGFR2VH2950SEQ ID NO. 95 In WO2017004254
VEGFR2VH2951SEQ ID NO. 96 In WO2017004254
VEGFR2VH2952SEQ ID NO. 97 In WO2017004254
VEGFR2VH2953SEQ ID NO. 98 In WO2017004254
VEGFR2VH2954SEQ ID NO. 99 In WO2017004254
VISTAVH2955SEQ ID NO: 37 in WO2015097536
VISTAVH2956SEQ ID NO: 38 in WO2015097536
VISTAVH2957SEQ ID NO: 39 in WO2015097536
VISTAVH2958SEQ ID NO: 40 in WO2015097536
VMS2VH2959FIG. 1 in WO2000058363
WT1/HLA Bi SpecificVH2960SEQ ID NO. 104 in WO2015070061
WT1/HLA Bi SpecificVH2961SEQ ID NO. 111 in WO2015070061
WT1/HLA Bi SpecificVH2962SEQ ID NO. 128 in WO2015070061
WT1/HLA Bi SpecificVH2963SEQ ID NO. 14 in WO2015070061
WT1/HLA Bi SpecificVH2964SEQ ID NO. 32 in WO2015070061
WT1/HLA Bi SpecificVH2965SEQ ID NO. 50 in WO2015070061
WT1/HLA Bi SpecificVH2966SEQ ID NO. 68 in WO2015070061
WT1/HLA Bi SpecificVH2967SEQ ID NO. 86 in WO2015070061
CD19VH2968SEQ ID NO. 53 in WO2016120216
CD19VH2969SEQ ID NO. 55 in WO2016120216
CD20(Ofatumumab)VH2970SEQ ID NO. 25 in US20170000900
CD20(Rituximab)VH2971SEQ ID NO. 24 in US20170000900
CD20(Veltuzumab)VH2972SEQ ID NO. 23 in US20170000900
CD22VH2973SEQ ID NO. 3 in WO2013059593
CD22VH2974SEQ ID NO. 4 in WO2013059593
CD28VH2975SEQ ID NO. 19 in WO2015158868
CD33VH2976SEQ ID NO. 65 in WO2016120216
CD33VH2977SEQ ID NO. 67 in WO2016120216
CD33VH2978SEQ ID NO. 69 in WO2016120216
CD33VH2979SEQ ID NO. 71 in WO2016120216
CD33VH2980SEQ ID NO. 77 in WO2016120216
CD33VH2981SEQ ID NO. 79 in WO2016120216
CD33VH2982SEQ ID NO. 81 in WO2016120216
CD33VH2983SEQ ID NO. 83 in WO2016120216
CD33VH2984SEQ ID NO. 84 in WO2016120216
CD37VH2985SEQ ID NO. 11 in US20170000900
CD37VH2986SEQ ID NO. 12 in US20170000900
CD37VH2987SEQ ID NO. 18 in US20170000900
CD73VH2988SEQ ID NO. 100 in US20160145350
CD73VH2989SEQ ID NO. 103 in US20160145350
CD73VH2990SEQ ID NO. 107 in US20160145350
CD73VH2991SEQ ID NO. 109 in US20160145350
CD73VH2992SEQ ID NO. 112 in US20160145350
CD73VH2993SEQ ID NO. 114 in US20160145350
CD73VH2994SEQ ID NO. 116 in US20160145350
CD73VH2995SEQ ID NO. 119 in US20160145350
CD73VH2996SEQ ID NO. 121 in US20160145350
CD73VH2997SEQ ID NO. 16 in US20160145350
CD73VH2998SEQ ID NO. 32 in US20160145350
CD73VH2999SEQ ID NO. 4 in US20160145350
CD73VH3000SEQ ID NO. 52 in US20160145350
CD73VH3001SEQ ID NO. 60 in US20160145350
CD73VH3002SEQ ID NO. 68 in US20160145350
CD73VH3003SEQ ID NO. 80 in US20160145350
CD73VH3004SEQ ID NO. 88 in US20160145350
CD74VH3005SEQ ID NO. 23 in US20130171064
CD74VH3006SEQ ID NO. 27 in US20130171064
CD74VH3007SEQ ID NO. 30 in US20130171064
CD74VH3008SEQ ID NO. 33 in US20130171064
CLDN18.2VH3009SEQ ID No. 12 in US20160347815A1
CLDN18.2VH3010SEQ ID No. 2 in US20160347815A1
CSPG4VH3011SEQ ID NO. 10 in WO2016077638
CSPG4VH3012SEQ ID NO. 16 in WO2016077638
CSPG4VH3013SEQ ID NO. 18 in WO2016077638
CSPG4VH3014SEQ ID NO. 4 in WO2016077638
CSPG4VH3015SEQ ID NO. 6 in WO2016077638
CSPG4VH3016SEQ ID NO. 8 in WO2016077638
EGFRvIIIVH3017SEQ ID NO. 91 in WO2016120216
EGFRvIIIVH3018SEQ ID NO. 93 in WO2016120216
FAPVH3019SEQ ID NO: 8 in US20160326265A1
GD2VH3020SEQ ID NO. 17 in WO2016134284
GPC3VH3021SEQ ID NO. 22 in WO2016049459
GPC3VH3022SEQ ID NO: 12 in U.S. Pat. No. 9,409,994B2
GPC3VH3023SEQ ID NO: 16 in U.S. Pat. No. 9,409,994B2
GPC3VH3024SEQ ID NO: 20 in U.S. Pat. No. 9,409,994B2
GPC3VH3025SEQ ID NO: 37 in U.S. Pat. No. 9,409,994B2
GPC3VH3026SEQ ID NO: 8 in U.S. Pat. No. 9,409,994B2
HER2VH3027SEQ ID NO. 19 in U.S. Pat. No. 9,518,118
HER2VH3028SEQ ID NO. 24 in U.S. Pat. No. 9,518,118
LAG3VH3029SEQ ID NO. 102 in US20150259420
LAG3VH3030SEQ ID NO. 106 in US20150259420
LAG3VH3031SEQ ID NO. 110 in US20150259420
LAG3VH3032SEQ ID NO. 113 in US20150259420
LAG3VH3033SEQ ID NO. 122 in US20150259420
LAG3VH3034SEQ ID NO. 18 in US20150259420
LAG3VH3035SEQ ID NO. 30 in US20150259420
LAG3VH3036SEQ ID NO. 66 in US20150259420
LAG3VH3037SEQ ID NO. 70 in US20150259420
LAG3VH3038SEQ ID NO. 74 in US20150259420
LAG3VH3039SEQ ID NO. 78 in US20150259420
MCAMVH3040SEQ ID NO. 101 in US20150259419
MCAMVH3041SEQ ID NO. 102 in US20150259419
MCAMVH3042SEQ ID NO. 103 in US20150259419
MCAMVH3043SEQ ID NO. 104 in US20150259419
MCAMVH3044SEQ ID NO. 105 in US20150259419
MCAMVH3045SEQ ID NO. 106 in US20150259419
MCAMVH3046SEQ ID NO. 107 in US20150259419
MesothelinVH3047SEQ ID NO: 13 in US20160229919A1
MesothelinVH3048SEQ ID NO: 17 in US20160229919A1
MesothelinVH3049SEQ ID NO: 21 in US20160229919A1
MesothelinVH3050SEQ ID NO: 25 in US20160229919A1
MesothelinVH3051SEQ ID NO: 29 in US20160229919A1
MesothelinVH3052SEQ ID NO: 9 in US20160229919A1
MUC1C/ECDVH3053SEQ ID NO: 15 in US20160340442A1
MUC1C/ECDVH3054SEQ ID NO: 19 in US20160340442A1
MUC1C/ECDVH3055SEQ ID NO: 23 in US20160340442A1
MUC1C/ECDVH3056SEQ ID NO: 60 in US20160340442A1
MUC1C/ECDVH3057SEQ ID NO: 64 in US20160340442A1
MUC1C/ECDVH3058SEQ ID NO: 68 in US20160340442A1
MUC1C/ECDVH3059SEQ ID NO: 72 in US20160340442A1
NYBR1VH3060SEQ ID NO: 19 in US20160333422A1
OTK3VH3061SEQ ID NO. 17 in WO2015158868
OX40VH3062SEQ ID NO. 19 in U.S. Pat. No. 8,748,585
OX40VH3063SEQ ID NO. 21 in U.S. Pat. No. 8,748,585
OX40VH3064SEQ ID NO. 22 in U.S. Pat. No. 8,748,585
OX40VH3065SEQ ID NO. 23 in U.S. Pat. No. 8,748,585
OX40VH3066SEQ ID NO. 29 in U.S. Pat. No. 8,748,585
OX40VH3067SEQ ID NO. 58 in U.S. Pat. No. 8,748,585
OX40VH3068SEQ ID NO. 59 in U.S. Pat. No. 8,748,585
OX40VH3069SEQ ID NO. 7 in U.S. Pat. No. 8,748,585
OX40VH3070SEQ ID NO. 77 in U.S. Pat. No. 8,748,585
OX40VH3071SEQ ID NO. 78 in U.S. Pat. No. 8,748,585
OX40VH3072SEQ ID NO. 79 in U.S. Pat. No. 8,748,585
OX40VH3073SEQ ID NO. 80 in U.S. Pat. No. 8,748,585
PDL1VH3074US20160108123 SEQ ID NO: 358
PDL1VH3075US20160108123 SEQ ID NO: 56
PDL1VH3076US20160108123 SEQ ID NO: 64
PTK7VH3077SEQ ID NO. 1 in US20150315293
PTK7VH3078SEQ ID NO. 25 in US20150315293
PTK7VH3079SEQ ID NO. 49 in US20150315293
TIM3VH3080SEQ ID NO. 102 in US20150086574
TIM3VH3081SEQ ID NO. 112 in US20150086574
TIM3VH3082SEQ ID NO. 12 in US20150086574
TIM3VH3083SEQ ID NO. 2 in US20150086574
TIM3VH3084SEQ ID NO. 22 in US20150086574
TIM3VH3085SEQ ID NO. 32 in US20150086574
TIM3VH3086SEQ ID NO. 42 in US20150086574
TIM3VH3087SEQ ID NO. 52 in US20150086574
TIM3VH3088SEQ ID NO. 62 in US20150086574
TIM3VH3089SEQ ID NO. 72 in US20150086574
TIM3VH3090SEQ ID NO. 82 in US20150086574
TIM3VH3091SEQ ID NO. 92 in US20150086574
CD20(Obinutuzumab)VH3092SEQ ID NO. 26 in US20170000900
GD23093SEQ ID NO. 1 in US20130216528
GPDL1VH3094US20160108123 SEQ ID NO: 20
CD19VK3095SEQ ID NO: 13 US20160319020
CD19VK3096SEQ ID NO: 6 US20160319020
hBAT1VL3097SEQ ID NO. 1 in WO2013014668
hBAT1VL3098SEQ ID NO. 2 in WO2013014668
hBAT1VL3099SEQ ID NO. 3 in WO2013014668
hBAT1VL3100SEQ ID NO. 4 in WO2013014668
AGR2VL3101SEQ ID NO. 11 in WO2016040321
AGR2VL3102SEQ ID NO. 19 in WO2016040321
ALKVL3103SEQ ID NO: 10 in US20160280798A1
ALKVL3104SEQ ID NO: 12 in US20160280798A1
ALKVL3105SEQ ID NO: 14 in US20160280798A1
ALKVL3106SEQ ID NO: 16 in US20160280798A1
ALKVL3107SEQ ID NO: 2 in US20160280798A1
ALKVL3108SEQ ID NO: 4 in US20160280798A1
ALKVL3109SEQ ID NO: 6 in US20160280798A1
ALKVL3110SEQ ID NO: 8 in US20160280798A1
AMCVL3111SEQ ID NO. 27 in WO2016161390
AMCVL3112SEQ ID NO. 28 in WO2016161390
AMCVL3113SEQ ID NO. 29 in WO2016161390
AMCVL3114SEQ ID NO. 31 in WO2016161390
AMCVL3115SEQ ID NO. 32 in WO2016161390
AMCVL3116SEQ ID NO. 33 in WO2016161390
AMCVL3117SEQ ID NO. 34 in WO2016161390
AMCVL3118SEQ ID NO. 35 in WO2016161390
AMCVL3119SEQ ID NO. 36 in WO2016161390
ANG2VL3120SEQ ID NO. 2 in WO2015091655
ANG2VL3121SEQ ID NO. 4 in WO2015091655
APCDD1VL3122SEQ ID NO: 136 in WO2012019061
APCDD1VL3123SEQ ID NO: 100 in WO2012019061
APCDD1VL3124SEQ ID NO: 104 in WO2012019061
APCDD1VL3125SEQ ID NO: 108 in WO2012019061
APCDD1VL3126SEQ ID NO: 112 in WO2012019061
APCDD1VL3127SEQ ID NO: 116 in WO2012019061
APCDD1VL3128SEQ ID NO: 12 in WO2012019061
APCDD1VL3129SEQ ID NO: 120 in WO2012019061
APCDD1VL3130SEQ ID NO: 124 in WO2012019061
APCDD1VL3131SEQ ID NO: 128 in WO2012019061
APCDD1VL3132SEQ ID NO: 132 in WO2012019061
APCDD1VL3133SEQ ID NO: 16 in WO2012019061
APCDD1VL3134SEQ ID NO: 8 in WO2012019061
APRILVL3135SEQ ID NO. 20 in US20160264674
APRILVL3136SEQ ID NO. 22 in US20160264674
APRILVL3137SEQ ID NO. 24 in US20160264674
APRILVL3138SEQ ID NO. 26 in US20160264674
APRILVL3139SEQ ID NO. 28 in US20160264674
APRILVL3140SEQ ID NO. 30 in US20160264674
APRILVL3141SEQ ID NO. 4 in US20160264674
APRILVL3142SEQ ID NO. 50 in US20160264674
AXLVL3143SEQ ID NO. 22 in WO2016097370
AXLVL3144SEQ ID NO. 4 in WO2016097370
B2MGVL3145SEQ ID NO: 29 in WO2016126213A1
B7H1VL3146SEQ ID NO: 17 in US20130034559
B7H1VL3147SEQ ID NO: 37 in US20130034559
B7H1VL3148SEQ ID NO: 47 in US20130034559
B7H1VL3149SEQ ID NO: 57 in US20130034559
B7H1VL3150SEQ ID NO: 7 in US20130034559
B7H1VL3151SEQ ID NO: 77 in US20130034559
B7H1VL3152SEQ ID NO: 27 in US20130034559
B7H1VL3153SEQ ID NO: 67 in US20130034559
B7H3VL3154SEQ ID NO. 1 in WO2016033225
B7H3VL3155SEQ ID NO. 2 in WO2016033225
B7H3VL3156SEQ ID NO. 3 in WO2016033225
B7H3VL3157SEQ ID NO. 4 in WO2016033225
B7H3VL3158SEQ ID NO. 5 in WO2016033225
B7H3VL3159SEQ ID NO. 6 in WO2016033225
B7H3VL3160SEQ ID NO. 7 in WO2016033225
B7H3VL3161SEQ ID NO. 8 in WO2016033225
B7H3(CD276)VL3162SEQ ID NO. 18 in WO2016044383
B7H3(CD276)VL3163SEQ ID NO. 27 in WO2016044383
B7H3(CD276)VL3164SEQ ID NO. 8 in WO2016044383
B7H4VL3165SEQ ID NO. 104 in US20160159910
B7H4VL3166SEQ ID NO. 11 in US20160159910
B7H4VL3167SEQ ID NO. 126 in US20160159910
B7H4VL3168SEQ ID NO. 134 in US20160159910
B7H4VL3169SEQ ID NO. 138 in US20160159910
B7H4VL3170SEQ ID NO. 19 in US20160159910
B7H4VL3171SEQ ID NO. 27 in US20160159910
B7H4VL3172SEQ ID NO. 3 in US20160159910
B7H4VL3173SEQ ID NO. 35 in US20160159910
B7H4VL3174SEQ ID NO. 55 in US20160159910
B7H4VL3175SEQ ID NO. 93 in US20160159910
B7H4VL3176SEQ ID NO. 95 in US20160159910
B7H4VL3177SEQ ID NO. 97 in US20160159910
B7H4VL3178SEQ ID NO. 98 in US20160159910
B7H4VL3179SEQ ID NO. 145 in US20160159910
B7H4VL3180SEQ ID NO. 146 in US20160159910
B7H4VL3181SEQ ID NO. 147 in US20160159910
B7H4VL3182SEQ ID NO. 148 in US20160159910
B7H4VL3183SEQ ID NO. 29 in WO2016160620
B7H4VL3184SEQ ID NO. 31 in WO2016160620
B7H4VL3185SEQ ID NO. 33 in WO2016160620
BCMAVL3186SEQ ID NO: 25 in WO2016168773A3
BCMAVL3187SEQ ID NO: 42 in WO2016097231
BCMAVL3188SEQ ID NO: 143 in WO2016168595A1
BCMAVL3189SEQ ID NO: 149 in WO2016168595A1
BCMAVL3190SEQ ID NO: 155 in WO2016168595A1
BCMAVL3191SEQ ID NO: 161 in WO2016168595A1
BCMAVL3192SEQ ID NO: 167 in WO2016168595A1
BCMAVL3193SEQ ID NO: 173 in WO2016168595A1
BCMAVL3194SEQ ID NO: 179 in WO2016168595A1
BCMAVL3195SEQ ID NO: 185 in WO2016168595A1
BCMAVL3196SEQ ID NO: 191 in WO2016168595A1
BCMAVL3197SEQ ID NO: 197 in WO2016168595A1
BCMAVL3198SEQ ID NO: 203 in WO2016168595A1
BCMAVL3199SEQ ID NO: 209 in WO2016168595A1
BCMAVL3200SEQ ID NO: 215 in WO2016168595A1
BCMAVL3201SEQ ID NO: 221 in WO2016168595A1
BCMAVL3202SEQ ID NO: 227 in WO2016168595A1
BCMAVL3203SEQ ID NO: 233 in WO2016168595A1
BCMAVL3204SEQ ID NO: 239 in WO2016168595A1
BCMAVL3205SEQ ID NO: 245 in WO2016168595A1
BCMAVL3206SEQ ID NO: 251 in WO2016168595A1
BCMAVL3207SEQ ID NO: 257 in WO2016168595A1
BCMAVL3208SEQ ID NO: 263 in WO2016168595A1
BCMAVL3209SEQ ID NO: 269 in WO2016168595A1
BCMAVL3210SEQ ID NO: 275 in WO2016168595A1
BCMAVL3211SEQ ID NO: 281 in WO2016168595A1
BCMAVL3212SEQ ID NO: 287 in WO2016168595A1
BCMAVL3213SEQ ID NO: 293 in WO2016168595A1
BCMAVL3214SEQ ID NO: 299 in WO2016168595A1
BCMAVL3215SEQ ID NO: 305 in WO2016168595A1
BCMAVL3216SEQ ID NO: 311 in WO2016168595A1
BCMAVL3217SEQ ID NO: 317 in WO2016168595A1
BCMAVL3218SEQ ID NO: 323 in WO2016168595A1
BCMAVL3219SEQ ID NO: 329 in WO2016168595A1
BCMAVL3220SEQ ID NO: 335 in WO2016168595A1
BCMAVL3221SEQ ID NO: 341 in WO2016168595A1
BCMAVL3222SEQ ID NO: 347 in WO2016168595A1
BCMAVL3223SEQ ID NO: 353 in WO2016168595A1
BCMAVL3224SEQ ID NO. 192 WO2016014565
BCMAVL3225SEQ ID NO. 193 WO2016014565
BCMAVL3226SEQ ID NO. 194 WO2016014565
BCMAVL3227SEQ ID NO. 195 WO2016014565
BCMAVL3228SEQ ID NO. 196 WO2016014565
BCMAVL3229SEQ ID NO. 197 WO2016014565
BCMAVL3230SEQ ID NO. 198 WO2016014565
BCMAVL3231SEQ ID NO. 199 WO2016014565
BCMAVL3232SEQ ID NO. 200 WO2016014565
BCMAVL3233SEQ ID NO. 201 WO2016014565
BCMAVL3234SEQ ID NO. 204 WO2016014565
BCMAVL3235SEQ ID NO. 205 WO2016014565
BCMAVL3236SEQ ID NO. 207 WO2016014565
BCMAVL3237SEQ ID NO. 208 WO2016014565
BCMAVL3238SEQ ID NO. 211 WO2016014565
BCMAVL3239SEQ ID NO. 259 WO2016014565
BCMAVL3240SEQ ID NO. 260 WO2016014565
BCMAVL3241SEQ ID NO. 84 WO2016014565
BCMAVL3242SEQ ID NO. 85 WO2016014565
BCMAVL3243SEQ ID NO. 86 WO2016014565
BCMAVL3244SEQ ID NO. 87 WO2016014565
BCMAVL3245SEQ ID NO. 88 WO2016014565
BCMAVL3246SEQ ID NO. 89 WO2016014565
BCMAVL3247SEQ ID NO. 90 WO2016014565
BCMAVL3248SEQ ID NO. 91 WO2016014565
BCMAVL3249SEQ ID NO. 92 WO2016014565
BCMAVL3250SEQ ID NO. 93 WO2016014565
BCMAVL3251SEQ ID NO. 94 WO2016014565
BCMAVL3252SEQ ID NO. 95 WO2016014565
BCMAVL3253SEQ ID NO. 96 WO2016014565
BCMAVL3254SEQ ID NO. 97 WO2016014565
BCMAVL3255SEQ ID NO. 98 WO2016014565
BCMAVL3256SEQ ID NO: 53 in WO2016187349A1
BCMAVL3257SEQ ID NO: 7 in WO2016094304A3
BCMAVL3258SEQ ID NO. 10 in WO2016090320
BCMAVL3259SEQ ID NO. 100 in WO2016120216
BCMAVL3260SEQ ID NO. 102 in WO2016120216
BCMAVL3261SEQ ID NO. 12 in WO2015158671A1
BCMAVL3262SEQ ID NO. 14 in WO2015158671A1
BCMAVL3263SEQ ID NO. 14 in WO2016090320
BCMAVL3264SEQ ID NO. 16 in WO2015158671A1
BCMAVL3265SEQ ID NO. 175 in WO2016120216
BCMAVL3266SEQ ID NO. 18 in WO2015158671A1
BCMAVL3267SEQ ID NO. 18 in WO2016090320
BCMAVL3268SEQ ID NO. 2 in WO2016090320
BCMAVL3269SEQ ID NO. 22 in WO2016090320
BCMAVL3270SEQ ID NO. 26 in WO2016090320
BCMAVL3271SEQ ID NO. 30 in WO2016090320
BCMAVL3272SEQ ID NO. 34 in WO2016090320
BCMAVL3273SEQ ID NO. 38 in WO2016090320
BCMAVL3274SEQ ID NO. 42 in WO2016090320
BCMAVL3275SEQ ID NO. 46 in WO2016090320
BCMAVL3276SEQ ID NO. 50 in WO2016090320
BCMAVL3277SEQ ID NO. 54 in WO2016090320
BCMAVL3278SEQ ID NO. 58 in WO2016090320
BCMAVL3279SEQ ID NO. 6 in WO2016090320
BCMAVL3280SEQ ID NO. 62 in WO2016090320
BCMAVL3281SEQ ID NO. 66 in WO2016090320
BCMAVL3282SEQ ID NO. 7 in WO2016014789
BCMAVL3283SEQ ID NO. 8 in WO2016014789
BCMAVL3284SEQ ID NO. 9 in WO2016014789
BCMAVL3285SEQ ID NO. 96 in WO2016120216
BCMAVL3286SEQ ID NO. 98 in WO2016120216
BCMAVL3287SEQ ID NO: 14 in WO2016168766A1
CA19.9VL3288SEQ ID NO: 118 in US20160333114A1
Campath1VL3289SEQ ID NO: 31 in US20160333114A1
Campath1VL3290SEQ ID NO: 33 in US20160333114A1
CD105VL3291SEQ ID NO. 1 in WO2014039682
CD105VL3292SEQ ID NO. 17 in WO2014039682
CD105VL3293SEQ ID NO. 20 in WO2014039682
CD105VL3294SEQ ID NO. 22 in WO2014039682
CD105VL3295SEQ ID NO. 23 in WO2014039682
CD123VL3296SEQ ID NO. 11 in WO2016120220
CD123VL3297SEQ ID NO. 12 in WO2015140268A1
CD123VL3298SEQ ID NO. 16 in WO2015140268A1
CD123VL3299SEQ ID NO. 18 in WO2015140268A1
CD123VL3300SEQ ID NO. 18 in WO2016120220
CD123VL3301SEQ ID NO. 19 in WO2015140268A1
CD123VL3302SEQ ID NO. 19 in WO2016120220
CD123VL3303SEQ ID NO. 20 in WO2016120220
CD123VL3304SEQ ID NO. 21 in WO2016120220
CD123VL3305SEQ ID NO. 22 in WO2015140268A1
CD123VL3306SEQ ID NO. 22 in WO2016120220
CD123VL3307SEQ ID NO. 23 in WO2016120220
CD123VL3308SEQ ID NO: 275 in WO2016028896
CD123VL3309SEQ ID NO: 276 in WO2016028896
CD123VL3310SEQ ID NO: 277 in WO2016028896
CD123VL3311SEQ ID NO: 278 in WO2016028896
CD123VL3312SEQ ID NO: 307 in WO2016028896
CD123VL3313SEQ ID NO: 308 in WO2016028896
CD123VL3314SEQ ID NO: 309 in WO2016028896
CD123VL3315SEQ ID NO: 310 in WO2016028896
CD123VL3316SEQ ID NO: 5 in US20160333108A1
CD123VL3317WO2016120220 9No SEQ ID NO.
CD123VL3318WO2016120220 9No SEQ ID NO.
CD123VL3319WO2016120220 9No SEQ ID NO.
CD123VL3320WO2016120220 9No SEQ ID NO.
CD123VL3321WO2016120220 9No SEQ ID NO.
CD123VL3322WO2016120220 9No SEQ ID NO.
CD123VL3323WO2016120220 9No SEQ ID NO.
CD123VL3324WO2016120220 9No SEQ ID NO.
CD148VL3325SEQ ID NO 12 in WO2005118643
CD148VL3326SEQ ID NO 16 in WO2005118643
CD148VL3327SEQ ID NO 20 in WO2005118643
CD148VL3328SEQ ID NO 24 in WO2005118643
CD148VL3329SEQ ID NO 28 in WO2005118643
CD148VL3330SEQ ID NO 32 in WO2005118643
CD148VL3331SEQ ID NO 4 in WO2005118643
CD148VL3332SEQ ID NO 8 in WO2005118643
CD19VL3333SEQ ID NO: 27 in WO2016168773A3
CD19VL3334SEQ ID NO: 31 in WO2016168773A3
CD19VL3335SEQ ID NO: 49 in WO2016187349A1
CD19VL3336SEQ ID NO. 11 in WO2016134284
CD19VL3337SEQ ID NO. 194 in US20140134142A1
CD19VL3338SEQ ID NO. 54 in WO2016120216
CD19VL3339SEQ ID NO. 56 in WO2016120216
CD19VL3340SEQ ID NO: 13 US20160152723
CD19VL3341SEQ ID NO: 14 US20160152723
CD19VL3342SEQ ID NO: 15 US20160152723
CD19VL3343SEQ ID NO: 16 US20160152723
CD19VL3344SEQ ID NO: 17 US20160152723
CD19VL3345SEQ ID NO: 186 US20160152723
CD19VL3346SEQ ID NO: 187 US20160152723
CD19VL3347SEQ ID NO: 188 US20160152723
CD19VL3348SEQ ID NO: 189 US20160152723
CD19VL3349SEQ ID NO: 192 US20160152723
CD19VL3350SEQ ID NO: 196 US20160152723
CD19VL3351SEQ ID NO: 197 US20160152723
CD19VL3352SEQ ID NO: 198 US20160152723
CD19VL3353SEQ ID NO: 199 US20160152723
CD19VL3354SEQ ID NO: 200 US20160152723
CD19VL3355SEQ ID NO: 201 US20160152723
CD19VL3356SEQ ID NO: 202 US20160152723
CD19VL3357SEQ ID NO: 203 US20160152723
CD19VL3358SEQ ID NO: 204 US20160152723
CD19VL3359SEQ ID NO: 205 US20160152723
CD19VL3360SEQ ID NO: 22 in US20160039942
CD19VL3361SEQ ID NO: 63 in WO2016097231
CD19VL3362SEQ ID NO: 64 US20160152723
CD19VL3363SEQ ID NO: 66 US20160152723
CD19VL3364SEQ ID NO: 67 US20160152723
CD19VL3365SEQ ID NO: 68 US20160152723
CD19VL3366SEQ ID NO: 69 US20160152723
CD19VL3367SEQ ID NO: 70 US20160152723
CD19VL3368SEQ ID NO: 71 US20160152723
CD19VL3369SEQ ID NO: 91 US20160152723
CD19VL3370SEQ ID NO. 3 in US20160145337A1
CD19VL3371SEQ ID NO: 112 in US20160333114A1
CD19VL3372SEQ ID NO: 114 in US20160333114A1
CD2VL3373SEQ ID NO. 102 in WO2016122701
CD2VL3374SEQ ID NO. 116 in WO2016122701
CD20VL3375SEQ ID NO: 46 in WO2016097231
CD20VL3376SEQ ID NO. 10 in WO2017004091
CD20VL3377SEQ ID NO. 12 in WO2017004091
CD20VL3378SEQ ID NO. 8 in WO2017004091
CD20(Ofatumumab)VL3379SEQ ID NO: 51 in US20160333114A1
CD22VL3380SEQ ID NO: 17 in US20150239974
CD22VL3381SEQ ID NO: 8 in US20150239974
CD22VL3382SEQ ID NO. 7 in US20150299317
CD22VL3383SEQ ID NO: 14 in US20150239974
CD22VL3384SEQ ID NO: 15 in US20150239974
CD22VL3385SEQ ID NO: 681 in WO2016164731A90
CD22VL3386SEQ ID NO: 682 in WO2016164731A91
CD22VL3387SEQ ID NO: 683 in WO2016164731A92
CD22VL3388SEQ ID NO: 684 in WO2016164731A93
CD22VL3389SEQ ID NO: 685 in WO2016164731A94
CD22VL3390SEQ ID NO: 686 in WO2016164731A95
CD22VL3391SEQ ID NO: 687 in WO2016164731A96
CD22VL3392SEQ ID NO: 688 in WO2016164731A97
CD22VL3393SEQ ID NO: 690 in WO2016164731A99
CD22VL3394SEQ ID NO: 740 in WO2016164731A52
CD22VL3395SEQ ID NO: 741 in WO2016164731A53
CD22VL3396SEQ ID NO: 742 in WO2016164731A54
CD22VL3397SEQ ID NO: 743 in WO2016164731A55
CD22VL3398SEQ ID NO: 744 in WO2016164731A56
CD22VL3399SEQ ID NO: 745 in WO2016164731A57
CD22VL3400SEQ ID NO: 746 in WO2016164731A58
CD22VL3401SEQ ID NO: 747 in WO2016164731A59
CD22VL3402SEQ ID NO: 748 in WO2016164731A60
CD22VL3403SEQ ID NO: 749 in WO2016164731A61
CD22VL3404SEQ ID NO: 750 in WO2016164731A62
CD22VL3405SEQ ID NO: 752 in WO2016164731A64
CD22VL3406SEQ ID NO: 753 in WO2016164731A65
CD22VL3407SEQ ID NO: 754 in WO2016164731A66
CD22VL3408SEQ ID NO: 755 in WO2016164731A67
CD22VL3409SEQ ID NO: 756 in WO2016164731A68
CD22VL3410SEQ ID NO: 757 in WO2016164731A69
CD22VL3411SEQ ID NO: 758 in WO2016164731A70
CD22VL3412SEQ ID NO: 759 in WO2016164731A71
CD22VL3413SEQ ID NO: 760 in WO2016164731A72
CD22VL3414SEQ ID NO: 761 in WO2016164731A73
CD22VL3415SEQ ID NO: 762 in WO2016164731A74
CD22VL3416SEQ ID NO: 763 in WO2016164731A75
CD22VL3417SEQ ID NO: 764 in WO2016164731A76
CD22VL3418SEQ ID NO: 765 in WO2016164731A77
CD22VL3419SEQ ID NO: 766 in WO2016164731A78
CD22VL3420SEQ ID NO: 767 in WO2016164731A79
CD22VL3421SEQ ID NO: 768 in WO2016164731A80
CD22VL3422SEQ ID NO: 769 in WO2016164731A81
CD22VL3423SEQ ID NO: 770 in WO2016164731A82
CD22VL3424SEQ ID NO: 771 in WO2016164731A83
CD22VL3425SEQ ID NO: 772 in WO2016164731A84
CD22VL3426SEQ ID NO: 773 in WO2016164731A85
CD22VL3427SEQ ID NO: 774 in WO2016164731A86
CD22VL3428SEQ ID NO: 775 in WO2016164731A87
CD22VL3429SEQ ID NO: 776 in WO2016164731A88
CD22VL3430SEQ ID NO: 777 in WO2016164731A89
CD22VL3431SEQ ID NO: 202 in WO2016164731A2
CD22(Epratuzumab)VL3432SEQ ID NO. 124 in WO2016122701
CD3VL3433SEQ ID NO. 104 in WO2016122701
CD3VL3434SEQ ID NO: 13 in WO2016126213A1
CD30VL3435SEQ ID NO. 13 in WO2016134284
CD30VL3436SEQ ID NO. 15 in WO2016134284
CD324VL3437SEQ ID NO. 20 in U.S. Pat. No. 9,534,058
CD324VL3438SEQ ID NO. 22 in U.S. Pat. No. 9,534,058
CD324VL3439SEQ ID NO. 24 in U.S. Pat. No. 9,534,058
CD324VL3440SEQ ID NO. 26 in U.S. Pat. No. 9,534,058
CD324VL3441SEQ ID NO. 28 in U.S. Pat. No. 9,534,058
CD324VL3442SEQ ID NO. 30 in U.S. Pat. No. 9,534,058
CD324VL3443SEQ ID NO. 32 in U.S. Pat. No. 9,534,058
CD324VL3444SEQ ID NO. 34 in U.S. Pat. No. 9,534,058
CD324VL3445SEQ ID NO. 36 in U.S. Pat. No. 9,534,058
CD324VL3446SEQ ID NO. 38 in U.S. Pat. No. 9,534,058
CD324VL3447SEQ ID NO. 40 in U.S. Pat. No. 9,534,058
CD324VL3448SEQ ID NO. 42 in U.S. Pat. No. 9,534,058
CD324VL3449SEQ ID NO. 44 in U.S. Pat. No. 9,534,058
CD324VL3450SEQ ID NO. 46 in U.S. Pat. No. 9,534,058
CD324VL3451SEQ ID NO. 48 in U.S. Pat. No. 9,534,058
CD324VL3452SEQ ID NO. 50 in U.S. Pat. No. 9,534,058
CD324VL3453SEQ ID NO. 52 in U.S. Pat. No. 9,534,058
CD324VL3454SEQ ID NO. 54 in U.S. Pat. No. 9,534,058
CD324VL3455SEQ ID NO. 56 in U.S. Pat. No. 9,534,058
CD324VL3456SEQ ID NO. 58 in U.S. Pat. No. 9,534,058
CD324VL3457SEQ ID NO. 60 in U.S. Pat. No. 9,534,058
CD324VL3458SEQ ID NO. 62 in U.S. Pat. No. 9,534,058
CD324VL3459SEQ ID NO. 64 in U.S. Pat. No. 9,534,058
CD324VL3460SEQ ID NO. 66 in U.S. Pat. No. 9,534,058
CD324VL3461SEQ ID NO. 68 in U.S. Pat. No. 9,534,058
CD324VL3462SEQ ID NO. 70 in U.S. Pat. No. 9,534,058
CD32BVL3463SEQ ID NO. 126 in WO2016122701
CD33VL3464SEQ ID NO. 12 in WO2015150526A2
CD33VL3465SEQ ID NO. 14 in WO2015150526A2
CD33VL3466SEQ ID NO. 16 in WO2015150526A2
CD33VL3467SEQ ID NO. 18 in WO2015150526A2
CD33VL3468SEQ ID NO. 66 in WO2016014576
CD33VL3469SEQ ID NO. 66 in WO2016120216
CD33VL3470SEQ ID NO. 67 in WO2016014576
CD33VL3471SEQ ID NO. 68 in WO2016014576
CD33VL3472SEQ ID NO. 68 in WO2016120216
CD33VL3473SEQ ID NO. 69 in WO2016014576
CD33VL3474SEQ ID NO. 70 in WO2016014576
CD33VL3475SEQ ID NO. 70 in WO2016120216
CD33VL3476SEQ ID NO. 71 in WO2016014576
CD33VL3477SEQ ID NO. 72 in WO2016014576
CD33VL3478SEQ ID NO. 72 in WO2016120216
CD33VL3479SEQ ID NO. 73 in WO2016014576
CD33VL3480SEQ ID NO. 74 in WO2016014576
CD33VL3481SEQ ID NO. 78 in WO2016120216
CD33VL3482SEQ ID NO. 80 in WO2016120216
CD33VL3483SEQ ID NO. 82 in WO2016120216
CD37VL3484SEQ ID NO. 14 in US20170000900
CD37VL3485SEQ ID NO. 15 in US20170000900
CD38VL3486SEQ ID NO. 1 in WO2009080830
CD38VL3487SEQ ID No. 11 in WO2015121454
CD3sVL3488SEQ ID NO: 8 in WO2014144722A2
CD40VL3489SEQ ID NO. 2 in WO2016069919
CD40VL3490SEQ ID NO. 6 in WO2015091655
CD45VL3491SEQ ID NO: 25 in WO2016126213A1
CD46VL3492SEQ ID NO: 41 in WO2012031273
CD46VL3493SEQ ID NO: 61 in WO2012031273
CD46VL3494SEQ ID NO: 21 in WO2012031273
CD46VL3495SEQ ID NO: 25 in WO2012031273
CD46VL3496SEQ ID NO: 29 in WO2012031273
CD46VL3497SEQ ID NO: 33 in WO2012031273
CD46VL3498SEQ ID NO: 37 in WO2012031273
CD46VL3499SEQ ID NO: 45 in WO2012031273
CD46VL3500SEQ ID NO: 49 in WO2012031273
CD46VL3501SEQ ID NO: 53 in WO2012031273
CD46VL3502SEQ ID NO: 57 in WO2012031273
CD46VL3503SEQ ID NO: 65 in WO2012031273
CD46VL3504SEQ ID NO: 69 in WO2012031273
CD46VL3505SEQ ID NO: 73 in WO2012031273
CD46VL3506SEQ ID NO: 77 in WO2012031273
CD46VL3507SEQ ID NO: 81 in WO2012031273
CD46VL3508SEQ ID NO: 85 in WO2012031273
CD46VL3509SEQ ID NO: 17 in WO2012031273
CD46VL3510SEQ ID NO. 23 in WO2016040683
CD46VL3511SEQ ID NO. 24 in WO2016040683
CD46VL3512SEQ ID NO. 25 in WO2016040683
CD46VL3513SEQ ID NO. 26 in WO2016040683
CD46VL3514SEQ ID NO. 27 in WO2016040683
CD46VL3515SEQ ID NO. 28 in WO2016040683
CD46VL3516SEQ ID NO. 29 in WO2016040683
CD46VL3517SEQ ID NO. 30 in WO2016040683
CD46VL3518SEQ ID NO. 31 in WO2016040683
CD46VL3519SEQ ID NO. 32 in WO2016040683
CD46VL3520SEQ ID NO. 33 in WO2016040683
CD46VL3521SEQ ID NO. 34 in WO2016040683
CD46VL3522SEQ ID NO. 35 in WO2016040683
CD46VL3523SEQ ID NO. 36 in WO2016040683
CD46VL3524SEQ ID NO. 37 in WO2016040683
CD46VL3525SEQ ID NO. 38 in WO2016040683
CD46VL3526SEQ ID NO. 39 in WO2016040683
CD46VL3527SEQ ID NO. 40 in WO2016040683
CD46VL3528SEQ ID NO. 41 in WO2016040683
CD46VL3529SEQ ID NO. 42 in WO2016040683
CD46VL3530SEQ ID NO: 73 in WO2012031273
CD46VL3531SEQ ID NO: 77 in WO2012031273
CD4BSVL3532SEQ ID NO: 14 in US20160194375A1
CD4BSVL3533SEQ ID NO: 2 in US20160194375A1
CD4iVL3534SEQ ID NO: 4 in US20160194375A1
CD52VL3535SEQ ID NO: 102 in WO2010132659
CD52VL3536SEQ ID NO: 138 in WO2010132659
CD64VL3537SEQ ID NO. 128 in WO2016122701
CD7VL3538SEQ ID NO: 17 in WO2016126213A1
CD7VL3539SEQ ID NO: 21 in WO2016126213A1
CD70VL3540SEQ ID NO. 83 in WO2015121454
CD70VL3541SEQ ID NO. 87 in WO2015121454
CD70VL3542SEQ ID NO. 91 in WO2015121454
CD71VL3543SEQ ID NO. 2 in US20160355599
CD71VL3544SEQ ID NO. 327 in US20160355599
CD71VL3545SEQ ID NO. 329 in US20160355599
CD71VL3546SEQ ID NO. 331 in US20160355599
CD71VL3547SEQ ID NO. 333 in US20160355599
CD71VL3548SEQ ID NO. 335 in US20160355599
CD71VL3549SEQ ID NO. 337 in US20160355599
CD71VL3550SEQ ID NO. 6 in US20160355599
CD71VL3551SEQ ID NO. 650 in US20160355599
CD71VL3552SEQ ID NO. 652 in US20160355599
CD71VL3553SEQ ID NO. 654 in US20160355599
CD71VL3554SEQ ID NO. 656 in US20160355599
CD71VL3555SEQ ID NO. 658 in US20160355599
CD71VL3556SEQ ID NO. 660 in US20160355599
CD71VL3557SEQ ID NO. 670 in US20160355599
CD71VL3558SEQ ID NO. 671 in US20160355599
CD71VL3559SEQ ID NO. 672 in US20160355599
CD71VL3560SEQ ID NO. 673 in US20160355599
CD71VL3561SEQ ID NO. 7 in US20160355599
CD71VL3562SEQ ID NO. 701 in US20160355599
CD71VL3563SEQ ID NO. 702 in US20160355599
CD71VL3564SEQ ID NO. 703 in US20160355599
CD71VL3565SEQ ID NO. 704 in US20160355599
CD71VL3566SEQ ID NO. 705 in US20160355599
CD71VL3567SEQ ID NO. 706 in US20160355599
CD71VL3568SEQ ID NO. 707 in US20160355599
CD71VL3569SEQ ID NO. 708 in US20160355599
CD71VL3570SEQ ID NO. 709 in US20160355599
CD71VL3571SEQ ID NO. 710 in US20160355599
CD71VL3572SEQ ID NO. 711 in US20160355599
CD71VL3573SEQ ID NO. 712 in US20160355599
CD71VL3574SEQ ID NO. 721 in US20160355599
CD71VL3575SEQ ID NO. 722 in US20160355599
CD71VL3576SEQ ID NO. 723 in US20160355599
CD71VL3577SEQ ID NO. 724 in US20160355599
CD71VL3578SEQ ID NO. 725 in US20160355599
CD71VL3579SEQ ID NO. 726 in US20160355599
CD71VL3580SEQ ID NO. 727 in US20160355599
CD71VL3581SEQ ID NO. 728 in US20160355599
CD71VL3582SEQ ID NO. 729 in US20160355599
CD71VL3583SEQ ID NO. 730 in US20160355599
CD71VL3584SEQ ID NO. 731 in US20160355599
CD71VL3585SEQ ID NO. 732 in US20160355599
CD71VL3586SEQ ID NO. 733 in US20160355599
CD71VL3587SEQ ID NO. 734 in US20160355599
CD71VL3588SEQ ID NO. 735 in US20160355599
CD71VL3589SEQ ID NO. 736 in US20160355599
CD71VL3590SEQ ID NO. 737 in US20160355599
CD71VL3591SEQ ID NO. 738 in US20160355599
CD71VL3592SEQ ID NO. 739 in US20160355599
CD71VL3593SEQ ID NO. 740 in US20160355599
CD71VL3594SEQ ID NO. 741 in US20160355599
CD71VL3595SEQ ID NO. 742 in US20160355599
CD71VL3596SEQ ID NO. 743 in US20160355599
CD71VL3597SEQ ID NO. 744 in US20160355599
CD71VL3598SEQ ID NO. 745 in US20160355599
CD71VL3599SEQ ID NO. 746 in US20160355599
CD71VL3600SEQ ID NO. 747 in US20160355599
CD71VL3601SEQ ID NO. 748 in US20160355599
CD71VL3602SEQ ID NO. 749 in US20160355599
CD71VL3603SEQ ID NO. 750 in US20160355599
CD71VL3604SEQ ID NO. 751 in US20160355599
CD71VL3605SEQ ID NO. 752 in US20160355599
CD71VL3606SEQ ID NO. 753 in US20160355599
CD71VL3607SEQ ID NO. 754 in US20160355599
CD71VL3608SEQ ID NO. 755 in US20160355599
CD71VL3609SEQ ID NO. 756 in US20160355599
CD71VL3610SEQ ID NO. 757 in US20160355599
CD71VL3611SEQ ID NO. 758 in US20160355599
CD71VL3612SEQ ID NO. 759 in US20160355599
CD71VL3613SEQ ID NO. 760 in US20160355599
CD71VL3614SEQ ID NO. 761 in US20160355599
CD71VL3615SEQ ID NO. 762 in US20160355599
CD71VL3616SEQ ID NO. 763 in US20160355599
CD71VL3617SEQ ID NO. 764 in US20160355599
CD71VL3618SEQ ID NO. 765 in US20160355599
CD71VL3619SEQ ID NO. 766 in US20160355599
CD71VL3620SEQ ID NO. 767 in US20160355599
CD71VL3621SEQ ID NO. 768 in US20160355599
CD71VL3622SEQ ID NO. 769 in US20160355599
CD71VL3623SEQ ID NO. 770 in US20160355599
CD71VL3624SEQ ID NO. 771 in US20160355599
CD71VL3625SEQ ID NO. 772 in US20160355599
CD71VL3626SEQ ID NO. 773 in US20160355599
CD71VL3627SEQ ID NO. 774 in US20160355599
CD71VL3628SEQ ID NO. 775 in US20160355599
CD71VL3629SEQ ID NO. 776 in US20160355599
CD71VL3630SEQ ID NO. 777 in US20160355599
CD71VL3631SEQ ID NO. 778 in US20160355599
CD71VL3632SEQ ID NO. 779 in US20160355599
CD71VL3633SEQ ID NO. 780 in US20160355599
CD71VL3634SEQ ID NO. 781 in US20160355599
CD71VL3635SEQ ID NO. 782 in US20160355599
CD71VL3636SEQ ID NO. 783 in US20160355599
CD71VL3637SEQ ID NO. 784 in US20160355599
CD71VL3638SEQ ID NO. 785 in US20160355599
CD71VL3639SEQ ID NO. 786 in US20160355599
CD71VL3640SEQ ID NO. 787 in US20160355599
CD71VL3641SEQ ID NO. 788 in US20160355599
CD71VL3642SEQ ID NO. 8 in US20160355599
CD71VL3643SEQ ID NO. 810 in US20160355599
CD71VL3644SEQ ID NO. 811 in US20160355599
CD71VL3645SEQ ID NO. 812 in US20160355599
CD71VL3646SEQ ID NO. 813 in US20160355599
CD71VL3647SEQ ID NO. 814 in US20160355599
CD71VL3648SEQ ID NO. 815 in US20160355599
CD71VL3649SEQ ID NO. 816 in US20160355599
CD71VL3650SEQ ID NO. 817 in US20160355599
CD71VL3651SEQ ID NO. 818 in US20160355599
CD71VL3652SEQ ID NO. 819 in US20160355599
CD71VL3653SEQ ID NO. 820 in US20160355599
CD71VL3654SEQ ID NO. 821 in US20160355599
CD71VL3655SEQ ID NO. 822 in US20160355599
CD71VL3656SEQ ID NO. 823 in US20160355599
CD71VL3657SEQ ID NO. 824 in US20160355599
CD71VL3658SEQ ID NO. 825 in US20160355599
CD71VL3659SEQ ID NO. 826 in US20160355599
CD71VL3660SEQ ID NO. 827 in US20160355599
CD71VL3661SEQ ID NO. 828 in US20160355599
CD71VL3662SEQ ID NO. 829 in US20160355599
CD71VL3663SEQ ID NO. 830 in US20160355599
CD71VL3664SEQ ID NO. 831 in US20160355599
CD71VL3665SEQ ID NO. 832 in US20160355599
CD71VL3666SEQ ID NO. 833 in US20160355599
CD71VL3667SEQ ID NO. 834 in US20160355599
CD71VL3668SEQ ID NO. 835 in US20160355599
CD71VL3669SEQ ID NO. 836 in US20160355599
CD71VL3670SEQ ID NO. 841 in US20160355599
CD71VL3671SEQ ID NO. 842 in US20160355599
CD71VL3672SEQ ID NO. 843 in US20160355599
CD71VL3673SEQ ID NO. 844 in US20160355599
CD71VL3674SEQ ID NO. 845 in US20160355599
CD71VL3675SEQ ID NO. 846 in US20160355599
CD71VL3676SEQ ID NO. 847 in US20160355599
CD71VL3677SEQ ID NO. 848 in US20160355599
CD71VL3678SEQ ID NO. 849 in US20160355599
CD71VL3679SEQ ID NO. 850 in US20160355599
CD71VL3680SEQ ID NO. 851 in US20160355599
CD71VL3681SEQ ID NO. 852 in US20160355599
CD71VL3682SEQ ID NO. 853 in US20160355599
CD71VL3683SEQ ID NO. 854 in US20160355599
CD71VL3684SEQ ID NO. 855 in US20160355599
CD71VL3685SEQ ID NO. 856 in US20160355599
CD71VL3686SEQ ID NO. 857 in US20160355599
CD71VL3687SEQ ID NO. 858 in US20160355599
CD71VL3688SEQ ID NO. 859 in US20160355599
CD71VL3689SEQ ID NO. 860 in US20160355599
CD71VL3690SEQ ID NO. 861 in US20160355599
CD71VL3691SEQ ID NO. 862 in US20160355599
CD71VL3692SEQ ID NO. 863 in US20160355599
CD71VL3693SEQ ID NO. 864 in US20160355599
CD71VL3694SEQ ID NO. 865 in US20160355599
CD71VL3695SEQ ID NO. 866 in US20160355599
CD71VL3696SEQ ID NO. 867 in US20160355599
CD71VL3697SEQ ID NO. 868 in US20160355599
CD71VL3698SEQ ID NO. 869 in US20160355599
CD71VL3699SEQ ID NO. 870 in US20160355599
CD71VL3700SEQ ID NO. 871 in US20160355599
CD71VL3701SEQ ID NO. 872 in US20160355599
CD71VL3702SEQ ID NO. 873 in US20160355599
CD71VL3703SEQ ID NO. 874 in US20160355599
CD71VL3704SEQ ID NO. 875 in US20160355599
CD71VL3705SEQ ID NO. 876 in US20160355599
CD71VL3706SEQ ID NO. 877 in US20160355599
CD71VL3707SEQ ID NO. 878 in US20160355599
CD71VL3708SEQ ID NO. 879 in US20160355599
CD71VL3709SEQ ID NO. 880 in US20160355599
CD71VL3710SEQ ID NO. 881 in US20160355599
CD71VL3711SEQ ID NO. 882 in US20160355599
CD71VL3712SEQ ID NO. 883 in US20160355599
CD71VL3713SEQ ID NO. 884 in US20160355599
CD71VL3714SEQ ID NO. 885 in US20160355599
CD71VL3715SEQ ID NO. 886 in US20160355599
CD71VL3716SEQ ID NO. 887 in US20160355599
CD71VL3717SEQ ID NO. 888 in US20160355599
CD71VL3718SEQ ID NO. 889 in US20160355599
CD71VL3719SEQ ID NO. 890 in US20160355599
CD71VL3720SEQ ID NO. 891 in US20160355599
CD71VL3721SEQ ID NO. 892 in US20160355599
CD71VL3722SEQ ID NO. 893 in US20160355599
CD71VL3723SEQ ID NO. 894 in US20160355599
CD71VL3724SEQ ID NO. 895 in US20160355599
CD71VL3725SEQ ID NO. 896 in US20160355599
CD71VL3726SEQ ID NO. 897 in US20160355599
CD71VL3727SEQ ID NO. 898 in US20160355599
CD71VL3728SEQ ID NO. 899 in US20160355599
CD71VL3729SEQ ID NO. 900 in US20160355599
CD71VL3730SEQ ID NO. 901 in US20160355599
CD71VL3731SEQ ID NO. 902 in US20160355599
CD71VL3732SEQ ID NO. 903 in US20160355599
CD71VL3733SEQ ID NO. 904 in US20160355599
CD71VL3734SEQ ID NO. 905 in US20160355599
CD71VL3735SEQ ID NO. 906 in US20160355599
CD71VL3736SEQ ID NO. 907 in US20160355599
CD71VL3737SEQ ID NO. 908 in US20160355599
CD73VL3738SEQ ID NO. 12 in US20160145350
CD73VL3739SEQ ID NO. 20 in US20160145350
CD73VL3740SEQ ID NO. 44 in US20160145350
CD73VL3741SEQ ID NO. 72 in US20160145350
CD73VL3742SEQ ID NO. 76 in US20160145350
CD73VL3743SEQ ID NO. 8 in US20160145350
CD73VL3744SEQ ID NO. 84 in US20160145350
CD73VL3745SEQ ID NO. 92 in US20160145350
CD73VL3746SEQ ID NO. 22 in WO2016055609A1
CD73VL3747SEQ ID NO. 29 in WO2016055609A1
CD73VL3748SEQ ID NO. 37 in WO2016055609A1
CD73VL3749SEQ ID NO. 4 in WO2016055609A1
CD74VL3750FIG. 1B in WO2003074567
CD74VL3751FIG. 2B in WO2003074567
CD74VL3752FIG. 4B in WO2003074567
CD74VL3753SEQ ID NO 12 in US20040115193A1
CD74VL3754SEQ ID NO 13 in US20040115193A1
CD74VL3755SEQ ID NO 14 in US20040115193A1
CD74VL3756SEQ ID NO. 11 in US20100284906A1
CD74VL3757SEQ ID NO. 4 in US20100284906A1
CD76bVL3758SEQ ID NO. 16 in US20160159906
CD76bVL3759SEQ ID NO. 18 in US20160159906
CD76bVL3760SEQ ID NO. 22 in US20160159906
CD76bVL3761SEQ ID NO. 38 in US20160159906
CD76bVL3762SEQ ID NO. 58 in US20160159906
CD76bVL3763SEQ ID NO. 60 in US20160159906
CD76bVL3764SEQ ID NO. 62 in US20160159906
CD79VL3765SEQ ID NO. 130 in WO2016122701
CDIMVL3766SEQ ID NO. 28 in WO2013120012
CDIMVL3767SEQ ID NO. 29 in WO2013120012
CDIMVL3768SEQ ID NO. 30 in WO2013120012
CDIMVL3769SEQ ID NO. 31 in WO2013120012
CDIMVL3770SEQ ID NO. 32 in WO2013120012
CDIMVL3771SEQ ID NO. 33 in WO2013120012
CDIMVL3772SEQ ID NO. 34 in WO2013120012
CDIMVL3773SEQ ID NO. 35 in WO2013120012
CDIMVL3774SEQ ID NO. 36 in WO2013120012
CDIMVL3775SEQ ID NO. 37 in WO2013120012
CDIMVL3776SEQ ID NO. 38 in WO2013120012
CDIMVL3777SEQ ID NO. 39 in WO2013120012
CDIMVL3778SEQ ID NO. 40 in WO2013120012
CDIMVL3779SEQ ID NO. 41 in WO2013120012
CDIMVL3780SEQ ID NO. 42 in WO2013120012
CDIMVL3781SEQ ID NO. 43 in WO2013120012
CDIMVL3782SEQ ID NO. 44 in WO2013120012
CDIMVL3783SEQ ID NO. 45 in WO2013120012
CDIMVL3784SEQ ID NO. 46 in WO2013120012
CDIMVL3785SEQ ID NO. 47 in WO2013120012
CDIMVL3786SEQ ID NO. 48 in WO2013120012
CDIMVL3787SEQ ID NO. 49 in WO2013120012
CEAVL3788SEQ ID NO: 10 in U.S. Pat. No. 8,287,865
CEAVL3789SEQ ID NO: 38 in U.S. Pat. No. 8,287,865
CEAVL3790SEQ ID NO: 39 in U.S. Pat. No. 8,287,865
CEAVL3791SEQ ID NO: 7 in U.S. Pat. No. 8,287,865
CEAVL3792SEQ ID NO: 9 in U.S. Pat. No. 8,287,865
ClaudinVL3793SEQ ID NO. 114 in WO2016073649A1
ClaudinVL3794SEQ ID NO. 116 in WO2016073649A1
ClaudinVL3795SEQ ID NO. 118 in WO2016073649A1
ClaudinVL3796SEQ ID NO. 120 in WO2016073649A1
ClaudinVL3797SEQ ID NO. 22 in WO2016073649A1
ClaudinVL3798SEQ ID NO. 25 in WO2016073649A1
ClaudinVL3799SEQ ID NO. 29 in WO2016073649A1
ClaudinVL3800SEQ ID NO. 33 in WO2016073649A1
ClaudinVL3801SEQ ID NO. 37 in WO2016073649A1
ClaudinVL3802SEQ ID NO. 41 in WO2016073649A1
ClaudinVL3803SEQ ID NO. 45 in WO2016073649A1
ClaudinVL3804SEQ ID NO. 49 in WO2016073649A1
ClaudinVL3805SEQ ID NO. 53 in WO2016073649A1
ClaudinVL3806SEQ ID NO. 57 in WO2016073649A1
ClaudinVL3807SEQ ID NO. 61 in WO2016073649A1
ClaudinVL3808SEQ ID NO. 65 in WO2016073649A1
ClaudinVL3809SEQ ID NO. 69 in WO2016073649A1
ClaudinVL3810SEQ ID NO. 73 in WO2016073649A1
ClaudinVL3811SEQ ID NO. 77 in WO2016073649A1
CLDN18.2VL3812SEQ ID No. 13 in US20160347815A1
CLDN18.2VL3813SEQ ID No. 3 in US20160347815A1
CLL1VL3814SEQ ID NO. 16 in WO2016120219
CLL1VL3815SEQ ID NO. 18 in WO2016120219
CLL1VL3816SEQ ID NO. 196 in WO2016014535
CLL1VL3817SEQ ID NO. 20 in WO2016120219
CLL1VL3818SEQ ID NO. 22 in WO2016120219
CLL1VL3819SEQ ID NO. 24 in WO2016120219
CLL1VL3820SEQ ID NO. 26 in WO2016120219
CLL1VL3821SEQ ID NO. 28 in WO2016120219
CLL1VL3822SEQ ID NO. 30 in WO2016120219
CLL1VL3823SEQ ID NO. 32 in WO2016120219
CLL1VL3824SEQ ID NO. 34 in WO2016120219
CLL1VL3825SEQ ID NO. 36 in WO2016120219
CLL1VL3826SEQ ID NO. 78 in WO2016014535
CLL1VL3827SEQ ID NO. 79 in WO2016014535
CLL1VL3828SEQ ID NO. 80 in WO2016014535
CLL1VL3829SEQ ID NO. 81 in WO2016014535
CLL1VL3830SEQ ID NO. 82 in WO2016014535
CLL1VL3831SEQ ID NO. 83 in WO2016014535
CLL1VL3832SEQ ID NO. 84 in WO2016014535
CLL1VL3833SEQ ID NO. 85 in WO2016014535
CLL1VL3834SEQ ID NO. 86 in WO2016014535
CLL1VL3835SEQ ID NO. 87 in WO2016014535
CLL1VL3836SEQ ID NO. 88 in WO2016014535
CLL1VL3837SEQ ID NO. 89 in WO2016014535
CLL1VL3838SEQ ID NO. 90 in WO2016014535
CLL1VL3839SEQ ID NO. 30 in US20160075787
CLL1VL3840SEQ ID NO. 32 in US20160075787
CLL1VL3841SEQ ID NO. 35 in US20160075787
CLL1VL3842SEQ ID NO. 37 in US20160075787
CLL1VL3843SEQ ID NO. 39 in US20160075787
CLL1VL3844SEQ ID NO. 41 in US20160075787
CLL1VL3845SEQ ID NO: 152 in WO2016179319A1
CLL1VL3846SEQ ID NO: 104 in WO2016179319A1
CLL1VL3847SEQ ID NO: 106 in WO2016179319A1
CLL1VL3848SEQ ID NO: 108 in WO2016179319A1
CLL1VL3849SEQ ID NO: 110 in WO2016179319A1
CLL1VL3850SEQ ID NO: 112 in WO2016179319A1
CLL1VL3851SEQ ID NO: 114 in WO2016179319A1
CLL1VL3852SEQ ID NO: 116 in WO2016179319A1
CLL1VL3853SEQ ID NO: 118 in WO2016179319A1
CLL3VL3854SEQ ID NO. 100 in US20170000901
CLL3VL3855SEQ ID NO. 102 in US20170000901
CLL3VL3856SEQ ID NO. 104 in US20170000901
CLL3VL3857SEQ ID NO. 106 in US20170000901
CLL3VL3858SEQ ID NO. 108 in US20170000901
CLL3VL3859SEQ ID NO. 110 in US20170000901
CLL3VL3860SEQ ID NO. 112 in US20170000901
CLL3VL3861SEQ ID NO. 114 in US20170000901
CLL3VL3862SEQ ID NO. 116 in US20170000901
CLL3VL3863SEQ ID NO. 118 in US20170000901
CLL3VL3864SEQ ID NO. 120 in US20170000901
CLL3VL3865SEQ ID NO. 122 in US20170000901
CLL3VL3866SEQ ID NO. 124 in US20170000901
CLL3VL3867SEQ ID NO. 126 in US20170000901
CLL3VL3868SEQ ID NO. 128 in US20170000901
CLL3VL3869SEQ ID NO. 130 in US20170000901
CLL3VL3870SEQ ID NO. 132 in US20170000901
CLL3VL3871SEQ ID NO. 134 in US20170000901
CLL3VL3872SEQ ID NO. 136 in US20170000901
CLL3VL3873SEQ ID NO. 138 in US20170000901
CLL3VL3874SEQ ID NO. 140 in US20170000901
CLL3VL3875SEQ ID NO. 144 in US20170000901
CLL3VL3876SEQ ID NO. 146 in US20170000901
CLL3VL3877SEQ ID NO. 148 in US20170000901
CLL3VL3878SEQ ID NO. 150 in US20170000901
CLL3VL3879SEQ ID NO. 152 in US20170000901
CLL3VL3880SEQ ID NO. 154 in US20170000901
CLL3VL3881SEQ ID NO. 156 in US20170000901
CLL3VL3882SEQ ID NO. 158 in US20170000901
CLL3VL3883SEQ ID NO. 160 in US20170000901
CLL3VL3884SEQ ID NO. 162 in US20170000901
CLL3VL3885SEQ ID NO. 164 in US20170000901
CLL3VL3886SEQ ID NO. 166 in US20170000901
CLL3VL3887SEQ ID NO. 170 in US20170000901
CLL3VL3888SEQ ID NO. 172 in US20170000901
CLL3VL3889SEQ ID NO. 174 in US20170000901
CLL3VL3890SEQ ID NO. 176 in US20170000901
CLL3VL3891SEQ ID NO. 178 in US20170000901
CLL3VL3892SEQ ID NO. 180 in US20170000901
CLL3VL3893SEQ ID NO. 182 in US20170000901
CLL3VL3894SEQ ID NO. 184 in US20170000901
CLL3VL3895SEQ ID NO. 186 in US20170000901
CLL3VL3896SEQ ID NO. 190 in US20170000901
CLL3VL3897SEQ ID NO. 192 in US20170000901
CLL3VL3898SEQ ID NO. 194 in US20170000901
CLL3VL3899SEQ ID NO. 196 in US20170000901
CLL3VL3900SEQ ID NO. 198 in US20170000901
CLL3VL3901SEQ ID NO. 20 in US20170000901
CLL3VL3902SEQ ID NO. 200 in US20170000901
CLL3VL3903SEQ ID NO. 202 in US20170000901
CLL3VL3904SEQ ID NO. 204 in US20170000901
CLL3VL3905SEQ ID NO. 206 in US20170000901
CLL3VL3906SEQ ID NO. 208 in US20170000901
CLL3VL3907SEQ ID NO. 210 in US20170000901
CLL3VL3908SEQ ID NO. 212 in US20170000901
CLL3VL3909SEQ ID NO. 22 in US20170000901
CLL3VL3910SEQ ID NO. 24 in US20170000901
CLL3VL3911SEQ ID NO. 26 in US20170000901
CLL3VL3912SEQ ID NO. 28 in US20170000901
CLL3VL3913SEQ ID NO. 30 in US20170000901
CLL3VL3914SEQ ID NO. 32 in US20170000901
CLL3VL3915SEQ ID NO. 34 in US20170000901
CLL3VL3916SEQ ID NO. 36 in US20170000901
CLL3VL3917SEQ ID NO. 38 in US20170000901
CLL3VL3918SEQ ID NO. 40 in US20170000901
CLL3VL3919SEQ ID NO. 42 in US20170000901
CLL3VL3920SEQ ID NO. 44 in US20170000901
CLL3VL3921SEQ ID NO. 46 in US20170000901
CLL3VL3922SEQ ID NO. 48 in US20170000901
CLL3VL3923SEQ ID NO. 50 in US20170000901
CLL3VL3924SEQ ID NO. 54 in US20170000901
CLL3VL3925SEQ ID NO. 56 in US20170000901
CLL3VL3926SEQ ID NO. 58 in US20170000901
CLL3VL3927SEQ ID NO. 60 in US20170000901
CLL3VL3928SEQ ID NO. 62 in US20170000901
CLL3VL3929SEQ ID NO. 64 in US20170000901
CLL3VL3930SEQ ID NO. 66 in US20170000901
CLL3VL3931SEQ ID NO. 68 in US20170000901
CLL3VL3932SEQ ID NO. 70 in US20170000901
CLL3VL3933SEQ ID NO. 72 in US20170000901
CLL3VL3934SEQ ID NO. 74 in US20170000901
CLL3VL3935SEQ ID NO. 76 in US20170000901
CLL3VL3936SEQ ID NO. 78 in US20170000901
CLL3VL3937SEQ ID NO. 80 in US20170000901
CLL3VL3938SEQ ID NO. 82 in US20170000901
CLL3VL3939SEQ ID NO. 84 in US20170000901
CLL3VL3940SEQ ID NO. 86 in US20170000901
CLL3VL3941SEQ ID NO. 88 in US20170000901
CLL3VL3942SEQ ID NO. 90 in US20170000901
CLL3VL3943SEQ ID NO. 92 in US20170000901
CLL3VL3944SEQ ID NO. 94 in US20170000901
CLL3VL3945SEQ ID NO. 96 in US20170000901
CLL3VL3946SEQ ID NO. 98 in US20170000901
collagenVL3947SEQ ID NO. 11 in WO2007024921
collagenVL3948SEQ ID NO. 12 in WO2007024921
collagenVL3949SEQ ID NO. 14 in WO2007024921
collagenVL3950SEQ ID NO. 23 in WO2007024921
collagenVL3951SEQ ID NO. 25 in WO2007024921
collagenVL3952SEQ ID NO. 26 in WO2007024921
collagenVL3953SEQ ID NO. 27 in WO2007024921
collagenVL3954SEQ ID NO. 8 in WO2007024921
collagenVL3955SEQ ID NO. 9 in WO2007024921
CS1VL3956SEQ ID NO. 104 in WO2016120216
CS1VL3957SEQ ID NO. 106 in WO2016120216
CS1VL3958SEQ ID NO. 108 in WO2016120216
CS1VL3959SEQ ID NO. 14 in WO2015166056A1
CS1VL3960SEQ ID NO. 16 in WO2015166056A1
CS1VL3961SEQ ID NO. 18 in WO2015166056A1
CS1VL3962SEQ ID NO. 20 in WO2015166056A1
CS1VL3963SEQ ID NO. 22 in WO2015166056A1
CS1VL3964SEQ ID No. 39 in WO2015121454
CS1VL3965SEQ ID No. 41 in WO2015121454
CS1VL3966SEQ ID No. 43 in WO2015121454
CS1VL3967SEQ ID No. 45 in WO2015121454
CS1VL3968SEQ ID No. 47 in WO2015121454
CSFVL3969SEQ ID NO 12 in US20050059113A1
CSFVL3970SEQ ID NO 32 in US20050059113A1
CSFVL3971SEQ ID NO 44 in US20050059113A1
CSFVL3972SEQ ID NO 48 in US20050059113A1
CSFVL3973SEQ ID NO 60 in US20050059113A1
CSPG4VL3974SEQ ID NO. 7 in WO2016164429
CTLA4VL3975SEQ ID NO. 36 in US20140105914
CTLA4VL3976SEQ ID NO. 37 in US20140105914
CTLA4VL3977SEQ ID NO. 38 in US20140105914
CTLA4VL3978SEQ ID NO. 39 in US20140105914
CTLA4VL3979SEQ ID NO. 40 in US20140105914
CTLA4VL3980SEQ ID NO. 46 in US20140105914
CTLA4VL3981SEQ ID NO. 47 in US20140105914
CTLA4VL3982SEQ ID NO. 48 in US20140105914
CTLA4VL3983SEQ ID NO. 49 in US20140105914
CTLA4VL3984SEQ ID NO. 50 in US20140105914
CTLA4VL3985SEQ ID NO. 8 in US20140105914
CTLA4VL3986SEQ ID NO. 2 in U.S. Pat. No. 8,697,845
CTLA4VL3987SEQ ID NO. 4 in US20140105914
CTLA4(Ipilimumab)VL3988SEQ ID NO. 20 in US20150283234
CTLA4(Ipilimumab)VL3989SEQ ID NO. 18 in WO2014066532
CXCR4VL3990US20110020218 SEQ ID NO: 76
CXCR4VL3991US20110020218 SEQ ID NO: 77
CXCR4VL3992US20110020218 SEQ ID NO: 78
CXCR4VL3993US20110020218 SEQ ID NO: 79
CXCR4VL3994US20110020218 SEQ ID NO: 80
CXCR4VL3995US20110020218 SEQ ID NO: 81
CXCR4VL3996US20110020218 SEQ ID NO: 82
CXCR4VL3997US20110020218 SEQ ID NO: 87
CXCR4VL3998US20110020218 SEQ ID NO: 88
CXCR4VL3999US20110020218 SEQ ID NO: 90
CXCR4VL4000US20110020218 SEQ ID NO: 91
CXCR4VL4001US20110020218 SEQ ID NO: 92
CXCR4VL4002US20110020218 SEQ ID NO: 93
DaclizumabVL4003SEQ ID NO: 43 in US20160333114A1
DaclizumabVL4004SEQ ID NO: 45 in US20160333114A1
DR5VL4005SEQ ID NO. 13 in WO2016122701
DR5VL4006SEQ ID NO. 23 in WO2016122701
DR5VL4007SEQ ID NO. 25 in WO2016122701
DR5VL4008SEQ ID NO. 27 in WO2016122701
DR5VL4009SEQ ID NO. 3 in WO2016122701
DR5VL4010SEQ ID NO. 78 in WO2016122701
DR5VL4011SEQ ID NO. 86 in WO2016122701
DR5VL4012SEQ ID NO. 94 in WO2016122701
DR5VL4013SEQ ID NO. 29 in WO2016122701
DR5(Conatumumab)VL4014SEQ ID NO. 62 in WO2016122701
DR5(Drozitumab)VL4015SEQ ID NO. 54 in WO2016122701
DR5(Tigatumumab)VL4016SEQ ID NO. 70 in WO2016122701
E7MCVL4017SEQ ID NO: 238 in WO2016182957A1
E7MCVL4018SEQ ID NO: 239 in WO2016182957A1
E7MCVL4019SEQ ID NO: 240 in WO2016182957A1
E7MCVL4020SEQ ID NO: 241 in WO2016182957A1
E7MCVL4021SEQ ID NO: 242 in WO2016182957A1
E7MCVL4022SEQ ID NO: 243 in WO2016182957A1
E7MCVL4023SEQ ID NO: 36 in WO2016182957A1
E7MCVL4024SEQ ID NO: 37 in WO2016182957A1
E7MCVL4025SEQ ID NO: 38 in WO2016182957A1
E7MCVL4026SEQ ID NO: 39 in WO2016182957A1
E7MCVL4027SEQ ID NO: 41 in WO2016182957A1
E7MCVL4028SEQ ID NO: 42 in WO2016182957A1
E7MCVL4029SEQ ID NO: 43 in WO2016182957A1
E7MCVL4030SEQ ID NO: 44 in WO2016182957A1
E7MCVL4031SEQ ID NO: 45 in WO2016182957A1
E7MCVL4032SEQ ID NO: 46 in WO2016182957A1
E7MCVL4033SEQ ID NO: 47 in WO2016182957A1
E7MCVL4034SEQ ID NO: 48 in WO2016182957A1
E7MCVL4035SEQ ID NO: 49 in WO2016182957A1
E7MCVL4036SEQ ID NO: 50 in WO2016182957A1
E7MCVL4037SEQ ID NO: 51 in WO2016182957A1
E7MCVL4038SEQ ID NO: 52 in WO2016182957A1
E7MCVL4039SEQ ID NO: 53 in WO2016182957A1
E7MCVL4040SEQ ID NO: 54 in WO2016182957A1
E7MCVL4041SEQ ID NO: 55 in WO2016182957A1
E7MCVL4042SEQ ID NO: 56 in WO2016182957A1
EFNAVL4043SEQ ID NO: 151 in WO2012118547
EFNAVL4044SEQ ID NO: 155 in WO2012118547
EFNAVL4045SEQ ID NO: 159 in WO2012118547
EFNAVL4046SEQ ID NO: 163 in WO2012118547
EFNA4VL4047SEQ ID NO. 27 in US20150125472
EFNA4VL4048SEQ ID NO. 53 in US20150125472
EGFRVL4049SEQ ID NO. 15 in WO2015143382
EGFRVL4050SEQ ID NO. 14 in WO2014143765
EGFRVL4051
EGFRVL4052
EGFRVL4053
EGFRVL4054
EGFRVL4055
EGFRVL4056
EGFRVL4057
EGFRVL4058
EGFRVL4059
EGFRVL4060
EGFRVL4061
EGFRVL4062
EGFRVL4063
EGFRVL4064
EGFRVL4065
EGFRVL4066
EGFRVL4067
EGFRVL4068
EGFRVL4069
EGFRVL4070
EGFRVL4071
EGFRVL4072
EGFRVL4073
EGFRVL4074
EGFRVL4075
EGFRVL4076
EGFRVL4077
EGFRVL4078
EGFRVL4079
EGFRVL4080
EGFRVL4081
EGFRVL4082
EGFRVL4083
EGFRVL4084
EGFRVL4085
EGFRVL4086
EGFRVL4087
EGFRVL4088
EGFRVL4089
EGFRVL4090
EGFRVL4091
EGFRVL4092
EGFRVL4093
EGFRVL4094
EGFRVL4095
EGFRVL4096
EGFRVL4097
EGFRVL4098
EGFRVL4099
EGFRVL4100
EGFRVL4101
EGFRVL4102
EGFRVL4103
EGFRVL4104
EGFRVL4105
EGFRVL4106
EGFRVL4107
EGFRVL4108
EGFRVL4109
EGFRVL4110
EGFRVL4111
EGFRVL4112
EGFRVL4113
EGFRVL4114
EGFRVL4115
EGFRVL4116
EGFRVL4117
EGFRVL4118
EGFRVL4119
EGFRVL4120
EGFRVL4121
EGFRVL4122
EGFRVL4123
EGFRVL4124
EGFRVL4125
EGFRVL4126
EGFRVL4127
EGFRVL4128
EGFRVL4129
EGFRVL4130
EGFRVL4131
EGFRVL4132
EGFRVL4133
EGFRVL4134
EGFRVL4135
EGFRVL4136
EGFRVL4137
EGFRVL4138
EGFRVL4139
EGFRVL4140
EGFRVL4141
EGFRVL4142
EGFRVL4143
EGFRVL4144
EGFRVL4145
EGFRVL4146
EGFRVL4147
EGFRVL4148
EGFRVL4149
EGFRVL4150
EGFRVL4151
EGFRVL4152
EGFRVL4153
EGFRVL4154
EGFRVL4155
EGFRVL4156
EGFRVL4157
EGFRVL4158
EGFRVL4159
EGFRVL4160
EGFRVL4161
EGFRVL4162
EGFRVL4163
EGFRVL4164
EGFRVL4165
EGFRVL4166
EGFRVL4167
EGFRVL4168
EGFRVL4169
EGFRVL4170
EGFRVL4171
EGFRVL4172
EGFRVL4173
EGFRVL4174
EGFRVL4175
EGFRVL4176
EGFRVL4177
EGFRVL4178
EGFRVL4179
EGFRVL4180
EGFRVL4181
EGFRVL4182
EGFRVL4183
EGFRVL4184
EGFRVL4185
EGFRVL4186
EGFRVL4187
EGFRVL4188
EGFRVL4189
EGFRVL4190
EGFRVL4191
EGFRVL4192
EGFRVL4193
EGFRVL4194
EGFRVL4195
EGFRVL4196
EGFRVL4197
EGFRVL4198
EGFRVL4199
EGFRVL4200
EGFRVL4201
EGFRVL4202
EGFRVL4203
EGFRVL4204
EGFRVL4205
EGFRVL4206
EGFRVL4207
EGFRVL4208
EGFRVL4209
EGFRVL4210
EGFRVL4211
EGFRVL4212
EGFRVL4213
EGFRVL4214
EGFRVL4215
EGFRVL4216
EGFRVL4217
EGFRVL4218
EGFRVL4219
EGFRVL4220
EGFRVL4221
EGFRVL4222
EGFRVL4223
EGFRVL4224
EGFRVL4225
EGFRVL4226
EGFRVL4227
EGFRVL4228
EGFRVL4229
EGFRVL4230
EGFRVL4231
EGFRVL4232
EGFRVL4233
EGFRVL4234
EGFRVL4235
EGFRVL4236
EGFRVL4237
EGFRVL4238
EGFRVL4239
EGFRVL4240
EGFRVL4241
EGFRVL4242
EGFRVL4243
EGFRVL4244
EGFRVL4245
EGFRVL4246
EGFRVL4247
EGFRVL4248
EGFRVL4249
EGFRVL4250
EGFRVL4251
EGFRVL4252
EGFRVL4253
EGFRVL4254
EGFRVL4255
EGFRVL4256
EGFRVL4257
EGFRVL4258
EGFRVL4259
EGFRVL4260
EGFRVL4261
EGFRVL4262
EGFRVL4263
EGFRVL4264
EGFRVL4265
EGFRVL4266
EGFRVL4267
EGFRVL4268
EGFRVL4269
EGFRVL4270
EGFRVL4271
EGFRVL4272
EGFRVL4273
EGFRVL4274
EGFRVL4275
EGFRVL4276
EGFRVL4277
EGFRVL4278
EGFRVL4279
EGFRVL4280
EGFRVL4281
EGFRVL4282
EGFRVL4283
EGFRVL4284
EGFRVL4285
EGFRVL4286
EGFRVL4287
EGFRVL4288
EGFRVL4289
EGFRVL4290
EGFRVL4291
EGFRVL4292
EGFRVL4293
EGFRVL4294
EGFRVL4295
EGFRVL4296
EGFRVL4297
EGFRVL4298
EGFRVL4299
EGFRVL4300
EGFRVL4301
EGFRVL4302
EGFRVL4303
EGFRVL4304
EGFRVL4305
EGFRVL4306
EGFRVL4307
EGFRVL4308
EGFRVL4309
EGFRVL4310
EGFRVL4311
EGFRVL4312
EGFRVL4313
EGFRVL4314
EGFRVL4315
EGFRVL4316
EGFRVL4317
EGFRVL4318
EGFRVL4319
EGFRVL4320
EGFRVL4321
EGFRVL4322
EGFRVL4323
EGFRVL4324
EGFRVL4325
EGFRVL4326
EGFRVL4327
EGFRVL4328
EGFRVL4329
EGFRVL4330
EGFRVL4331
EGFRVL4332
EGFRVL4333
EGFRVL4334
EGFRVL4335
EGFRVL4336
EGFRVL4337
EGFRVL4338
EGFRVL4339
EGFRVL4340
EGFRVL4341
EGFRVL4342
EGFRVL4343
EGFRVL4344
EGFRVL4345
EGFRVL4346
EGFRVL4347
EGFRVL4348
EGFRVL4349
EGFRVL4350
EGFRVL4351
EGFRVL4352
EGFRVL4353
EGFRVL4354
EGFRVL4355
EGFRVL4356
EGFRVL4357
EGFRVL4358
EGFRVL4359
EGFRVL4360
EGFRVL4361
EGFRVL4362
EGFRVL4363
EGFRVL4364
EGFRVL4365
EGFRVL4366
EGFRVL4367
EGFRVL4368
EGFRVL4369
EGFRVL4370
EGFRVL4371
EGFRVL4372
EGFRVL4373
EGFRVL4374
EGFRVL4375
EGFRVL4376
EGFRVL4377
EGFRVL4378
EGFRVL4379
EGFRVL4380
EGFRVL4381
EGFRVL4382
EGFRVL4383
EGFRVL4384
EGFRVL4385
EGFRVL4386
EGFRVL4387
EGFRVL4388
EGFRVL4389
EGFRVL4390
EGFRVL4391
EGFRVL4392
EGFRVL4393
EGFRVL4394
EGFRVL4395
EGFRVL4396
EGFRVL4397
EGFRVL4398
EGFRVL4399
EGFRVL4400
EGFRVL4401
EGFRVL4402
EGFRVL4403
EGFRVL4404
EGFRVL4405
EGFRVL4406
EGFRVL4407
EGFRVL4408
EGFRVL4409
EGFRVL4410
EGFRVL4411
EGFRVL4412
EGFRVL4413
EGFRVL4414
EGFRVL4415
EGFRVL4416
EGFRVL4417
EGFRVL4418
EGFRVL4419
EGFRVL4420
EGFRVL4421
EGFRVL4422
EGFRVL4423
EGFRVL4424
EGFRVL4425
EGFRVL4426
EGFRVL4427
EGFRVL4428
EGFRVL4429
EGFRVL4430
EGFRVL4431
EGFRVL4432
EGFRVL4433
EGFRVL4434
EGFRVL4435
EGFRVL4436
EGFRVL4437
EGFRVL4438
EGFRVL4439
EGFRVL4440
EGFRVL4441
EGFRVL4442
EGFRVL4443
EGFRVL4444
EGFRVL4445
EGFRVL4446
EGFRVL4447
EGFRVL4448
EGFRVL4449
EGFRVL4450
EGFRVL4451
EGFRVL4452
EGFRVL4453
EGFRVL4454
EGFRVL4455
EGFRVL4456
EGFRVL4457
EGFRVL4458
EGFRVL4459
EGFRVL4460
EGFRVL4461
EGFRVL4462
EGFRVL4463
EGFRVL4464
EGFRVL4465
EGFRVL4466
EGFRVL4467
EGFRVL4468
EGFRVL4469
EGFRVL4470
EGFRVL4471
EGFRVL4472
EGFRVL4473
EGFRVL4474
EGFRVL4475
EGFRVL4476
EGFRVL4477
EGFRVL4478
EGFRVL4479
EGFRVL4480
EGFRVL4481
EGFRVL4482
EGFRVL4483
EGFRVL4484
EGFRVL4485
EGFRVL4486
EGFRVL4487
EGFRVL4488
EGFRVL4489
EGFRVL4490
EGFRVL4491
EGFRVL4492
EGFRVL4493
EGFRVL4494
EGFRVL4495
EGFRVL4496
EGFRVL4497
EGFRVL4498
EGFRVL4499
EGFRVL4500
EGFRVL4501
EGFRVL4502
EGFRVL4503
EGFRVL4504
EGFRVL4505
EGFRVL4506
EGFRVL4507
EGFRVL4508
EGFRVL4509
EGFRVL4510
EGFRVL4511
EGFRVL4512
EGFRVL4513
EGFRVL4514
EGFRVL4515
EGFRVL4516
EGFRVL4517
EGFRVL4518
EGFRVL4519
EGFRVL4520
EGFRVL4521
EGFRVL4522
EGFRVL4523
EGFRVL4524
EGFRVL4525
EGFRVL4526
EGFRVL4527
EGFRVL4528
EGFRVL4529
EGFRVL4530
EGFRVL4531
EGFRVL4532
EGFRVL4533
EGFRVL4534
EGFRVL4535
EGFRVL4536
EGFRVL4537
EGFRVL4538
EGFRVL4539
EGFRVL4540
EGFRVL4541
EGFRVL4542
EGFRVL4543
EGFRVL4544
EGFRVL4545
EGFRVL4546
EGFRVL4547
EGFRVL4548
EGFRVL4549
EGFRVL4550
EGFRVL4551
EGFRVL4552
EGFRVL4553
EGFRVL4554
EGFRVL4555
EGFRVL4556
EGFRVL4557
EGFRVL4558
EGFRVL4559
EGFRVL4560
EGFRVL4561
EGFRVL4562
EGFRVL4563
EGFRVL4564
EGFRVL4565
EGFRVL4566
EGFRVL4567
EGFRVL4568
EGFRVL4569
EGFRVL4570
EGFRVL4571
EGFRVL4572
EGFRVL4573
EGFRVL4574
EGFRVL4575
EGFRVL4576
EGFRVL4577
EGFRVL4578
EGFRVL4579
EGFRVL4580
EGFRVL4581
EGFRVL4582
EGFRVL4583
EGFRVL4584
EGFRVL4585
EGFRVL4586
EGFRVL4587
EGFRVL4588
EGFRVL4589
EGFRVL4590
EGFRVL4591
EGFRVL4592
EGFRVL4593
EGFRVL4594
EGFRVL4595
EGFRVL4596
EGFRVL4597
EGFRVL4598
EGFRVL4599
EGFRVL4600
EGFRVL4601
EGFRVL4602
EGFRVL4603
EGFRVL4604
EGFRVL4605
EGFRVL4606
EGFRVL4607
EGFRVL4608
EGFRVL4609
EGFRVL4610
EGFRVL4611
EGFRVL4612
EGFRVL4613
EGFRVL4614
EGFRVL4615
EGFRVL4616
EGFRVL4617
EGFRVL4618
EGFRVL4619
EGFRVL4620
EGFRVL4621
EGFRVL4622
EGFRVL4623
EGFRVL4624
EGFRVL4625
EGFRVL4626
EGFRVL4627
EGFRVL4628
EGFRVL4629
EGFRVL4630
EGFRVL4631
EGFRVL4632
EGFRVL4633
EGFRVL4634
EGFRVL4635
EGFRVL4636
EGFRVL4637
EGFRVL4638
EGFRVL4639
EGFR(EGFRvIII)VL4640
EGFR(EGFRvIII)VL4641
EGFR(EGFRvIII)VL4642
EGFR(EGFRvIII)VL4643
EGFR(EGFRvIII)VL4644
EGFR(EGFRvIII)VL4645
EGFR(EGFRvIII)VL4646
EGFR(EGFRvIII)VL4647
EGFR(EGFRvIII)VL4648
EGFR(EGFRvIII)VL4649
EGFR(EGFRvIII)VL4650
EGFR(EGFRvIII)VL4651
EGFR(EGFRvIII)VL4652
EGFR(EGFRvIII)VL4653
EGFR(EGFRvIII)VL4654
EGFR(EGFRvIII)VL4655
EGFR(EGFRvIII)VL4656
EGFR(EGFRvIII)VL4657
EGFR(EGFRvIII)VL4658
EGFRvIIIVL4659SEQ ID NO. 14 in WO2016016341
EGFRvIIIVL4660SEQ ID NO: 23 in WO2016168773A3
EGFRvIIIVL4661SEQ ID NO. 42 in US20160304615
EGFRvIIIVL4662SEQ ID NO: 1 in US20160200819A1
EndoglinVL4663SEQ ID NO 103 in WO2011041441
EndoglinVL4664SEQ ID NO 88 in WO2011041441
EndoglinVL4665SEQ ID NO 89 in WO2011041441
EndoglinVL4666SEQ ID NO 90 in WO2011041441
EndoglinVL4667SEQ ID NO 91 in WO2011041441
EndoglinVL4668SEQ ID NO 92 in WO2011041441
EndoglinVL4669SEQ ID NO 93 in WO2011041441
EndoglinVL4670SEQ ID NO 94 in WO2011041441
EndoglinVL4671SEQ ID NO 95 in WO2011041441
EndoglinVL4672SEQ ID NO 96 in WO2011041441
EndoglinVL4673SEQ ID NO 97 in WO2011041441
EndoglinVL4674SEQ ID NO. 102 in WO2011041441
EndoglinVL4675SEQ ID NO. 100 in WO2011041441
EndoglinVL4676SEQ ID NO. 100 in US20160009811
EndoglinVL4677SEQ ID NO. 102 in US20160009811
EndoglinVL4678SEQ ID NO. 103 in US20160009811
EndoglinVL4679SEQ ID NO. 3 in US20160009811
EndoglinVL4680SEQ ID NO. 4 in US20160009811
EndoglinVL4681SEQ ID NO. 5 in US20160009811
EndoglinVL4682SEQ ID NO. 70 in US20160009811
EndoglinVL4683SEQ ID NO. 72 in US20160009811
EndoglinVL4684SEQ ID NO. 74 in US20160009811
EndoglinVL4685SEQ ID NO. 93 in US20160009811
EndoglinVL4686SEQ ID NO. 94 in US20160009811
EndoglinVL4687SEQ ID NO. 95 in US20160009811
EndoglinVL4688SEQ ID NO. 96 in US20160009811
EndoglinVL4689SEQ ID NO. 97 in US20160009811
EphA2receptorVL4690US20150274824 SEQ ID NO: 26
EphA2receptorVL4691US20150274824 SEQ ID NO: 28
EphA2receptorVL4692US20150274824 SEQ ID NO: 30
EphA2receptorVL4693US20150274824 SEQ ID NO: 47
EphA2receptorVL4694US20150274824 SEQ ID NO: 48
EphA2receptorVL4695US20150274824 SEQ ID NO: 49
EphA2receptorVL4696US20150274824 SEQ ID NO: 50
EphA2receptorVL4697US20150274824 SEQ ID NO: 52
EphA2receptorVL4698US20150274824 SEQ ID NO: 78
EphA2receptorVL4699US20150274824 SEQ ID NO: 80
ERBB2VL4700US20110129464 SEQ ID NO: 1
ERBB2VL4701US20130089544 SEQ ID NO: 12
ERBB2VL4702US20130089544 SEQ ID NO: 16
ERBB2VL4703US20130089544 SEQ ID NO: 20
ERBB2VL4704US20130089544 SEQ ID NO: 24
ERBB2VL4705US20130089544 SEQ ID NO: 32
ERBB2VL4706US20130089544 SEQ ID NO: 36
ERBB2VL4707US20130089544 SEQ ID NO: 44
ERBB2VL4708US20130089544 SEQ ID NO: 50
ERBB2VL4709US20130089544 SEQ ID NO: 51
ERBB2VL4710US20130089544 SEQ ID NO: 53
ERBB2VL4711US20130089544 SEQ ID NO: 8
ERBB2VL4712US20130266564 SEQ ID NO: 7
FactorDVL4713SEQ ID NO. 16 in US20160017052
FactorDVL4714SEQ ID NO. 18 in US20160017052
FactorDVL4715SEQ ID NO. 19 in US20160017052
FactorDVL4716SEQ ID NO. 26 in US20160017052
FactorDVL4717SEQ ID NO. 3 in US20160017052
FactorXIIVL4718SEQ ID NO. 17 in WO2014089493
FAPVL4719SEQ ID NO. 2 in WO2015118030
FAPVL4720SEQ ID NO. 6 in WO2015118030
FAPVL4721SEQ ID NO. 171 in WO2016120216
FAPVL4722SEQ ID NO. 173 in WO2016120216
FAPVL4723SEQ ID NO: 9 in US20160326265A1
FcRL5(FcReceptorLike5)VL4724SEQ ID NO: 11 WO2016090337
FcRL5(FcReceptorLike5)VL4725SEQ ID NO: 15 WO2016090337
FcRL5(FcReceptorLike5)VL4726SEQ ID NO: 19 WO2016090337
FcRL5(FcReceptorLike5)VL4727SEQ ID NO: 23 WO2016090337
FcRL5(FcReceptorLike5)VL4728SEQ ID NO: 27 WO2016090337
FcRL5(FcReceptorLike5)VL4729SEQ ID NO: 3 WO2016090337
FcRL5(FcReceptorLike5)VL4730SEQ ID NO: 31 WO2016090337
FcRL5(FcReceptorLike5)VL4731SEQ ID NO: 35 WO2016090337
FcRL5(FcReceptorLike5)VL4732SEQ ID NO: 39 WO2016090337
FcRL5(FcReceptorLike5)VL4733SEQ ID NO: 43 WO2016090337
FcRL5(FcReceptorLike5)VL4734SEQ ID NO: 47 WO2016090337
FcRL5(FcReceptorLike5)VL4735SEQ ID NO: 7 WO2016090337
FcRL5(FcReceptorLike5)VL4736SEQ ID NO: 917 WO2016090337
FcRL5(FcReceptorLike5)VL4737SEQ ID NO: 921 WO2016090337
FGFR3VL4738SEQ ID NO. 133 in U.S. Pat. No. 9,499,623
FGFR3VL4739SEQ ID NO. 135 in U.S. Pat. No. 9,499,623
FGFR3VL4740SEQ ID NO. 137 in U.S. Pat. No. 9,499,623
FGFR3VL4741SEQ ID NO. 139 in U.S. Pat. No. 9,499,623
Frizzled ReceptorVL4742SEQ ID NO. 12 in WO2010037041
Frizzled ReceptorVL4743SEQ ID NO. 14 in WO2010037041
GAHVL4744SEQ ID NO 8 in US20060057147A1
GCC1VL4745SEQ ID NO. 4 in US20160030595A1
GCC1VL4746SEQ ID NO. 2 in US20160030595A1
GD2VL4747SEQ ID NO. 10 in US20130216528
GD2VL4748SEQ ID NO. 11 in WO2015132604
GD2VL4749SEQ ID NO. 12 in WO2015132604
GD2VL4750SEQ ID NO. 18 in WO2016134284
GD2VL4751SEQ ID NO. 2 in US20130216528
GD2VL4752SEQ ID NO. 5 in US20130216528
GD2VL4753SEQ ID NO. 7 in US20130216528
GD2VL4754SEQ ID NO. 9 in US20130216528
GD3VL4755SEQ ID NO: 12 in WO2016185035A1
GD3VL4756SEQ ID NO: 14 in WO2016185035A1
GD3VL4757SEQ ID NO: 16 in WO2016185035A1
GD3VL4758SEQ ID NO: 18 in WO2016185035A1
Glycol epitope and ErbB BiVL4759SEQ ID No. 10 in WO2012007167A1
Specific
GM2VL4760US20090028877 SEQ ID NO: 21
GM2VL4761US20090028877 SEQ ID NO: 24
GM2VL4762US20090028877 SEQ ID NO: 25
GM2VL4763US20090028877 SEQ ID NO: 31
GM2VL4764US20090028877 SEQ ID NO: 32
GM2VL4765US20090028877 SEQ ID NO: 33
GM2VL4766US20090028877 SEQ ID NO: 34
GM2VL4767US20090028877 SEQ ID NO: 35
GPC3VL4768SEQ ID NO: 10 in U.S. Pat. No. 9,409,994B2
GPC3VL4769SEQ ID NO: 14 in U.S. Pat. No. 9,409,994B2
GPC3VL4770SEQ ID NO: 16 in US20160208015A1
GPC3VL4771SEQ ID NO: 18 in U.S. Pat. No. 9,409,994B2
GPC3VL4772SEQ ID NO: 22 in U.S. Pat. No. 9,409,994B2
GPC3VL4773SEQ ID NO: 24 in U.S. Pat. No. 9,409,994B2
GPC3VL4774SEQ ID NO: 26 in U.S. Pat. No. 9,409,994B2
GPC3VL4775SEQ ID NO: 31 in US20160208015A1
GPRC5DVL4776SEQ ID NO. 10 in WO2016090312
GPRC5DVL4777SEQ ID NO. 14 in WO2016090312
GPRC5DVL4778SEQ ID NO. 18 in WO2016090312
GPRC5DVL4779SEQ ID NO. 2 in WO2016090312
GPRC5DVL4780SEQ ID NO. 22 in WO2016090312
GPRC5DVL4781SEQ ID NO. 26 in WO2016090312
GPRC5DVL4782SEQ ID NO. 30 in WO2016090312
GPRC5DVL4783SEQ ID NO. 303 in WO2016090312
GPRC5DVL4784SEQ ID NO. 315 in WO2016090312
GPRC5DVL4785SEQ ID NO. 327 in WO2016090312
GPRC5DVL4786SEQ ID NO. 339 in WO2016090312
GPRC5DVL4787SEQ ID NO. 34 in WO2016090312
GPRC5DVL4788SEQ ID NO. 351 in WO2016090312
GPRC5DVL4789SEQ ID NO. 363 in WO2016090312
GPRC5DVL4790SEQ ID NO. 375 in WO2016090312
GPRC5DVL4791SEQ ID NO. 38 in WO2016090312
GPRC5DVL4792SEQ ID NO. 387 in WO2016090312
GPRC5DVL4793SEQ ID NO. 42 in WO2016090312
GPRC5DVL4794SEQ ID NO. 46 in WO2016090312
GPRC5DVL4795SEQ ID NO. 50 in WO2016090312
GPRC5DVL4796SEQ ID NO. 54 in WO2016090312
GPRC5DVL4797SEQ ID NO. 58 in WO2016090312
GPRC5DVL4798SEQ ID NO. 6 in WO2016090312
GPRC5DVL4799SEQ ID NO. 62 in WO2016090312
GPRC5DVL4800SEQ ID NO. 66 in WO2016090312
GPRC5DVL4801SEQ ID NO. 70 in WO2016090312
GPRC5DVL4802SEQ ID NO. 74 in WO2016090312
GPRC5DVL4803SEQ ID NO. 78 in WO2016090312
GPRC5DVL4804SEQ ID NO. 82 in WO2016090312
GPRC5DVL4805SEQ ID NO. 86 in WO2016090312
GPRC5DVL4806SEQ ID NO. 94 in WO2016090312
Her1/her3VL4807SEQ ID NO: 4 of WO2016073629
Her2VL4808SEQ ID NO: 140 in WO2016054555A2
Her2VL4809SEQ ID NO: 261 in WO2016168773A3
Her2VL4810SEQ ID NO: 263 in WO2016168773A3
Her2VL4811SEQ ID NO: 265 in WO2016168773A3
Her2VL4812SEQ ID NO: 267 in WO2016168773A3
Her2VL4813SEQ ID NO: 269 in WO2016168773A3
HER2VL4814SEQ ID NO. 10 in U.S. Pat. No. 9,518,118
HER2VL4815SEQ ID NO. 18 in U.S. Pat. No. 9,518,118
HER2VL4816SEQ ID NO. 23 in U.S. Pat. No. 9,518,118
HER2VL4817SEQ ID NO: 3 in WO2016168769A1
HER2VL4818SEQ ID NO: 59 in US20160333114A1
HER2VL4819SEQ ID NO: 61 in US20160333114A1
HLAGVL4820SEQ ID NO. 18 in WO2016160622A2
HLAGVL4821SEQ ID NO. 20 in WO2016160622A2
HSP70VL4822SEQ ID NO. 16 in WO2016120217
HSP70VL4823SEQ ID NO. 17 in WO2016120217
humanCD79bVL4824SEQ ID NO. 28 in WO2016112870
humanCD79bVL4825SEQ ID NO. 30 in WO2016112870
Human collagen VIIVL4826SEQ ID NO. 32 in WO2016112870
humanERBB3VL4827SEQ ID NO: 10 in WO2013052745
humanERBB3VL4828SEQ ID NO: 20 in WO2013052745
humanERBB3VL4829SEQ ID NO: 30 in WO2013052745
humanERBB3VL4830SEQ ID NO: 39 in WO2013052745
humanERBB3VL4831SEQ ID NO: 46 in WO2013052745
humanERBB3VL4832SEQ ID NO: 56 in WO2013052745
humanERBB3VL4833SEQ ID NO: 62 in WO2013052745
ICOSVL4834SEQ ID NO. 17 in US20160215059
ICOSVL4835SEQ ID NO. 18 in US20160215059
ICOSVL4836SEQ ID NO. 20 in US20160215059
ICOSVL4837SEQ ID NO. 24 in US20160215059
ICOSVL4838SEQ ID NO. 8 in US20160215059
IGFIVL4839SEQ ID NO. 2 in WO2007118214
IGFIVL4840SEQ ID NO. 4 in WO2007118214
IGFIVL4841SEQ ID NO. 6 in WO2007118214
IGFIVL4842SEQ ID NO. 8 in WO2007118214
IGFR1VL4843SEQ ID NO: 8 in WO2015073575A2
IL13VL4844SEQ ID NO 303. in US20160168242
IL1RAPVL4845SEQ ID NO. 14 in WO2016020502
IL1RAPVL4846SEQ ID NO. 15 in WO2016020502
IL1RAPVL4847SEQ ID NO. 17 in WO2016020502
IL1RAPVL4848SEQ ID NO. 18 in WO2016020502
IL1RAPVL4849SEQ ID NO. 2 in WO2016020502
IL1RAPVL4850SEQ ID NO. 20 in WO2016020502
IL1RAPVL4851SEQ ID NO: 121 in WO2016179319A1
IL1RAPVL4852SEQ ID NO: 123 in WO2016179319A1
IL1RAPVL4853SEQ ID NO: 125 in WO2016179319A1
IL33VL4854SEQ ID NO 135. in US20160168242
IL33VL4855SEQ ID NO 137. in US20160168242
IL33VL4856SEQ ID NO 139. in US20160168242
IL33VL4857SEQ ID NO 184. in US20160168242
IL33VL4858SEQ ID NO 188. in US20160168242
IL33VL4859SEQ ID NO 217. in US20160168242
IL33VL4860SEQ ID NO 219. in US20160168242
IL33VL4861SEQ ID NO 237. in US20160168242
IL33VL4862SEQ ID NO 247. in US20160168242
IL33VL4863SEQ ID NO 283. in US20160168242
IL33VL4864SEQ ID NO 285. in US20160168242
IL33VL4865SEQ ID NO 287. in US20160168242
IL33VL4866SEQ ID NO 37. in US20160168242
IL33VL4867SEQ ID NO 39. in US20160168242
IL33VL4868SEQ ID NO 41. in US20160168242
IL33VL4869SEQ ID NO 87. in US20160168242
IL3alphaVL4870SEQ ID NO. 27 in WO2008127735
IL3alphaVL4871SEQ ID NO. 37 in WO2008127735
IntegrinVL4872SEQ ID NO. 10 in US 20140161794
IntegrinVL4873SEQ ID NO. 11 in US 20140161794
IntegrinVL4874SEQ ID NO. 8 in US 20140161794
IntegrinVL4875SEQ ID NO. 9 in US 20140161794
KDRVL4876SEQ ID NO. 22 IN WO2003075840
KIR(Lirilumab)VL4877SEQ ID NO. 5 in US20150290316
KIR(Lirilumab)VL4878SEQ ID NO. 2 in WO2014055648
KIR2DL1andKIR2DL2/3VL4879SEQ ID NO: 37 in WO2016126213A1
Klon43VL4880SEQ ID NO: 48 in WO2016097231
KMAVL4881SEQ ID NO: 2 in WO2016172703A2
KMAVL4882SEQ ID NO: 21 in WO2016172703A2
LAG3VL4883SEQ ID NO. 32 in US20150259420
LAG3VL4884SEQ ID NO. 36 in US20150259420
LAG3VL4885SEQ ID NO. 40 in US20150259420
LAG3VL4886SEQ ID NO. 44 in US20150259420
LAG3VL4887SEQ ID NO. 48 in US20150259420
LAG3VL4888SEQ ID NO. 52 in US20150259420
LAG3VL4889SEQ ID NO. 56 in US20150259420
LAG3VL4890SEQ ID NO. 60 in US20150259420
LAG3VL4891SEQ ID NO. 84 in US20150259420
LAG3VL4892SEQ ID NO. 88 in US20150259420
LAG3VL4893SEQ ID NO. 92 in US20150259420
LAG3VL4894SEQ ID NO. 96 in US20150259420
LAG3VL4895SEQ ID NO. 134 in US20150259420
LAG3VL4896SEQ ID NO. 34 in US20150259420
LAG3VL4897SEQ ID NO. 38 in US20150259420
LAG3VL4898SEQ ID NO. 42 in US20150259420
LAG3VL4899SEQ ID NO. 46 in US20150259420
LAG3VL4900SEQ ID NO. 50 in US20150259420
LAG3VL4901SEQ ID NO. 54 in US20150259420
LAG3VL4902SEQ ID NO. 58 in US20150259420
LAG3VL4903SEQ ID NO. 62 in US20150259420
LAG3VL4904SEQ ID NO. 86 in US20150259420
LAG3VL4905SEQ ID NO. 90 in US20150259420
LAG3VL4906SEQ ID NO. 94 in US20150259420
LAG3VL4907SEQ ID NO. 98 in US20150259420
LAG3VL4908SEQ ID NO. 2 in WO2015042246
leukocytegenA1VL4909SEQ ID NO. 24 in WO2010065962A2
LGR4VL4910SEQ ID NO. 10 in US20160046723
LGR4VL4911SEQ ID NO. 11 in US20160046723
LGR4VL4912SEQ ID NO. 6 in US20160046723
LGR5VL4913SEQ ID NO. 15 in US20160102146
LGR5VL4914SEQ ID NO. 19 in US20160102146
LGR5VL4915SEQ ID NO. 21 in US20160102146
LGR5VL4916SEQ ID NO. 23 in US20160102146
LGR5VL4917SEQ ID NO. 25 in US20160102146
LGR5VL4918SEQ ID NO. 3 in US20160102146
1L4RVL4919SEQ ID NO. 13 in WO2009121847
1L4RVL4920SEQ ID NO. 7 in WO2009121847
1L4RVL4921SEQ ID NO. 8 in WO2009121847
Lymphotoxin beta receptorVL4922SEQ ID NO. 1 in WO2004002431
Lymphotoxin beta receptorVL4923SEQ ID NO. 15 in WO2004002431
Lymphotoxin beta receptorVL4924SEQ ID NO. 4 in WO2004002431
Lymphotoxin beta receptorVL4925SEQ ID NO. 6 in WO2004002431
Lymphotoxin beta receptorVL4926SEQ ID NO. 8 in WO2004002431
Lysyloxidaselike2VL4927SEQ ID NO. 43 in WO2011097513
Lysyloxidaselike2VL4928SEQ ID NO. 45 in WO2011097513
MCAMVL4929SEQ ID NO. 109 in US20150259419
MCAMVL4930SEQ ID NO. 110 in US20150259419
MCAMVL4931SEQ ID NO. 111 in US20150259419
MCAMVL4932SEQ ID NO. 112 in US20150259419
MCAMVL4933SEQ ID NO. 121 in US20150259419
MCAMVL4934SEQ ID NO. 122 in US20150259419
MCAMVL4935SEQ ID NO. 123 in US20150259419
MCAMVL4936SEQ ID NO. 30 in US20150239980
MCAMVL4937SEQ ID NO. 40 in US20150239980
MCAMVL4938SEQ ID NO. 50 in US20150239980
MCAMVL4939SEQ ID NO. 60 in US20150239980
MCAMVL4940SEQ ID NO. 70 in US20150239980
MCAMVL4941SEQ ID NO. 71 in US20150239980
MCAMVL4942SEQ ID NO. 72 in US20150239980
MCSFVL4943SEQ ID NO: 8 in WO2005030124
MCSFVL4944SEQ ID NO 32 in WO2005030124
MCSFVL4945SEQ ID NO 52 in WO2005030124
MCSFVL4946SEQ ID NO 60 in WO2005030124
MCSFVL4947SEQ ID NO 28 in WO2005030124
MCSFVL4948SEQ ID NO 36 in WO2005030124
MCSFVL4949SEQ ID NO 4 in WO2005030124
MCSFVL4950SEQ ID NO 44 in WO2005030124
MCSFVL4951SEQ ID NO 48 in WO2005030124
MCSFVL4952SEQ ID NO 56 in WO2005030124
MCSFVL4953SEQ ID NO 62 in WO2005030124
MCSFVL4954SEQ ID NO: 12 in WO2005030124
MCSFVL4955SEQ ID NO: 16 in WO2005030124
MCSFVL4956SEQ ID NO: 20 in WO2005030124
MCSFVL4957SEQ ID NO: 24 in WO2005030124
MesothelinVL4958SEQ ID NO. 3 WO2015188141
MesothelinVL4959SEQ ID NO. 5 WO2015188141
MesothelinVL4960SEQ ID NO: 1 in WO2013142034
MesothelinVL4961SEQ ID NO: 11 in US20160229919A1
MesothelinVL4962SEQ ID NO: 120 in US20160333114A1
MesothelinVL4963SEQ ID NO: 15 in US20160229919A1
MesothelinVL4964SEQ ID NO: 19 in US20160229919A1
MesothelinVL4965SEQ ID NO: 2 in WO2013142034
MesothelinVL4966SEQ ID NO: 23 in US20160229919A1
MesothelinVL4967SEQ ID NO: 27 in US20160229919A1
MesothelinVL4968SEQ ID NO: 3 in WO2013142034
MesothelinVL4969SEQ ID NO: 47 in US20160333114A1
MesothelinVL4970SEQ ID NO: 49 in US20160333114A1
MNVL4971SEQ ID NO. 134 in WO2007070538
MNVL4972SEQ ID NO. 136 in WO2007070538
MNVL4973SEQ ID NO. 138 in WO2007070538
MNVL4974SEQ ID NO. 140 in WO2007070538
MNVL4975SEQ ID NO. 142 in WO2007070538
MNVL4976SEQ ID NO. 144 in WO2007070538
MNVL4977SEQ ID NO. 146 in WO2007070538
MNVL4978SEQ ID NO. 148 in WO2007070538
MNVL4979SEQ ID NO. 150 in WO2007070538
MNVL4980SEQ ID NO. 152 in WO2007070538
MPERVL4981SEQ ID NO: 12 in US20160194375A1
MUC1VL4982SEQ ID NO. 7 in US20160130357
MUC1VL4983SEQ ID NO: 16 in WO2013023162
MUC1VL4984SEQ ID NO: 7 in WO2013023162
MUC1VL4985SEQ ID NO. 17 in WO2015116753
MUC1VL4986SEQ ID NO. 21 in WO2015116753
MUC1VL4987SEQ ID NO. 25 in WO2015116753
MUC1VL4988SEQ ID NO. 62 in WO2015116753
MUC1VL4989SEQ ID NO. 66 in WO2015116753
MUC1VL4990SEQ ID NO. 70 in WO2015116753
MUC16VL4991SEQ ID NO. 2 in WO2016149368
MUC16VL4992SEQ ID NO. 22 in WO2016149368
MUC16VL4993SEQ ID NO. 42 in WO2016149368
MUC16VL4994SEQ ID NO. 62 in WO2016149368
MUC16VL4995SEQ ID NO. 82 in WO2016149368
MUC1C/ECDVL4996SEQ ID NO: 17 in US20160340442A1
MUC1C/ECDVL4997SEQ ID NO: 21 in US20160340442A1
MUC1C/ECDVL4998SEQ ID NO: 25 in US20160340442A1
MUC1C/ECDVL4999SEQ ID NO: 62 in US20160340442A1
MUC1C/ECDVL5000SEQ ID NO: 66 in US20160340442A1
MUC1C/ECDVL5001SEQ ID NO: 70 in US20160340442A1
MUC1C/ECDVL5002SEQ ID NO: 75 in US20160340442A1
MUCIN1VL5003SEQ ID NO: 148 in EP3049812A2
MUCIN1VL5004SEQ ID NO: 158 in EP3049812A2
MUCIN1VL5005SEQ ID NO: 162 in EP3049812A2
MUCIN1VL5006SEQ ID NO: 167 in EP3049812A2
MUCIN1VL5007SEQ ID NO: 170 in EP3049812A2
MUCIN1VL5008SEQ ID NO: 174 in EP3049812A2
MUCIN1VL5009SEQ ID NO: 184 in EP3049812A2
MUCIN1VL5010SEQ ID NO: 190 in EP3049812A2
MUCIN1VL5011SEQ ID NO: 193 in EP3049812A2
MUCIN1VL5012SEQ ID NO: 203 in EP3049812A2
MUCIN1VL5013SEQ ID NO: 208 in EP3049812A2
MUCIN1VL5014SEQ ID NO: 211 in EP3049812A2
MUCIN1VL5015SEQ ID NO: 220 in EP3049812A2
MUCIN1VL5016SEQ ID NO: 225 in EP3049812A2
MUCIN1VL5017SEQ ID NO: 229 in EP3049812A2
MUCIN1VL5018SEQ ID NO: 234 in EP3049812A2
MUCIN1VL5019SEQ ID NO: 242 in EP3049812A2
MUCIN1VL5020SEQ ID NO: 246 in EP3049812A2
MUCIN1VL5021SEQ ID NO: 250 in EP3049812A2
MUCIN1VL5022SEQ ID NO: 255 in EP3049812A2
MUCIN1VL5023SEQ ID NO: 261 in EP3049812A2
MUCIN1VL5024SEQ ID NO: 270 in EP3049812A2
MUCIN1VL5025SEQ ID NO: 275 in EP3049812A2
MUCIN1VL5026SEQ ID NO: 279 in EP3049812A2
MUCIN1VL5027SEQ ID NO: 283 in EP3049812A2
MUCIN1VL5028SEQ ID NO: 291 in EP3049812A2
MUCIN1VL5029SEQ ID NO: 297 in EP3049812A2
MUCIN1VL5030SEQ ID NO: 303 in EP3049812A2
MUCIN1VL5031SEQ ID NO: 308 in EP3049812A2
MUCIN1VL5032SEQ ID NO: 315 in EP3049812A2
MUCIN1VL5033SEQ ID NO: 319 in EP3049812A2
MUCIN1VL5034SEQ ID NO: 323 in EP3049812A2
MUCIN1VL5035SEQ ID NO: 333 in EP3049812A2
MUCIN1VL5036SEQ ID NO: 340 in EP3049812A2
MVRVL5037SEQ ID NO: 5 in US20160257762A1
N GlycanVL5038SEQ ID NO: 6 in US20160194375A1
N GlycanVL5039SEQ ID NO: 8 in US20160194375A1
NKG2AVL5040SEQ ID NO: 33 in WO2016126213A1
NKG2AVL5041SEQ ID NO. 7 in WO2016041947
NKG2DVL5042SEQ ID NO. 134 in WO2016122701
NKG2DVL5043SEQ ID NO. 136 in WO2016122701
NOTCH1VL5044SEQ ID NO: 16 in WO2013074596
NOTCH1VL5045SEQ ID NO: 20 in WO2013074596
NOTCH2/3VL5046SEQ ID NO: 31 in WO2013074596
Notch 1VL5047SEQ ID NO: 55 in US20160333114A1
Notch 1VL5048SEQ ID NO: 57 in US20160333114A1
NotumVL5049SEQ ID NO: 332 in WO2012027723
NotumVL5050SEQ ID NO: 58 in WO2012027723
NYBR1VL5051SEQ ID NO: 18 in US20160333422A1
Olfml3VL5052SEQ ID NO. 2 in WO2015054441A1
Olfml3VL5053SEQ ID NO. 20 in WO2015054441A1
Olfml3VL5054SEQ ID NO. 4 in WO2015054441A1
Oncofetal fibronectinVL5055SEQ ID NO 1 in US20070202103A1
Oncofetal fibronectinVL5056SEQ ID NO 2 in US20070202103A1
Oncofetal fibronectinVL5057SEQ ID NO 7 in US20070202103A1
OsteonectinVL5058SEQ ID NO. 59 in WO2016112870
OTK3VL5059SEQ ID NO. 18 in WO2015158868
OX40VL5060SEQ ID NO. 10 in U.S. Pat. No. 8,283,450
OX40VL5061SEQ ID NO. 11 in U.S. Pat. No. 9,428,570
OX40VL5062SEQ ID NO. 116 in WO2016196228
OX40VL5063SEQ ID NO. 120 in WO2016196228
OX40VL5064SEQ ID NO. 122 in WO2016196228
OX40VL5065SEQ ID NO. 24 in U.S. Pat. No. 8,748,585
OX40VL5066SEQ ID NO. 26 in U.S. Pat. No. 8,748,585
OX40VL5067SEQ ID NO. 27 in U.S. Pat. No. 8,748,585
OX40VL5068SEQ ID NO. 28 in U.S. Pat. No. 8,748,585
OX40VL5069SEQ ID NO. 30 in US20160137740
OX40VL5070SEQ ID NO. 30 in U.S. Pat. No. 8,748,585
OX40VL5071SEQ ID NO. 30 in WO2016196228
OX40VL5072SEQ ID NO. 32 in US20150190506
OX40VL5073SEQ ID NO. 32 in US20160137740
OX40VL5074SEQ ID NO. 35 in US20150190506
OX40VL5075SEQ ID NO. 38 in WO2016196228
OX40VL5076SEQ ID NO. 39 in US20150190506
OX40VL5077SEQ ID NO. 41 in US20150190506
OX40VL5078SEQ ID NO. 43 in US20150190506
OX40VL5079SEQ ID NO. 45 in US20150190506
OX40VL5080SEQ ID NO. 45 in U.S. Pat. No. 8,283,450
OX40VL5081SEQ ID NO. 47 in US20150190506
OX40VL5082SEQ ID NO. 47 in U.S. Pat. No. 8,283,450
OX40VL5083SEQ ID NO. 49 in US20150190506
OX40VL5084SEQ ID NO. 49 in U.S. Pat. No. 8,283,450
OX40VL5085SEQ ID NO. 49 in WO2016196228
OX40VL5086SEQ ID NO. 51 in US20150190506
OX40VL5087SEQ ID NO. 52 in US20150190506
OX40VL5088SEQ ID NO. 56 in US20150190506
OX40VL5089SEQ ID NO. 57 in US20150190506
OX40VL5090SEQ ID NO. 57 in WO2016196228
OX40VL5091SEQ ID NO. 60 in U.S. Pat. No. 8,748,585
OX40VL5092SEQ ID NO. 62 in US20150190506
OX40VL5093SEQ ID NO. 65 in WO2016196228
OX40VL5094SEQ ID NO. 7 in U.S. Pat. No. 9,428,570
OX40VL5095SEQ ID NO. 73 in WO2016196228
OX40VL5096SEQ ID NO. 8 in U.S. Pat. No. 8,283,450
OX40VL5097SEQ ID NO. 8 in U.S. Pat. No. 8,748,585
OX40VL5098SEQ ID NO. 81 in U.S. Pat. No. 8,748,585
OX40VL5099SEQ ID NO. 82 in U.S. Pat. No. 8,748,585
OX40VL5100SEQ ID NO. 83 in U.S. Pat. No. 8,748,585
OX40VL5101SEQ ID NO. 84 in U.S. Pat. No. 8,748,585
OX40VL5102SEQ ID NO. 84 in WO2016196228
OX40VL5103SEQ ID NO. 85 in U.S. Pat. No. 8,748,585
OX40VL5104SEQ ID NO. 86 in U.S. Pat. No. 8,748,585
OX40VL5105SEQ ID NO. 86 in WO2016196228
OX40VL5106SEQ ID NO. 87 in U.S. Pat. No. 8,748,585
OX40VL5107SEQ ID NO. 88 in U.S. Pat. No. 8,748,585
OX40VL5108SEQ ID NO. 89 in U.S. Pat. No. 8,748,585
OX40VL5109SEQ ID NO. 94 in WO2016196228
OX40VL5110SEQ ID NO. 98 in WO2016196228
PD1VL5111SEQ ID NO. 2 in US 20160159905
PD1VL5112SEQ ID NO. 21 in US20150290316
PD1VL5113SEQ ID NO. 30 in US20130291136
PD1VL5114SEQ ID NO. 31 in US20130291136
PD1VL5115SEQ ID NO. 32 in US20130291136
PD1VL5116SEQ ID NO. 33 in US20130291136
PD1VL5117SEQ ID NO. 39 in US 20160159905
PD1VL5118SEQ ID NO. 42 in WO2015112900
PD1VL5119SEQ ID NO. 46 in WO2015112900
PD1VL5120SEQ ID NO. 54 in WO2015112900
PD1VL5121SEQ ID NO. 58 in WO2015112900
PD1VL5122SEQ ID NO. 62 in WO2015112900
PD1VL5123SEQ ID NO. 66 in WO2015112900
PD1VL5124SEQ ID NO. 7 in US 20160159905
PD1VL5125SEQ ID NO. 70 in WO2015112900
PD1VL5126SEQ ID NO. 74 in WO2015112900
PD1VL5127SEQ ID NO. 78 in WO2015112900
PD1VL5128SEQ ID NO. 8 in US 20160159905
PD1VL5129SEQ ID NO. 9 in US 20160159905
PD1VL5130SEQ ID NO. 18 in WO2014055648
PD1(Nivolumab)VL5131SEQ ID NO. 11 in US20150190506
PD1(Pembrolizumab)VL5132SEQ ID NO. 5 in WO2016040892
PD1(Pembrolizumab)VL5133SEQ ID NO. 13 in US20150190506
PDK1VL5134SEQ ID NO. 9 in WO2016090365
PDL1VL5135SEQ ID NO. 22 in WO2016061142
PDL1VL5136SEQ ID NO. 26 in WO2016061142
PDL1VL5137SEQ ID NO. 30 in US20150190506
PDL1VL5138SEQ ID NO. 34 in WO2016061142
PDL1VL5139SEQ ID NO. 42 in WO2016061142
PDL1VL5140SEQ ID NO. 58 in WO2016061142
PDL1VL5141SEQ ID NO. 66 in WO2016061142
PDL1VL5142SEQ ID NO. 7 in US20160319022
PDL1VL5143SEQ ID NO. 74 in WO2016061142
PDL1VL5144SEQ ID NO. 8 in US20150190506
PDL1VL5145SEQ ID NO. 82 in WO2016061142
PDL1VL5146SEQ ID NO. 86 in WO2016061142
PDL1VL5147SEQ ID NO. 9 in US20150190506
PDL1VL5148SEQ ID NO. 9 in US20160319022
PDL1VL5149US20160108123 SEQ ID NO: 17
PDL1VL5150US20160108123 SEQ ID NO: 22
PDL1VL5151US20160108123 SEQ ID NO: 24
PDL1VL5152US20160108123 SEQ ID NO: 249
PDL1VL5153US20160108123 SEQ ID NO: 26
PDL1VL5154US20160108123 SEQ ID NO: 28
PDL1VL5155US20160108123 SEQ ID NO: 309
PDL1VL5156US20160108123 SEQ ID NO: 311
PDL1VL5157US20160108123 SEQ ID NO: 313
PDL1VL5158US20160108123 SEQ ID NO: 320
PDL1VL5159US20160108123 SEQ ID NO: 325
PDL1VL5160US20160108123 SEQ ID NO: 34
PDL1VL5161US20160108123 SEQ ID NO: 340
PDL1VL5162US20160108123 SEQ ID NO: 357
PDL1VL5163US20160108123 SEQ ID NO: 359
PDL1VL5164US20160108123 SEQ ID NO: 36
PDL1VL5165US20160108123 SEQ ID NO: 42
PDL1VL5166US20160108123 SEQ ID NO: 44
PDL1VL5167US20160108123 SEQ ID NO: 58
PDL1VL5168US20160108123 SEQ ID NO: 60
PDL1VL5169US20160108123 SEQ ID NO: 66
PDL1VL5170US20160108123 SEQ ID NO: 68
PDL1VL5171US20160108123 SEQ ID NO: 74
PDL1VL5172US20160108123 SEQ ID NO: 76
PDL1VL5173US20160108123 SEQ ID NO: 8
PDL1VL5174US20160108123 SEQ ID NO: 82
PDL1VL5175US20160108123 SEQ ID NO: 84
PDL1VL5176US20160108123 SEQ ID NO: 86
PDL1VL5177US20160108123 SEQ ID NO: 88
PDL2VL5178SEQ ID NO. 47 in US20130291136
PDL2VL5179SEQ ID NO. 48 in US20130291136
PDL2VL5180SEQ ID NO. 49 in US20130291136
PDL2VL5181SEQ ID NO. 50 in US20130291136
PDL2VL5182SEQ ID NO. 51 in US20130291136
PG16VL5183SEQ ID NO: 12 in EP3074419A2
PG9VL5184SEQ ID NO: 10 in EP3074419A2
PGT2VL5185SEQ ID NO: 16 in EP3074419A2
PGT3VL5186SEQ ID NO: 18 in EP3074419A2
PGT4VL5187SEQ ID NO: 20 in EP3074419A2
PGT5VL5188SEQ ID NO: 22 in EP3074419A2
PRAMEVL5189SEQ ID NO: 49 in WO2016191246A2
PRAMEVL5190SEQ ID NO: 51 in WO2016191246A2
PRAMEVL5191SEQ ID NO: 53 in WO2016191246A2
PRAMEVL5192SEQ ID NO: 55 in WO2016191246A2
PRAMEVL5193SEQ ID NO: 57 in WO2016191246A2
PRAMEVL5194SEQ ID NO: 59 in WO2016191246A2
PRAMEVL5195SEQ ID NO: 61 in WO2016191246A2
PRPVL5196SEQ ID NO: 39 in US20160333114A1
PRPVL5197SEQ ID NO: 41 in US20160333114A1
PSMAVL5198SEQ ID NO: 44 in WO2016097231
PTK7VL5199SEQ ID NO. 20 in WO2012112943A1
PTK7VL5200SEQ ID NO. 22 in WO2012112943A1
PTK7VL5201SEQ ID NO. 24 in WO2012112943A1
PTK7VL5202SEQ ID NO. 26 in WO2012112943A1
PTK7VL5203SEQ ID NO. 28 in WO2012112943A1
PTK7VL5204SEQ ID NO. 30 in WO2012112943A1
PTK7VL5205SEQ ID NO. 32 in WO2012112943A1
PTK7VL5206SEQ ID NO. 34 in WO2012112943A1
PTK7VL5207SEQ ID NO. 36 in WO2012112943A1
PTK7VL5208SEQ ID NO. 38 in WO2012112943A1
PTK7VL5209SEQ ID NO. 40 in WO2012112943A1
PTK7VL5210SEQ ID NO. 42 in WO2012112943A1
PTK7VL5211SEQ ID NO. 44 in WO2012112943A1
PTK7VL5212SEQ ID NO. 46 in WO2012112943A1
PTK7VL5213SEQ ID NO. 48 in WO2012112943A1
PTK7VL5214SEQ ID NO. 50 in WO2012112943A1
PTK7VL5215SEQ ID NO. 52 in WO2012112943A1
PTK7VL5216SEQ ID NO. 54 in WO2012112943A1
PTK7VL5217SEQ ID NO. 56 in WO2012112943A1
PTK7VL5218SEQ ID NO. 58 in WO2012112943A1
PTK7VL5219SEQ ID NO. 60 in WO2012112943A1
PTK7VL5220SEQ ID NO. 62 in WO2012112943A1
PTK7VL5221SEQ ID NO. 64 in WO2012112943A1
PTK7VL5222SEQ ID NO. 66 in WO2012112943A1
PTK7VL5223SEQ ID NO. 68 in WO2012112943A1
PTK7VL5224SEQ ID NO. 15 in US20150315293
PTK7VL5225SEQ ID NO. 39 in US20150315293
PTK7VL5226SEQ ID NO. 63 in US20150315293
RASVL5227SEQ ID NO. 19 in WO2016154047
RASVL5228SEQ ID NO. 49 in WO2016154047
RASVL5229SEQ ID NO. 59 in WO2016154047
RASVL5230SEQ ID NO. 69 in WO2016154047
RASVL5231SEQ ID NO. 79 in WO2016154047
RASVL5232SEQ ID NO. 9 in WO2016154047
RHAMM antagonist bodyVL5233SEQ ID NO 4 in WO2000029447
light chain
RituximabVL5234SEQ ID NO: 63 in US20160333114A1
RituximabVL5235SEQ ID NO: 65 in US20160333114A1
ROR1VL5236SEQ ID NO. 16 WO2016016343A1
ROR1VL5237SEQ ID NO. 24 WO2016016343A1
ROR1VL5238SEQ ID NO. 32 WO2016016343A1
ROR1VL5239SEQ ID NO. 40 WO2016016343A1
ROR1VL5240SEQ ID NO. 56 WO2016016343A1
ROR1VL5241SEQ ID NO. 64 WO2016016343A1
ROR1VL5242SEQ ID NO. 72 WO2016016343A1
ROR1VL5243SEQ ID NO. 36 in WO2016016344A1
ROR1VL5244SEQ ID NO. 62 in WO2016016344A1
ROR1VL5245SEQ ID NO. 23 in WO2016016344A1
ROR1VL5246SEQ ID NO. 49 in WO2016016344A1
ROR1VL5247SEQ ID NO. 58 in WO2016016344A1
ROR1VL5248SEQ ID NO. 86 in WO2016120216
ROR1VL5249SEQ ID NO. 88 in WO2016120216
ROR1VL5250SEQ ID NO. 90 in WO2016120216
ROR1VL5251SEQ ID NO: 126 in US20160208018A1
ROR1VL5252SEQ ID NO: 127 in US20160208018A1
ROR1VL5253SEQ ID NO: 234 in US20160208018A1
ROR1VL5254SEQ ID NO: 235 in US20160208018A1
ROR1VL5255SEQ ID NO: 236 in US20160208018A1
ROR1VL5256SEQ ID NO: 237 in US20160208018A1
ROR1VL5257SEQ ID NO: 238 in US20160208018A1
ROR1VL5258SEQ ID NO: 240 in US20160208018A1
ROR1VL5259SEQ ID NO: 241 in US20160208018A1
ROR1VL5260SEQ ID NO: 242 in US20160208018A1
ROR1VL5261SEQ ID NO: 243 in US20160208018A1
ROR1VL5262SEQ ID NO: 244 in US20160208018A1
ROR1VL5263SEQ ID NO: 245 in US20160208018A1
ROR1VL5264SEQ ID NO: 246 in US20160208018A1
ROR1VL5265SEQ ID NO: 247 in US20160208018A1
ROR1VL5266SEQ ID NO: 248 in US20160208018A1
ROR1VL5267SEQ ID NO: 56 in EP3083671A1
ROR1VL5268SEQ ID NO: 103 in WO2016187216A1
ROR1VL5269SEQ ID NO: 111 in WO2016187216A1
ROR1VL5270SEQ ID NO: 127 in WO2016187216A1
ROR1VL5271SEQ ID NO: 135 in WO2016187216A1
ROR1VL5272SEQ ID NO: 143 in WO2016187216A1
ROR1VL5273SEQ ID NO: 15 in WO2016187216A1
ROR1VL5274SEQ ID NO: 151 in WO2016187216A1
ROR1VL5275SEQ ID NO: 159 in WO2016187216A1
ROR1VL5276SEQ ID NO: 167 in WO2016187216A1
ROR1VL5277SEQ ID NO: 175 in WO2016187216A1
ROR1VL5278SEQ ID NO: 183 in WO2016187216A1
ROR1VL5279SEQ ID NO: 191 in WO2016187216A1
ROR1VL5280SEQ ID NO: 199 in WO2016187216A1
ROR1VL5281SEQ ID NO: 207 in WO2016187216A1
ROR1VL5282SEQ ID NO: 215 in WO2016187216A1
ROR1VL5283SEQ ID NO: 223 in WO2016187216A1
ROR1VL5284SEQ ID NO: 23 in WO2016187216A1
ROR1VL5285SEQ ID NO: 231 in WO2016187216A1
ROR1VL5286SEQ ID NO: 239 in WO2016187216A1
ROR1VL5287SEQ ID NO: 247 in WO2016187216A1
ROR1VL5288SEQ ID NO: 255 in WO2016187216A1
ROR1VL5289SEQ ID NO: 263 in WO2016187216A1
ROR1VL5290SEQ ID NO: 271 in WO2016187216A1
ROR1VL5291SEQ ID NO: 279 in WO2016187216A1
ROR1VL5292SEQ ID NO: 287 in WO2016187216A1
ROR1VL5293SEQ ID NO: 295 in WO2016187216A1
ROR1VL5294SEQ ID NO: 303 in WO2016187216A1
ROR1VL5295SEQ ID NO: 31 in WO2016187216A1
ROR1VL5296SEQ ID NO: 311 in WO2016187216A1
ROR1VL5297SEQ ID NO: 319 in WO2016187216A1
ROR1VL5298SEQ ID NO: 327 in WO2016187216A1
ROR1VL5299SEQ ID NO: 335 in WO2016187216A1
ROR1VL5300SEQ ID NO: 343 in WO2016187216A1
ROR1VL5301SEQ ID NO: 351 in WO2016187216A1
ROR1VL5302SEQ ID NO: 359 in WO2016187216A1
ROR1VL5303SEQ ID NO: 39 in WO2016187216A1
ROR1VL5304SEQ ID NO: 47 in WO2016187216A1
ROR1VL5305SEQ ID NO: 55 in WO2016187216A1
ROR1VL5306SEQ ID NO: 63 in WO2016187216A1
ROR1VL5307SEQ ID NO: 7 in WO2016187216A1
ROR1VL5308SEQ ID NO: 71 in WO2016187216A1
ROR1VL5309SEQ ID NO: 79 in WO2016187216A1
ROR1VL5310SEQ ID NO: 87 in WO2016187216A1
ROR1VL5311SEQ ID NO: 95 in WO2016187216A1
SEMAPHORIN4DVL5312SEQ ID NO. 17 in US20160115240A1
SEMAPHORIN4DVL5313SEQ ID NO. 18 in US20160115240A1
SEMAPHORIN4DVL5314SEQ ID NO. 29 in US20160115240A1
TAG73VL5315SEQ ID NO: 116 in US20160333114A1
TCRVL5316SEQ ID NO. 132 in WO2016122701
TEM8VL5317SEQ ID NO: 4 in US20160264662A1
TEM8VL5318SEQ ID NO: 6 in US20160264662A1
TEM8VL5319SEQ ID NO: 8 in US20160264662A1
TieVL5320SEQ ID NO 724 in US20060057138A1
TIGITVL5321SEQ ID NO. 130 in US20160355589
TIGITVL5322SEQ ID NO. 131 in US20160355589
TIGITVL5323SEQ ID NO. 132 in US20160355589
TIGITVL5324SEQ ID NO. 133 in US20160355589
TIGITVL5325SEQ ID NO. 137 in US20160355589
TIGITVL5326SEQ ID NO. 139 in US20160355589
TIGITVL5327SEQ ID NO. 145 in US20160355589
TIGITVL5328SEQ ID NO. 146 in US20160355589
TIGITVL5329SEQ ID NO. 151 in US20160355589
TIGITVL5330SEQ ID NO. 152 in US20160355589
TIGITVL5331SEQ ID NO. 25 in US20160355589
TIGITVL5332SEQ ID NO. 26 in US20160355589
TIGITVL5333SEQ ID NO. 27 in US20160355589
TIGITVL5334SEQ ID NO. 28 in US20160355589
TIGITVL5335SEQ ID NO. 29 in US20160355589
TIGITVL5336SEQ ID NO. 30 in US20160355589
TIGITVL5337SEQ ID NO. 50 in US20160355589
TIGITVL5338SEQ ID NO. 51 in US20160355589
TIGITVL5339SEQ ID NO. 52 in US20160355589
TIGITVL5340SEQ ID NO. 64 in US20160355589
TIGITVL5341SEQ ID NO. 95 in US20160355589
TIGITVL5342SEQ ID NO. 8 in US20160355589
TIM3VL5343SEQ ID NO: 7 in WO2013006490
TIM3VL5344SEQ ID NO. 107 in US20150086574
TIM3VL5345SEQ ID NO. 117 in US20150086574
TIM3VL5346SEQ ID NO. 17 in US20150086574
TIM3VL5347SEQ ID NO. 27 in US20150086574
TIM3VL5348SEQ ID NO. 37 in US20150086574
TIM3VL5349SEQ ID NO. 47 in US20150086574
TIM3VL5350SEQ ID NO. 57 in US20150086574
TIM3VL5351SEQ ID NO. 67 in US20150086574
TIM3VL5352SEQ ID NO. 7 in US20150086574
TIM3VL5353SEQ ID NO. 77 in US20150086574
TIM3VL5354SEQ ID NO. 87 in US20150086574
TIM3VL5355SEQ ID NO. 97 in US20150086574
TIM3VL5356SEQ ID NO: 17 in WO2016179319A1
TIM3VL5357SEQ ID NO: 25 in WO2016179319A1
TIM3VL5358SEQ ID NO: 33 in WO2016179319A1
TIM3VL5359SEQ ID NO: 41 in WO2016179319A1
TIM3VL5360SEQ ID NO: 49 in WO2016179319A1
TIM3VL5361SEQ ID NO: 57 in WO2016179319A1
TIM3VL5362SEQ ID NO: 65 in WO2016179319A1
TIM3VL5363SEQ ID NO: 73 in WO2016179319A1
TIM3VL5364SEQ ID NO: 81 in WO2016179319A1
TIM3VL5365SEQ ID NO: 89 in WO2016179319A1
TIM3VL5366SEQ ID NO: 9 in WO2016179319A1
TIM3VL5367SEQ ID NO: 97 in WO2016179319A1
Tissue factorVL5368SEQ ID NO 25 in US20040229301A1
Tissue factorVL5369SEQ ID NO 31 in US20040229301A1
Tissue factorVL5370SEQ ID NO 12 in WO2004094475
Tissue factorVL5371SEQ ID NO 21 in WO2004094475
Tissue factorVL5372SEQ ID NO 25 in WO2004094475
Tissue factorVL5373SEQ ID NO 31 in WO2004094475
Tissue factorVL5374SEQ ID NO 8 in WO2004094475
Tissue factorVL5375SEQ ID NO: 35 in US20160333114A1
Tissue factorVL5376SEQ ID NO: 37 in US20160333114A1
TRBC1VL5377SEQ ID NO. 2 in WO2015132598
TrophoblastGlycoprotein5T4VL5378SEQ ID NO. 18 in WO2016034666A1
TrophoblastGlycoprotein5T4VL5379SEQ ID NO. 12 in WO2016034666A1
VL
TrophoblastGlycoprotein5T4VL5380SEQ ID NO. 14 in WO2016034666A1
VL
TrophoblastGlycoprotein5T4VL5381SEQ ID NO. 16 in WO2016034666A1
VL
uPARVL5382SEQ ID NO: 71 in US20160333114A1
uPARVL5383SEQ ID NO: 73 in US20160333114A1
VEGFVL5384SEQ ID NO 2 in WO2000034337
VEGFVL5385SEQ ID NO 6 in WO2000034337
VEGFVL5386SEQ ID NO. 9 in US20030175276A1
VEGFVL5387SEQ ID NO 11 in WO2006012688A1
VEGFVL5388SEQ ID NO 19 in WO2006012688A1
VEGFVL5389SEQ ID NO 27 in WO2006012688A1
VEGFVL5390SEQ ID NO 28 in WO2006012688A1
VEGFVL5391SEQ ID NO 3 in WO2006012688A1
VEGFVL5392SEQ ID NO 43 in WO2006012688A1
VEGFVL5393US20160090427 SEQ ID NO: 160
VEGFVL5394US20160090427 SEQ ID NO: 161
VEGFVL5395US20160090427 SEQ ID NO: 162
VEGFVL5396US20160090427 SEQ ID NO: 163
VEGFVL5397US20160090427 SEQ ID NO: 164
VEGFVL5398US20160090427 SEQ ID NO: 165
VEGFVL5399US20160090427 SEQ ID NO: 166
VEGFVL5400US20160090427 SEQ ID NO: 167
VEGFR2VL5401SEQ ID NO. 107 in WO2017004254
VEGFR2VL5402SEQ ID NO. 108 in WO2017004254
VEGFR2VL5403SEQ ID NO. 109 in WO2017004254
VEGFR2VL5404SEQ ID NO. 110 in WO2017004254
VEGFR2VL5405SEQ ID NO. 111 in WO2017004254
VEGFR2VL5406SEQ ID NO. 112 in WO2017004254
VEGFR2VL5407SEQ ID NO. 113 in WO2017004254
VEGFR2VL5408SEQ ID NO. 86 In WO2017004254
VEGFR2VL5409SEQ ID NO. 87 In WO2017004254
VEGFR2VL5410SEQ ID NO. 88 In WO2017004254
VEGFR2VL5411SEQ ID NO. 89 In WO2017004254
VEGFR2VL5412SEQ ID NO. 90 In WO2017004254
VEGFR2VL5413SEQ ID NO. 91 In WO2017004254
VEGFR2VL5414SEQ ID NO. 92 In WO2017004254
VEGFR2VL5415SEQ ID NO. 93 In WO2017004254
VEGFR2VL5416SEQ ID NO. 94 In WO2017004254
VISTAVL5417SEQ ID NO: 41 in WO2015097536
VISTAVL5418SEQ ID NO: 42 in WO2015097536
VISTAVL5419SEQ ID NO: 43 in WO2015097536
VISTAVL5420SEQ ID NO: 44 in WO2015097536
VISTAVL5421SEQ ID NO: 45 in WO2015097536
VMS2VL5422FIG. 2 in WO2000058363
WT1/HLA Bi SpecificVL5423SEQ ID NO. 106 in WO2015070061
WT1/HLA Bi SpecificVL5424SEQ ID NO. 112 in WO2015070061
WT1/HLA Bi SpecificVL5425SEQ ID NO. 130 in WO2015070061
WT1/HLA Bi SpecificVL5426SEQ ID NO. 34 in WO2015070061
WT1/HLA Bi SpecificVL5427SEQ ID NO. 52 in WO2015070061
WT1/HLA Bi SpecificVL5428SEQ ID NO. 70 in WO2015070061
WT1/HLA Bi SpecificVL5429SEQ ID NO. 88 in WO2015070061
5T4VL5430SEQ ID NO. 1 in WO2016022939
5T4VL5431SEQ ID NO. 3 in WO2016022939
ALKVL5432SEQ ID NO. 10 in WO2015069922
ALKVL5433SEQ ID NO. 12 in WO2015069922
ALKVL5434SEQ ID NO. 14 in WO2015069922
ALKVL5435SEQ ID NO. 16 in WO2015069922
ALKVL5436SEQ ID NO. 8 in WO2015069922
ALKVLVL5437SEQ ID NO. 2 in WO2015069922
ALKVLVL5438SEQ ID NO. 4 in WO2015069922
ALKVLVL5439SEQ ID NO. 6 in WO2015069922
CD123VL5440SEQ ID NO. 114 in WO2016120216
CD123VL5441SEQ ID NO. 116 in WO2016120216
CD123VL5442SEQ ID NO. 58 in WO2016120216
CD123VL5443SEQ ID NO. 60 in WO2016120216
CD123VL5444SEQ ID NO. 64 in WO2016120216
CD16VL5445SEQ ID NO. 26 in WO2015158868
CD22VL5446SEQ ID NO. 1 in WO2013059593
CD276VL5447SEQ ID NO. 18 in US20160053017
CD276VL5448SEQ ID NO. 27 in US20160053017
CD28VL5449SEQ ID NO. 20 in WO2015158868
CD73VL5450SEQ ID NO. 101 in US20160145350
CD73VL5451SEQ ID NO. 102 in US20160145350
CD73VL5452SEQ ID NO. 104 in US20160145350
CD73VL5453SEQ ID NO. 106 in US20160145350
CD73VL5454SEQ ID NO. 110 in US20160145350
CD73VL5455SEQ ID NO. 117 in US20160145350
CD73VL5456SEQ ID NO. 118 in US20160145350
CD73VL5457SEQ ID NO. 120 in US20160145350
CD73VL5458SEQ ID NO. 122 in US20160145350
CD74VL5459SEQ ID NO. 25 in US20130171064
CD74VL5460SEQ ID NO. 29 in US20130171064
CD74VL5461SEQ ID NO. 31 in US20130171064
CD74VL5462SEQ ID NO. 35 in US20130171064
CS1VL5463SEQ ID NO. 110 in WO2016120216
CS1VL5464SEQ ID NO. 112 in WO2016120216
CSPG4VL5465SEQ ID NO. 12 in WO2016077638
CSPG4VL5466SEQ ID NO. 14 in WO2016077638
EGFRvIIIVL5467SEQ ID NO. 92 in WO2016120216
EGFRvIIIVL5468SEQ ID NO. 94 in WO2016120216
ERBB2VL5469US20110129464 SEQ ID NO: 3
GPC3VL5470SEQ ID NO. 23 in WO2016049459
Malignant Variable ReceptorVL5471SEQ ID NO. 5 in WO2015133817A1
OX40VL5472SEQ ID NO. 29 in US20160137740
OX40VL5473SEQ ID NO. 37 in US20150190506

Intrabodies

In some embodiments, payloads of the present invention may be intrabodies against players in regulating immune cells. An intrabody is an antibody that is designed to be expressed intracellularly and can be directed to a specific target antigen present in various subcellular locations including the cytosol, nucleus, endoplasmic reticulum (ER), mitochondria, peroxisomes, plasma membrane and trans-Golgi network (TGN) through in frame fusion with intracellular trafficking/localization peptide sequences. The most commonly used format is a single chain antibody (scFv) created by joining the antigen-binding variable domains of heavy and light chain with a linker, most often the 15-amino acid linker (e.g., (GGGGS)3 (SEQ ID NO: 307)) between the variable heavy (VH) and variable light (VL) chains. The intracellular intrabodies are being developed to bind to, neutralize, or modify the function or localization of cancer-related targets and thereby affect the malignant phenotype.

Players that modulate immune cells (e.g., T cells) may be any intracellular signaling checkpoint. Exemplary players may include a co-inhibitory ligand, Casitas B-linage lymphoma proto-oncogene-b (Cbl-b) (a E3 ligase), a protein tyrosine phosphatase (PTP) such as Src hom*ology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1), and Ras. For example, an intrabody may be an intrabody against oncogenic form of RAS disclosed in PCT patent publication NO.: WO2004/046186; the contents of which are incorporated by reference in their entirety.

Therapeutic Antibodies

In some embodiments, antibody payloads of the present invention may be therapeutic antibodies. As non-limiting examples, antibodies and fragments and variants thereof may be specific to tumor associated antigens, or tumor specific antigens, or pathogen antigens. In some aspects, antibodies may be blocking antibodies (also referred to as antagonistic antibodies), for example, blocking antibodies against PD-1, PD-L1, PD-L2, CTLA-4 and other inhibitory molecules. In other aspects, antibodies may be agonist antibodies such as agonistic antibodies specific to stimulatory molecules, e g., 4-1BB (CD137), OX40 (CD134), CD40, GITR and CD27.

Other exemplary therapeutic antibodies may include, but are not limited to, Abagovomab, Abcxmab, Abituzumab, Abrilumab, Actoxumab, Adalimumab, Adecatumumab, Afasevikumab, Afelimomab, Afutuzumab, Alacizumab, Alemtuzumab, Alirocumab, Altumomab, Amatuximab, Anetumab, Anifrolumab, Apolizumab, Arcitumomab, Ascrinvacumab, Aselizumab, Atezolizumab, Atinumab, Atlizumab, Atorolimumab, Avelumab, Bapineuzumab, Basiliximab, Bavituximab, Bectumomab, Begelomab, Belimumab, Benralizumab, Bertilimumab, Besilesomab, Bevacizumab, Bezlotoxumab, Biciromab, Bimagrumab, Bimekizumab, Bivatuzumab, Bleselumab, Blinatumomab, Blinatumomab, Blosozumab, Bococizumab, Brentuximab, Briaknumab, Brodalumab, Brolucizumab, Brontictuzumab, Cabiralizumab, Canakinumab, Cantuzumab, Caplacizumab, Capromab, Carlumab, Carotuximab, Catumaxomab, cBR96-doxorubicin immunoconjugate, Cedelizumab, Cergutuzumab, Certolizumab pegol, Cetuximab, Citatuzumab, Cixutumumab, Clazakizumab, Clenoliximab, Clivatuzumab, Codrituzumab, Coltuximab, Contatumumab, Concizumab, Crenezumab, Crotedumab, CR6261, Dacetumab, Daclizumab, Dalotuzumab, Dapirolizumab pegol, Daratumumab, Dectrekumab, Demcizumab, Denintuzumab, Denosumab, Derlotuximab biotin, Detumomab, Dinutuximab, Diridavumab, Domagrozumab, Dorlimomab aritox, Drozitumab, Duligotumab, Dupilumab, Durvalumab, Dusigitumab, Ecromeximab, Eculizumab, Edobacomab, Edrecolomab, Efalizumab, Efungumab, Eldelumab, Elgemtumab, Elotuzumab, Elsilimomab, Emactuzumab, Emibetuzumab, Emicizumab, Enavatuzumab, Enfortumab vedotin, Enlimomab pegol, Enoblituzumab, Enokizumab, Enoticumab, Ensituximab, Epitumomab cituxetan, Epratuzumab, Erlizumab, Ertumaxomab, Etaracizumab, Etrolizumab, Evinacumab, Evolocumab, Exbivirumab, Fanolesomab, Faralimomab, Farletuzumab, Fasinumab, FBTA05, Felvizumab, Fezakinumab, Fibatuzumab, Ficlatuzumab, Figitumumab, Firivumab, Flanvotumab, Fletikumab, Fontolizumab, Foralumab, Foravirumab, Fresolimumab, Fulranumab, Futuximab, Galcanezumab, Galiximab, Ganitumab, Gantenerumab, Gavilimomab, Gemtuzumab ozogamicin, Gevokizumab, Girentuximab, Glembatumumab vedotin, Golimumab, Gomiliximab, Guselkumab, Ibalizumab, Ibritumomab tituxetan, icrucumab, Idarucizumab, Igovomab, IMAB362, Imalumab, Imciromab, Imgatuzumab, Inclacumab, Indatuximab, Indusatumab, Inebilizumab, Infliximab, Intetumumab, Inolimomab, Inotuzumab, Ipilimumab, Iratumumab, Isatuximab, Itolizumab, Ixekizumab, Keliximab, Labetuzumab, Lambrolizumab, Lampalizumab, Lanadelumab, Landogrozumab, Laprituximab, Lebrikizumab, Lemalesomab, Lendalizumab, Lenzilumab, Lerdelimumab, Lexatumumab, Libivirumab, Lifastuzumab, Ligelizumab, Lilotomab, Lintuzumab, Lirilumab, Lodelcizumab, Lokivetmab, Lorvotuzumab, Lucatumumab, Lulizumab pegol, Lumiliximab, Lumretuzumab, Mapatumumab, Margetuximab, Maslimomab, Mavrilimumab, Matuzumab, Mepolizumab, Metelimumab, Milatuzumab, Minretumomab, Mirvetuximab, Mitumomab, Mogamulizumab, Monalizumab, Morolimumab, Motavizumab, Moxetumomab pasudotox, Muromonab-CD3, nacolomab tafenatox, Namilumab, naptumomab, naratuximab, Narnatumab, Natalizumab, Navicixizumab, Navivumab, Nebacumab, Necitumumab, Nemolizumab, Nerelimomab, Nesvacumab, Nimotuzumab, Nivolumab, Nofetumomab, Obiltoxaximab, Obinutuzumab, Ocaratuzumab, Ocrelizumab, Odulimomab, Ofatumumab, Olaratumab, Olaratumab, Olokizumab, Omalizumab, Onartuzumab, Ontuxizumab, Opicinumab, Oportuzumab monatox, Oregovomab, Orticumab, Otelixizumab, Otlertuzumab, Oxelumab, Ozanezumab, Ozoralizumab, Pagibaximab, Palivizumab, Pamrevlumab, Panitumumab, Pankomab, Panobacumab, Parsatuzumab, Pascolizumab, Pasotuxizumab, Pateclizumab, Patritumab, Pembrolizumab, Pemtumomab, Perakizumab, Pertuzumab, Pexelizumab, Pidilizumab, Pinatuzumab, Pintumomab, Placulumab, Plozalizumab, Pogalizumab, Polatuzumab, Ponezumab, Prezalizumab, Priliximab, Pritoxaximab, Pritumumab, PRO 140, Quilizumab, Racotumomab, Radretumab, Rafivirumab, Ralpancizumab, Ramucirumab, Ranibizumab, Raxibacumab, Refanezumab, Regavirumab, Reslizumab, Rilotumumab, Rinucumab, Risankizumab, Rituximab, Rivabazumab pegol, Robatumumab, Roledumab, Romosozumab, Rontalizumab, Rovalpituzumab, Rovelizumab, Ruplizumab, Sacituzumab, Samalizumab, Sapelizumab, Sarilumab, Satumomab pendetide, Secukinumab, Seribantumab, Setoxaximab, Sevirumab, Sibrotuzumab, SGN-CD19A, SGN-CD33A, Sifalimumab, Siltuximab, Simtuzumab, Siplizumab, Sirukumab, Sofituzumab vedotin, Solanezumab, Solitomab, Sonepcizumab, Sontuzumab, Stamulumab, Sulesomab, Suvizumab, tabalumab, Tacatuzumab, Tadocizumab, Talizumab, Tamtuvetmab, Tanezumab, Taplitumomab, Tarextumab, Tefibazumab, Telimomab aritox, Tenatumomab, Teneliximab, Teplizumab, Teprotumumab, Tesidolumab, Tetulomab, Tezepelumab, TGN1412, Ticilimumab, Tildrakizumab, Tigatuzumab, Timolumab, Tisotumab vedotin, TNX-650, Tocilizumab, Toralizumab, Tosatoxumab, Tositumomab, Tovetumab, Tralokinumab, Trastuzumab, TRBS07, Tregalizumab, Tremelimumab, Trevogrumab, Tucotuzumab, Tuvirumab, Ublituximab, Ulcocuplumab, Urelumab, Urtoxazumab, Ustekinumab, Vadastuximab talirine, Vandortuzumab vedotin, Vantictumab, Vanucizumab, Vapaliximab, Varlilumab, Vatelizumab, Vedolizumab, Veltuzumab, Vepalimomab, Vesencumab, Visilizumab, Vobarilizumab, Volociximab, Vorsetuzumab, Votumumab, Xentuzumab, Zalutumumab, Zanolimumab, Zatuximab, Ziralimumab and Zolimomab aritox.

Bicistronic and/or Pseudo-Bicistronic Antibody Payloads

According to the present invention, a bicistronic payload is a polynucleotide encoding a two-protein chain antibody on a single polynucleotide strand. A pseudo-bicistronic payload is a polynucleotide encoding a single chain antibody discontinuously on a single polynucleotide strand. For bicistronic payloads, the encoded two strands or two portions/regions and/or domains (as is the case with pseudo-bicistronic) are separated by at least one nucleotide not encoding the strands or domains. More often the separation comprises a cleavage signal or site or a non-coding region of nucleotides. Such cleavage sites include, for example, furin cleavage sites encoded as an “RKR” site, or a modified furin cleavage site in the resultant polypeptide or any of those taught herein.

According to the present invention, a single domain payload comprises one or two polynucleotides encoding a single monomeric variable antibody domain. Typically, single domain antibodies comprise one variable domain (VH) of a heavy-chain antibody.

According to the present invention, a single chain Fv payloads is a polynucleotide encoding at least two coding regions and a linker region. The scFv payload may encode a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide of ten to about 25 amino acids. The linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. Other linkers include those known in the art and disclosed herein.

According to the present invention, a bispecific payload is a polynucleotide encoding portions or regions of two different antibodies. Bispecific payloads encode polypeptides which may bind two different antigens. Polynucleotides of the present invention may also encode trispecific antibodies having an affinity for three antigens.

3. Tumor and Pathogen Specific Antigens

In some embodiments, payloads of the present invention may be tumor specific antigens (TSAs), tumor associated antigens (TAAs), pathogen associated antigens, or fragments thereof. The antigen can be expressed as a peptide or as an intact protein or portion thereof. The intact protein or a portion thereof can be native or mutagenized. Antigens associated with cancers or virus-induced cancers as described herein are well-known in the art. Such a TSA or TAA may be previously associated with a cancer or may be identified by any method known in the art.

A tumor specific antigen (TSA) may be a tumor neoantigen. A neoantigen is a mutated antigen that is only expressed by tumor cells because of genetic mutations or alterations in transcription which alter protein coding sequences, therefore creating novel, foreign antigens. The genetic changes result from genetic substitution, insertion, deletion or any other genetic changes of a native cognate protein (i.e. a molecule that is expressed in normal cells).

As non-limiting examples, neoantigens may include mutated new peptides derived from alpha-actinin-4, ARTC1, BCR-ABL fusion protein (b3a2), B-RAF, CASP-5, CASP-8, beta-catenin, Cdc27, CDK4, CDKN2A, CLPP, CML-66, COA-1, connexin 37, dek-can fusion protein, EFTUD2, Elongation factor 2, ETV6-AML1 fusion protein, fibronectin, FLT3-ITD, FN1, GPNM8, LDLR-fucosyltransferase AS fusion protein, HLA-A2, HLA-A11, Hsp-70-1B, MART-2, MEL MUM-1, MUM-2, MUM-3, Myosin class I, NFYC, neo-PAP, OGT, OS-9, p53, pml-RARalpha fusion protein, PRDX5, PTPRK, K-Ras, N-Ras, RBAF600, sirtuin-2, SNRPD1, SYT-SSX1/SSX2 fusion protein, TGF-beta receptor II, etc. Additional neoantigen peptides may include SF3B1 peptides, MYD peptides, TP53 peptides, Abl peptides, FBXW7 peptides, MAPK peptides, and GNB1 peptides disclosed in U.S. patent publication NO.: 20110293637; the contents of which are incorporated herein by reference in their entirety.

New neoantigens identified through large-scale sequencing and algorithm calculation may also be included. See, e.g., International Patent Publication NO.: WO2014/168874; Nishimura et al., Cancer Sci. 2015, 106(5): 505-511; and Linnemann et al., Nat. Med., 2015, 21(1): 81-85; the contents of each of which are incorporated herein by reference in their entirety.

A tumor associated antigen (TAA) may be an overexpressed or accumulated antigen that is expressed by both normal and neoplastic tissue, with the level of expression highly elevated in cancer tissues. Numerous proteins (e.g. oncogenes) are up-regulated in tumor tissues, including but not limited to adipophilin, AIM-2, ALDH1A1, BCLX(L), BING-4, CALCA, CD45, CD274, CPSF, cyclin D1, DKK1, ENAH, epCAM, ephA3, EZH2, FGF5, G250, HER-2/neu, HLA-DOB, Hepsin, IDO1, IGFB3, IL13 Ralpha2, Intestinal carboxyl esterase, kallikrein 4, KIF20A, lengsin, M-CSF, MCSP, mdm-2, Meloe, Midkine, MMP-2, MMP-7, MUC-1, MUC5AC, p53, Pax5, PBF, PRAME, PSMA, RAGE-1, RGS5, RhoC, RNF43, RU2A5, SECERNIN 1, SOX10, STEAP1, survivin, Telomerase, TPBG, VEGF, and WT1.

A TAA may be an oncofetal antigen that is typically only expressed at different stages during the development of the fetus and in cancerous somatic cells. Many proteins are normally expressed during fetal development but are transcriptionally repressed after birth or at early stage of infancy, therefore are not present, or are expressed in significantly lower levels in the corresponding normal adult tissue. Some of these developmental proteins are re-expressed in certain tumor cells and become oncofetal antigens. Examples of oncofetal antigens may include, but are not limited to CEA (carcinoembryonic antigen) in colorectal carcinoma, iLRP/OFA (immature laminin receptor protein/oncofetal antigen) in renal cell carcinoma (RCC), TAG-72 (tumor associated glycoprotein-72) in prostate carcinoma, AFP (alpha-fetoprotein) in hepatocellular carcinoma (HCC), ROR1 (a receptor tyrosine kinase) in many malignant cells such as brain tumors, sperm protein 17, HMGA2 (high mobility group A2) in ovarian carcinoma, oncofetal H19, CR-1 (Cripto-1, a member of epidermal growth factor (EGF)-CFC family), trophoblast glycoprotein precursor and GPC-3 (Glypican-3, a member of heparan sulphate proteoglycans) in HCC.

A TAA may be a cancer-testis antigen that is expressed only by cancer cells and adult reproductive tissues such as testis and placenta, including, but limited to antigens from BAGE family, CAGE family, HAGE family, GAGE family, MAGE family (e.g., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A6 and MAGE-A13), SAGE family, XAGE family, MCAK, NA88-A (cancer/testis antigen 88), PSAD1, SSX-2, and SLLP-1.

A TAA may be a lineage restricted antigen that is expressed largely by a single cancer histotype, such as Melan-A/MART-1, Gp100/pmel17, Tyrosinase, TRP-1/-2, P. polypeptide, MC1R in melanoma; and prostate specific antigen (PSA) in prostate cancer.

A TAA may be an oncoviral antigen that is encoded by tumorigenic transforming viruses (also called oncogenic viruses). Oncogenic viruses, when they infect host cells, can insert their own DNA (or RNA) into that of the host cells. When the viral DNA or RNA affects the host cell's genes, it can push the cell toward becoming cancer. Oncogenic viruses include, but are not limited to, RNA viruses, and DNA viruses. Some examples of commonly known oncoviruses include human papilloma viruses (HPVs) which are main causes of cervical cancer, Epstein-Barr virus (EBV) which may cause nasopharyngeal cancer, certain types of fast-growing lymphomas (e.g., Burkitt lymphoma) and stomach cancer, hepatitis B, C and D viruses (HBV, HCV and HDV) in hepatocellular carcinoma (HCC), human immunodeficiency virus (HIV) which increases the risk of getting many types of cancer (e.g., liver cancer, anal cancer and Hodgkin cancer), Kaposi sarcoma herpes virus (KSHV; also known as human herpes virus 8 (HHV8)) which is linked to lymphoma, human T-lymphotrophic virus (HTLV-1) and merkel cell polyomavirus (MCV). A viral antigen can be any defined antigen of a virus that is associated with a cancer in a human. For example, antigens from EBV may include but are not limited to, Epstein-Barr nuclear antigen-1 (EBNA1), latent membrane protein 1 (LMP1), or latent membrane protein 2 (LMP2).

A TAA may be an idiotypic antigen that is generated from highly polymorphic genes where a tumor cell expresses a specific “clonotype”, i.e., as in B cell, T cell lymphoma/leukemia resulting from clonal aberrancies, such as Immunoglobulin and T cell receptors (TCRs). Idiotypic antigens are a class of non-pathogen-associated neoantigens. For example, the malignant B cells express rearranged and multiply mutated surface immunoglobulins (Ig). Tumor specific idiotypes (e.g., immunoglobulin idiotypes) are regarded as particularly attractive tumor-specific antigens that can be successfully targeted by immunotherapy (e.g., Alejandro et al., Front Oncol., 2012, 2: 159).

4. T Cell Receptors (TCRs)

In some embodiments, payloads of the present invention may be T cell receptors (TCRs). The TCR may be specific to a cancer antigen, having a specific α chain and β chain which together form a TCRαβ heterodimer, or having a specific γ chain and δ chain which together form a TCRγδ heterodimer. The TCR may be a recombinant antigen specific T cell receptor.

The variable regions of α chain and β chain determine T cell specificity to an antigenic peptide presented by the major histocompatibility complex (MEW) class I and II molecules. The TCR recognition of the tumor antigen on the surface of a tumor cell presented by MEW molecules by TCR triggers T cell activation. The use of TCR gene therapy can equip a subject's own T cells with desired specificities and generate sufficient numbers of T cells to eradicate tumor cells. In some embodiments, a biocircuit or an effector module comprising a tumor specific TCR may be transduced into T cells and TCR-engineered T cells will be infused into cancer patients who have lymphocytopenia or lymphopenia by chemotherapy or irradiation, allowing efficient engraftment but inhibiting immune suppression.

Sequences encoding tumor antigen recognizing TCR chains can be obtained from tumor-reactive T cells (e.g., tumor-infiltrating lymphocytes isolated from the tumor of a patient).

According to the present invention, a TCR specific to tumor cells can be produced by methods described in International Patent Publication NO.: WO2014/083173; the contents of which are incorporated herein by reference in their entirety. A host organism expressing a transgene of a human leucocyte antigen (HLA) type which is known or suspected to be able to present a mutated tumor specific antigen (TSA) is transduced to express the un-rearranged human TCR loci. Preferably these loci encode TCR α and β chains, and preferably comprise a plurality, ideally all, of human TCR V, D, J, and/or C genes. The host organism is immunized with a cancer specific TSA or a peptide epitope derived from the TSA and T cells expressing rearranged TCRs specifically against the TSA are isolated and cloned. The TCR from the cloned T cells are sequenced (International Patent Publication NO.: WO2014/083173; the contents of which are incorporated herein by reference in their entirety).

In some embodiments, payloads of the present invention may be TCRs that specifically recognize TSAs, TAAs, or epitopes thereof, complexed with MEW molecules.

Exemplary tumor antigens that can be recognized by a TCR may include at least the following: 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD3δ, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CDS, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, G250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, IL5, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-κB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.

In one aspect, the payload of the present invention may be a TCR specifically recognizing Her2/neu epitope which has nucleic acid sequences of α chain and β chain disclosed in U.S. Patent Publication NO.: US20110280894 and International Patent Publication NO. WO2016133779A1; the contents of each of which are incorporated herein by reference in their entirety. In another aspect, the payload of the present invention may be a TCR specific to TSA tyrosinase (See U.S. Pat. No. 8,697,854; the contents of which are incorporated herein by reference in their entirety).

In other aspects, payloads of the present invention may be TCRs having polypeptide sequences specific to synovial sarcoma X Breakpoint (SSX)-2 antigen (U.S. Pat. No. 9,345,748); human papillomavirus (HPV) 16 E6 antigen (International Patent Publication NO.: WO2015/009606); cytomegalovirus (CMV) phosphoprotein pp 65 (U.S. Pat. No. 8,722,048); and WT-1 specific TCR comprising a TCR α-chain having an amino acid sequence as set forth in any one of SEQ ID NOs.: 5-8, and comprising a TCR β-chain having an amino acid sequence as set forth in SEQ ID NO.: 12 or 13, as disclosed in U.S. patent publication NO.: US2016/0083449; the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, the TCR specific to a TSA may be modified to possess a sequence encoding an affinity weakening motif which imparts a reduction in non-specific binding to a TSA. In some embodiments, an affinity weakening motif having a modification to a TCR CDR1 or CDR2 region may be used to weaken the interaction between TCR and HLA proteins (see, International Patent Publication NO.: WO2016/014725; the contents of which are incorporated herein by reference in their entirety).

In some embodiments, the TCR specific to a TSA may be modified to possess an affinity enhancing motif which imparts an enhancement of binding specificity and affinity for a target antigen. In some embodiments, such high affinity TCRs may be generated by using TCR α-chain to select de novo generated TCR β-chains that pair with an antigen specific TCR α-chain during T cell development in vitro to form enhanced TCRs (see, International Patent Publication NO.: WO2013/166321; the contents of which are incorporated herein by reference in their entirety). In other embodiments, the modified TCR may also possess a sequence encoding an affinity enhancing modification CDR3 region which strengthens the interaction between the TCR and the TSA.

In one embodiment, the TCR specific to a TSA may be modified using zinc finger nucleases (ZFNs), TALENs or a CRISPR/Cas system. The TCR α chain and β chain may contain target sites of a nuclease. The nuclease can cleave the TCR sequence causing a certain degree of disruption of the TCR (see U.S. Patent Publication NO.: US2014/0301990; the contents of which are incorporated herein by reference in their entirety).

In one embodiment, the TCR specific to a TSA may be a soluble single-chain TCR having the structure: Vα2-L-Vβ or Vβ-L-Vα2, wherein L is a linker peptide that links a TCR variable β region (Vβ) with a TCR variable α region of the family 2 (Vα2), as discussed in International Patent Publication NO.: WO2011/044186; the contents of which are incorporated herein by reference in their entirety.

In one embodiment, the TCR specific to a TSA may be maturated to increase its affinity to the TSA according to methods described in U.S. Patent Publication NO.: US2014/0065111; the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the TCRs may be specific to the Fc domain of an antibody (e.g. FcgRla) and utilized to enhance efficacy of antibody mediated therapy, as discussed in International Patent Publication NO.: WO2015/179833; the contents of which are incorporated herein by reference in their entirety.

In some embodiments, payloads of the present invention may be recombinant constructs which act as trifunctional T-cell signaling couplers (TriTACs) mimicking the naturally signaling through T cell receptors. The TriTACs enhance chimeric receptor activity while retaining WIC unrestricted targeting. In some aspects, the recombinant construct may comprise a target specific binding ligand such as a scFV specific to a TSA or a designed ankyrin repeat (DARPin), a ligand that binds a protein associated with the TCR complex and a TCR signaling domain polypeptide, e.g. as described in the International Patent Application NO.: WO2015/117229; the contents of which are incorporated herein by reference in their entirety. The TCR associated proteins may be selected from CD3, ZAP70 9 zeta-chain associated protein kinase 70), TYN and CD247. In some aspects, the ligand of a TriTAC that binds the TCR associated protein may be an antibody or an antibody fragment (e.g., scFv). In other aspects, the TCR signaling domain polypeptide of a TriTAC may comprise the transmembrane and cytoplasmic domain of CD4.

According to the present invention, the α chain and β chain of the TCR of the present invention may be included in separate constructs, for example as payloads of two effector modules. In other embodiments, the α chain and β chain of the TCR of the present invention may be included in a single effector module as two payloads of the same effector module, for example as illustrated in FIGS. 3-6.

5. Chimeric Antigen Receptors (CARS)

In some embodiments, payloads of the present invention may be a chimeric antigen receptors (CARs) which when transduced into immune cells (e.g., T cells and NK cells), can redirect the immune cells against the target (e.g., a tumor cell) which expresses a molecule recognized by the extracellular target moiety of the CAR.

As used herein, the term “chimeric antigen receptor (CAR)” refers to a synthetic receptor that mimics TCR on the surface of T cells. In general, a CAR is composed of an extracellular targeting domain, a transmembrane domain/region and an intracellular signaling/activation domain. In a standard CAR receptor, the components: the extracellular targeting domain, transmembrane domain and intracellular signaling/activation domain, are linearly constructed as a single fusion protein. The extracellular region comprises a targeting domain/moiety (e.g., a scFv) that recognizes a specific tumor antigen or other tumor cell-surface molecules. The intracellular region may contain a signaling domain of TCR complex (e.g., the signal region of CD3ζ), and/or one or more costimulatory signaling domains, such as those from CD28, 4-1BB (CD137) and OX-40 (CD134). For example, a “first-generation CAR” only has the CD3 signaling domain, whereas in an effort to augment T-cell persistence and proliferation, costimulatory intracellular domains are added, giving rise to second generation CARs having a CD3ζ signal domain plus one costimulatory signaling domain, and third generation CARs having CD3ζ signal domain plus two or more costimulatory signaling domains. A CAR, when expressed by a T cell, endows the T cell with antigen specificity determined by the extracellular targeting moiety of the CAR. Recently, it is also desirable to add one or more elements such as homing and suicide genes to develop a more competent and safer architecture of CAR, so called the fourth-generation CAR.

Cells such as T cells engineered to express a CAR can be redirected to attack target cells that express a molecule which can be recognized by the targeting moiety of the CAR.

In some embodiments, the extracellular targeting domain is joined through the hinge (also called space domain or spacer) and transmembrane regions to an intracellular signaling domain. The hinge connects the extracellular targeting domain to the transmembrane domain which transverses the cell membrane and connects to the intracellular signaling domain. The hinge may need to be varied to optimize the potency of CAR transformed cells toward cancer cells due to the size of the target protein where the targeting moiety binds, and the size and affinity of the targeting domain itself. Upon recognition and binding of the targeting moiety to the target cell, the intracellular signaling domain leads to an activation signal to the CAR T cell, which is further amplified by the “second signal” from one or more intracellular costimulatory domains. The CAR T cell, once activated, can destroy the target cell.

In some embodiments, the CAR of the present invention may be split into two parts, each part is linked a dimerizing domain, such that an input that triggers the dimerization promotes assembly of the intact functional receptor. Wu and Lim recently reported a split CAR in which the extracellular CD19 binding domain and the intracellular signaling element are separated and linked to the FKBP domain and the FRB* (T2089L mutant of FKBP-rapamycin binding) domain that heterodimerize in the presence of the rapamycin analog AP21967. The split receptor is assembled in the presence of AP21967 and together with the specific antigen binding, activates T cells (Wu et al., Science, 2015, 625(6258): aab4077).

In some embodiments, the CAR of the present invention may be designed as an inducible CAR. Sakemura et al recently reported the incorporation of a Tet-On inducible system to the CD19 CAR construct. The CD19 CAR is activated only in the presence of doxycycline (Dox). Sakemura reported that Tet-CD19 CAR T cells in the presence of Dox were equivalently cytotoxic against CD19+ cell lines and had equivalent cytokine production and proliferation upon CD19 stimulation, compared with conventional CD19 CAR T cells (Sakemura et al., Cancer Immuno. Res., 2016, Jun. 21, Epub ahead of print). In one example, this Tet-CAR may be the payload of the effector module under the control of SREs (e.g., DDs) of the invention. The dual systems provide more flexibility to turn-on and off the CAR expression in transduced T cells.

According to the present invention, the payload of the present invention may be a first-generation CAR, or a second-generation CAR, or a third-generation CAR, or a fourth-generation CAR. Representative effector module embodiments comprising CAR constructs are illustrated in FIGS. 13-18. In some embodiments, the payload of the present invention may be a full CAR construct composed of the extracellular domain, the hinge and transmembrane domain and the intracellular signaling region. In other embodiments, the payload of the present invention may be a component of the full CAR construct including an extracellular targeting moiety, a hinge region, a transmembrane domain, an intracellular signaling domain, one or more co-stimulatory domain, and other additional elements that improve CAR architecture and functionality including but not limited to a leader sequence, a homing element and a safety switch, or the combination of such components.

CARs regulated by biocircuits and compositions of the present invention are tunable and thereby offer several advantages. The reversible on-off switch mechanism allows management of acute toxicity caused by excessive CAR-T cell expansion. Pulsatile CAR expression using SREs of the present invention may be achieved by cycling ligand level. The ligand conferred regulation of the CAR may be effective in offsetting tumor escape induced by antigen loss, avoiding functional exhaustion caused by tonic signaling due to chronic antigen exposure and improving the persistence of CAR expressing cells in vivo.

In some embodiments, biocircuits and compositions of the invention may be utilized to down regulate CAR expression to limit on target on tissue toxicity caused by tumor lysis syndrome. Down regulating the expression of the CARs of the present invention following anti-tumor efficacy may prevent (1) On target off tumor toxicity caused by antigen expression in normal tissue. (2) antigen independent activation in vivo.

Extracellular Targeting Domain/Moiety

In accordance with the invention, the extracellular target moiety of a CAR may be any agent that recognizes and binds to a given target molecule, for example, a neoantigen on tumor cells, with high specificity and affinity. The target moiety may be an antibody and variants thereof that specifically binds to a target molecule on tumor cells, or a peptide aptamer selected from a random sequence pool based on its ability to bind to the target molecule on tumor cells, or a variant or fragment thereof that can bind to the target molecule on tumor cells, or an antigen recognition domain from native T-cell receptor (TCR) (e.g. CD4 extracellular domain to recognize HIV infected cells), or exotic recognition components such as a linked cytokine that leads to recognition of target cells bearing the cytokine receptor, or a natural ligand of a receptor.

In some embodiments, the targeting domain of a CAR may be a Ig NAR, a Fab fragment, a Fab′ fragment, a F(ab)′2 fragment, a F(ab)′3 fragment, Fv, a single chain variable fragment (scFv), a bis-scFv, a (scFv)2, a minibody, a diabody, a triabody, a tetrabody, a disulfide stabilized Fv protein (dsFv), a unitbody, a nanobody, or an antigen binding region derived from an antibody that specifically recognizes a target molecule, for example a tumor specific antigen (TSA). In one embodiment, the targeting moiety is a scFv antibody. The scFv domain, when it is expressed on the surface of a CAR T cell and subsequently binds to a target protein on a cancer cell, is able to maintain the CAR T cell in proximity to the cancer cell and to trigger the activation of the T cell. A scFv can be generated using routine recombinant DNA technology techniques and is discussed in the present invention.

In one embodiment, the targeting moiety of a CAR construct may be an aptamer such as a peptide aptamer that specifically binds to a target molecule of interest. The peptide aptamer may be selected from a random sequence pool based on its ability to bind to the target molecule of interest.

In some embodiments, the targeting moiety of a CAR construct may be a natural ligand of the target molecule, or a variant and/or fragment thereof capable of binding the target molecule. In some aspects, the targeting moiety of a CAR may be a receptor of the target molecule, for example, a full-length human CD27, as a CD70 receptor, may be fused in frame to the signaling domain of CD3ζ forming a CD27 chimeric receptor as an immunotherapeutic agent for CD70-positive malignancies (See, e.g., U.S. patent publication NO.: US20130323214; the contents of which are incorporated by reference herein in their entirety).

In some embodiments, the targeting moiety of a CAR may recognize a tumor specific antigen (TSA), for example a cancer neoantigen which is restrictedly expressed on tumor cells.

As non-limiting examples, the CAR of the present invention may comprise the extracellular targeting domain capable of binding to a tumor specific antigen selected from 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD3δ, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CDS, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, G250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, IL5, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-κB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.

In some embodiments, the CAR of the present invention may comprise a universal immune receptor which has a targeting moiety capable of binding to a labelled antigen. Methods of generating universal immune receptor CAR are discussed in International Patent Publication NO.: WO2013044225A1; the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to a pathogen antigen.

In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to non-protein molecules such as tumor-associated glycolipids and carbohydrates. TSAs may also be lipid molecules, polysaccharides, saccharides, nucleic acids, haptens, carbohydrate, or the combinations thereof.

In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to a component within the tumor microenvironment including proteins expressed in various tumor stroma cells including tumor associated macrophages (TAMs), immature monocytes, immature dendritic cells, immunosuppressive CD4+CD25+ regulatory T cells (Treg) and MDSCs. A recent study using an animal model, demonstrated that after systemic transplantation, T cells expressing VEGFR-2 CAR and IL12 infiltrated the tumors, expanded and persisted within tumor mass leading to tumor regression. The anti-tumor effect was dependent on targeting of IL12-responsive host cells via activation of VEGFR-2 CAR-T cells and release of IL12 (Chinnasamy et al., Clinical Cancer Research, 2012, 18: 1672-1683).

In some embodiments, the CAR of the present invention may comprise the targeting moiety capable of binding to a cell surface adhesion molecule, a surface molecule of an inflammatory cell that appears in an autoimmune disease, or a TCR causing autoimmunity.

As non-limiting examples, the targeting moiety of the present invention may be a scFv antibody that recognizes a tumor specific antigen (TSA), for example scFvs of antibodies SS, SS1 and HN1 that specifically recognize and bind to human mesothelin (U.S. Pat. No. 9,359,447), scFv of antibody of GD2 (U.S. Pat. No. 9,315,585), a CD19 antigen binding domain (U.S. Pat. NO.: 9, 328, 156); a NKG2D ligand binding domain (U.S. Pat. No. 9,273,283; US patent publication NO.: US20160311906A1); human anti-mesothelin scFvs comprising the amino acid sequences of SEQ ID Nos.: 11 and 12 of U.S. Pat. No. 9,272,002; an anti-CS1 binding agent (U.S. patent publication NO.: US20160075784); an anti-BCMA binding domain (International Patent Publication NO.: WO2016/014565); anti-CD19 scFv antibody of SEQ ID NO.: 20 in U.S. Pat. No. 9,102,761; GFR alpha 4 antigen binding fragments having the amino acid sequences of SEQ ID NOs: 59 and 79 of International patent publication NO.: 2016/025880; anti-CLL-1 (C-type lectin-like molecule 1) binding domains having the amino acid sequences of SEQ ID NO: 47, 44, 48, 49, 50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90 and 196 of International Patent Publication NO.: WO2016014535); CD33 binding domains having the amino acid sequences of SEQ ID NOs: 39-46 of International patent publication NO.: WO2016014576; a GPC3 (glypican-3) binding domain (SEQ ID NO.: 2 and SEQ ID NO.: 4 of International patent publication NO.: WO2016036973); a GFR alpha4 (Glycosyl-phosphatidylinositol (GPI)-linked GDNF family α-receptor 4 cell-surface receptor) binding domain (International Patent Publication NO.: WO2016025880); CD123 binding domains having the amino acid sequences of SEQ ID NOs: 480, 483, 485, 478, 158, 159, 160, 157, 217, 218, 219, 216, 276, 277, 278, and 275 of International patent publication NO.: WO20160258896; an anti-ROR1 antibody or fragments thereof (International patent publication NO.: WO2016016344); scFvs specific to GPC-3 (SEQ ID NOs: 1 and 24 of International patent publication NO.: WO2016049459); scFv for CSPG4 (SEQ ID NO.: 2 of International patent publication NO.: WO2015080981; scFv for folate receptor alpha (U.S. Patent Publication NO.: US20170002072A1); the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, natural ligands may be used as the targeting moieties of the CARs of the present invention. Such natural ligands may be capable of binding to the antigens with affinity in the range of the scFvs and can redirect T cells specificity and effector functions to target cells expressing the complementary receptor. In some embodiments, the targeting moiety of the CAR may be neuregulin-1 (NRG1) which is a natural ligand for HER3 and HER4; VEGF which is a natural ligand of VEGFR; IL13 wildtype protein or IL13 mutein e.g E13Y which binds to IL13Rα2; NKG2D ligand, which is a natural ligand of NKG2D receptor; CD70 which is ligand of CD27; and a proliferation-inducing ligand (APRIL) which is a natural high affinity ligand for BCMA8 and transmembrane activator and CAML interactor (TACI). Any of the ligand based BCMA CARs taught in the U.S. Patent Publication No. US20160362467A1, the contents of which are incorporated by reference in their entirety.

In some embodiments, the targeting moieties of the present invention may be scFv comprising the amino acid sequences in Table 11.

TABLE 11
scFv sequences
TargetDescriptionSEQ ID NOSource
Activated alpha.v. Beta.3scFv5474SEQ ID NO. 8 in US20090117096A1
integrin receptor
Activated alpha.v. Beta.3scFv5475SEQ ID NO. 2 in US20090117096A1
integrin receptor
Activated alpha.v. Beta.3scFv5476SEQ ID NO. 4 in US20090117096A1
integrin receptor
AdalimumabscFv5477SEQ ID NO. 41 in US20160208021
AdalinumabscFv5478SEQ ID NO. 41 in WO2016112870
ALKscFv5479SEQ ID NO. 17 in WO2015069922
ALKscFv5480SEQ ID NO. 18 in WO2015069922
ALKscFv5481SEQ ID NO. 19 in WO2015069922
ALKscFv5482SEQ ID NO. 20 in WO2015069922
ALKscFv5483SEQ ID NO. 21 in WO2015069922
ALKscFv5484SEQ ID NO. 22 in WO2015069922
ALKscFv5485SEQ ID NO. 23 in WO2015069922
ALKscFv5486SEQ ID NO. 17 in US20160280798A1
ALKscFv5487SEQ ID NO. 18 in US20160280798A1
ALKscFv5488SEQ ID NO. 19 in US20160280798A1
ALKscFv5489SEQ ID NO. 20 in US20160280798A1
ALKscFv5490SEQ ID NO. 21 in US20160280798A1
ALKscFv5491SEQ ID NO. 22 in US20160280798A1
ALKscFv5492SEQ ID NO. 23 in US20160280798A1
ALKscFv5493SEQ ID NO. 24 in US20160280798A1
ALKscFv5494SEQ ID NO. 24 in WO2015069922
B7H3scFv5495SEQ ID NO. 100 in WO2016033225
B7H3scFv5496SEQ ID NO. 101 in WO2016033225
B7H3scFv5497SEQ ID NO. 102 in WO2016033225
B7H3scFv5498SEQ ID NO. 103 in WO2016033225
B7H3scFv5499SEQ ID NO. 104 in WO2016033225
B7H3scFv5500SEQ ID NO. 105 in WO2016033225
B7H3scFv5501SEQ ID NO. 17 in WO2016033225
B7H3scFv5502SEQ ID NO. 18 in WO2016033225
B7H3scFv5503SEQ ID NO. 19 in WO2016033225
B7H3scFv5504SEQ ID NO. 20 in WO2016033225
B7H3scFv5505SEQ ID NO. 21 in WO2016033225
B7H3scFv5506SEQ ID NO. 22 in WO2016033225
B7H3scFv5507SEQ ID NO. 23 in WO2016033225
B7H3scFv5508SEQ ID NO. 24 in WO2016033225
B7H3scFv5509SEQ ID NO. 25 in WO2016033225
B7H3scFv5510SEQ ID NO. 26 in WO2016033225
B7H3scFv5511SEQ ID NO. 27 in WO2016033225
B7H3scFv5512SEQ ID NO. 87 in WO2016033225
B7H3scFv5513SEQ ID NO. 88 in WO2016033225
B7H3scFv5514SEQ ID NO. 89 in WO2016033225
B7H3scFv5515SEQ ID NO. 90 in WO2016033225
B7H3scFv5516SEQ ID NO. 91 in WO2016033225
B7H3scFv5517SEQ ID NO. 92 in WO2016033225
B7H3scFv5518SEQ ID NO. 94 in WO2016033225
B7H3scFv5519SEQ ID NO. 95 in WO2016033225
B7H3scFv5520SEQ ID NO. 96 in WO2016033225
B7H3scFv5521SEQ ID NO. 97 in WO2016033225
B7H3scFv5522SEQ ID NO. 98 in WO2016033225
B7H3scFv5523SEQ ID NO. 99 in WO2016033225
B7H4scFv5524SEQ ID NO. 1 in WO2013067492
B7H4scFv5525SEQ ID NO. 2 in WO2013067492
B7H4scFv5526SEQ ID NO. 3 in WO2013067492
B7H4scFv5527SEQ ID NO. 4 in WO2013067492
B7H4scFv5528SEQ ID NO. 1 in U.S. Pat. No. 9,422,351B2
BCMAscFv5529SEQ ID NO. 152 in WO2016168595A1
BCMAscFv5530SEQ ID NO. 158 in WO2016168595A1
BCMAscFv5531SEQ ID NO. 176 in WO2016168595A1
BCMAscFv5532SEQ ID NO. 182 in WO2016168595A1
BCMAscFv5533SEQ ID NO. 188 in WO2016168595A1
BCMAscFv5534SEQ ID NO. 200 in WO2016168595A1
BCMAscFv5535SEQ ID NO. 212 in WO2016168595A1
BCMAscFv5536SEQ ID NO. 218 in WO2016168595A1
BCMAscFv5537SEQ ID NO. 224 in WO2016168595A1
BCMAscFv5538SEQ ID NO. 284 in WO2016168595A1
BCMAscFv5539SEQ ID NO. 290 in WO2016168595A1
BCMAscFv5540SEQ ID NO. 296 in WO2016168595A1
BCMAscFv5541SEQ ID NO. 302 in WO2016168595A1
BCMAscFv5542SEQ ID NO. 314 in WO2016168595A1
BCMAscFv5543SEQ ID NO. 326 in WO2016168595A1
BCMAscFv5544SEQ ID NO. 344 in WO2016168595A1
BCMAscFv5545SEQ ID NO. 129 in WO2016014565
BCMAscFv5546SEQ ID NO. 130 in WO2016014565
BCMAscFv5547SEQ ID NO. 131 in WO2016014565
BCMAscFv5548SEQ ID NO. 132 in WO2016014565
BCMAscFv5549SEQ ID NO. 133 in WO2016014565
BCMAscFv5550SEQ ID NO. 134 in WO2016014565
BCMAscFv5551SEQ ID NO. 135 in WO2016014565
BCMAscFv5552SEQ ID NO. 136 in WO2016014565
BCMAscFv5553SEQ ID NO. 138 in WO2016014565
BCMAscFv5554SEQ ID NO. 139 in WO2016014565
BCMAscFv5555SEQ ID NO. 140 in WO2016014565
BCMAscFv5556SEQ ID NO. 141 in WO2016014565
BCMAscFv5557SEQ ID NO. 142 in WO2016014565
BCMAscFv5558SEQ ID NO. 143 in WO2016014565
BCMAscFv5559SEQ ID NO. 144 in WO2016014565
BCMAscFv5560SEQ ID NO. 145 in WO2016014565
BCMAscFv5561SEQ ID NO. 146 in WO2016014565
BCMAscFv5562SEQ ID NO. 147 in WO2016014565
BCMAscFv5563SEQ ID NO. 148 in WO2016014565
BCMAscFv5564SEQ ID NO. 149 in WO2016014565
BCMAscFv5565SEQ ID NO. 263 in WO2016014565
BCMAscFv5566SEQ ID NO. 264 in WO2016014565
BCMAscFv5567SEQ ID NO. 265 in WO2016014565
BCMAscFv5568SEQ ID NO. 266 in WO2016014565
BCMAscFv5569SEQ ID NO. 271 in WO2016014565
BCMAscFv5570SEQ ID NO. 273 in WO2016014565
BCMAscFv5571SEQ ID NO. 273 in WO2016014565
BCMAscFv5572SEQ ID NO. 39 in WO2016014565
BCMAscFv5573SEQ ID NO. 40 in WO2016014565
BCMAscFv5574SEQ ID NO. 41 in WO2016014565
BCMAscFv5575SEQ ID NO. 42 in WO2016014565
BCMAscFv5576SEQ ID NO. 43 in WO2016014565
BCMAscFv5577SEQ ID NO. 44 in WO2016014565
BCMAscFv5578SEQ ID NO. 45 in WO2016014565
BCMAscFv5579SEQ ID NO. 46 in WO2016014565
BCMAscFv5580SEQ ID NO. 47 in WO2016014565
BCMAscFv5581SEQ ID NO. 48 in WO2016014565
BCMAscFv5582SEQ ID NO. 49 in WO2016014565
BCMAscFv5583SEQ ID NO. 50 in WO2016014565
BCMAscFv5584SEQ ID NO. 51 in WO2016014565
BCMAscFv5585SEQ ID NO. 52 in WO2016014565
BCMAscFv5586SEQ ID NO. 53 in WO2016014565
BCMAscFv5587SEQ ID NO. 64 in WO2016014565
BCMAscFv5588SEQ ID NO. 129 in WO2016014565
BCMAscFv5589SEQ ID NO. 130 in WO2016014565
BCMAscFv5590SEQ ID NO. 131 in WO2016014565
BCMAscFv5591SEQ ID NO. 132 in WO2016014565
BCMAscFv5592SEQ ID NO. 133 in WO2016014565
BCMAscFv5593SEQ ID NO. 134 in WO2016014565
BCMAscFv5594SEQ ID NO. 135 in WO2016014565
BCMAscFv5595SEQ ID NO. 136 in WO2016014565
BCMAscFv5596SEQ ID NO. 137 in WO2016014565
BCMAscFv5597SEQ ID NO. 138 in WO2016014565
BCMAscFv5598SEQ ID NO. 139 in WO2016014565
BCMAscFv5599SEQ ID NO. 140 in WO2016014565
BCMAscFv5600SEQ ID NO. 141 in WO2016014565
BCMAscFv5601SEQ ID NO. 142 in WO2016014565
BCMAscFv5602SEQ ID NO. 143 in WO2016014565
BCMAscFv5603SEQ ID NO. 144 in WO2016014565
BCMAscFv5604SEQ ID NO. 145 in WO2016014565
BCMAscFv5605SEQ ID NO. 146 in WO2016014565
BCMAscFv5606SEQ ID NO. 147 in WO2016014565
BCMAscFv5607SEQ ID NO. 148 in WO2016014565
BCMAscFv5608SEQ ID NO. 149 in WO2016014565
BCMAscFv5609SEQ ID NO. 263 in WO2016014565
BCMAscFv5610SEQ ID NO. 264 in WO2016014565
BCMAscFv5611SEQ ID NO. 265 in WO2016014565
BCMAscFv5612SEQ ID NO. 266 in WO2016014565
BCMAscFv5613SEQ ID NO. 39 in WO2016014565
BCMAscFv5614SEQ ID NO. 40 in WO2016014565
BCMAscFv5615SEQ ID NO. 41 in WO2016014565
BCMAscFv5616SEQ ID NO. 42 in WO2016014565
BCMAscFv5617SEQ ID NO. 43 in WO2016014565
BCMAscFv5618SEQ ID NO. 44 in WO2016014565
BCMAscFv5619SEQ ID NO. 45 in WO2016014565
BCMAscFv5620SEQ ID NO. 46 in WO2016014565
BCMAscFv5621SEQ ID NO. 47 in WO2016014565
BCMAscFv5622SEQ ID NO. 48 in WO2016014565
BCMAscFv5623SEQ ID NO. 49 in WO2016014565
BCMAscFv5624SEQ ID NO. 50 in WO2016014565
BCMAscFv5625SEQ ID NO. 51 in WO2016014565
BCMAscFv5626SEQ ID NO. 52 in WO2016014565
BCMAscFv5627SEQ ID NO. 53 in WO2016014565
BCMAscFv5628SEQ ID NO. 214 in US20160311907A1
BCMAscFv5629SEQ ID NO. 215 in US20160311907A1
BCMAscFv5630SEQ ID NO. 216 in US20160311907A1
BCMAscFv5631SEQ ID NO. 217 in US20160311907A1
BCMAscFv5632SEQ ID NO. 218 in US20160311907A1
BCMAscFv5633SEQ ID NO. 219 in US20160311907A1
BCMAscFv5634SEQ ID NO. 220 in US20160311907A1
BCMAscFv5635SEQ ID NO. 221 in US20160311907A1
BCMAscFv5636SEQ ID NO. 222 in US20160311907A1
BCMAscFv5637SEQ ID NO. 223 in US20160311907A1
BCMAscFv5638SEQ ID NO. 224 in US20160311907A1
BCMAscFv5639SEQ ID NO. 225 in US20160311907A1
BCMAscFv5640SEQ ID NO. 226 in US20160311907A1
BCMAscFv5641SEQ ID NO. 227 in US20160311907A1
BCMAscFv5642SEQ ID NO. 228 in US20160311907A1
BCMAscFv5643SEQ ID NO. 229 in US20160311907A1
BCMAscFv5644SEQ ID NO. 230 in US20160311907A1
BCMAscFv5645SEQ ID NO. 231 in US20160311907A1
BCMAscFv5646SEQ ID NO. 232 in US20160311907A1
BCMAscFv5647SEQ ID NO. 233 in US20160311907A1
BCMAscFv5648SEQ ID NO. 234 in US20160311907A1
BCMAscFv5649SEQ ID NO. 235 in US20160311907A1
BCMAscFv5650SEQ ID NO. 236 in US20160311907A1
BCMAscFv5651SEQ ID NO. 237 in US20160311907A1
BCMAscFv5652SEQ ID NO. 238 in US20160311907A1
BCMAscFv5653SEQ ID NO. 239 in US20160311907A1
BCMAscFv5654SEQ ID NO. 240 in US20160311907A1
BCMAscFv5655SEQ ID NO. 241 in US20160311907A1
BCMAscFv5656SEQ ID NO. 242 in US20160311907A1
BCMAscFv5657SEQ ID NO. 243 in US20160311907A1
BCMAscFv5658SEQ ID NO. 244 in US20160311907A1
BCMAscFv5659SEQ ID NO. 245 in US20160311907A1
BCMAscFv5660SEQ ID NO. 246 in US20160311907A1
BCMAscFv5661SEQ ID NO. 247 in US20160311907A1
BCMAscFv5662SEQ ID NO. 248 in US20160311907A1
BCMAscFv5663SEQ ID NO. 249 in US20160311907A1
BCMAscFv5664SEQ ID NO. 251 in US20160311907A1
CCR4scFv5665SEQ ID N0. 7 in WO2015191997
CCR4scFv5666SEQ ID N0. 9 in WO2015191997
CD123scFv5667SEQ ID NO. 157 in WO2016028896
CD123scFv5668SEQ ID NO. 158 in WO2016028896
CD123scFv5669SEQ ID NO. 159 in WO2016028896
CD123scFv5670SEQ ID NO. 160 in WO2016028896
CD123scFv5671SEQ ID NO. 184 in WO2016028896
CD123scFv5672SEQ ID NO. 185 in WO2016028896
CD123scFv5673SEQ ID NO. 186 in WO2016028896
CD123scFv5674SEQ ID NO. 187 in WO2016028896
CD123scFv5675SEQ ID NO. 188 in WO2016028896
CD123scFv5676SEQ ID NO. 189 in WO2016028896
CD123scFv5677SEQ ID NO. 190 in WO2016028896
CD123scFv5678SEQ ID NO. 191 in WO2016028896
CD123scFv5679SEQ ID NO. 192 in WO2016028896
CD123scFv5680SEQ ID NO. 193 in WO2016028896
CD123scFv5681SEQ ID NO. 194 in WO2016028896
CD123scFv5682SEQ ID NO. 195 in WO2016028896
CD123scFv5683SEQ ID NO. 196 in WO2016028896
CD123scFv5684SEQ ID NO. 197 in WO2016028896
CD123scFv5685SEQ ID NO. 198 in WO2016028896
CD123scFv5686SEQ ID NO. 199 in WO2016028896
CD123scFv5687SEQ ID NO. 200 in WO2016028896
CD123scFv5688SEQ ID NO. 201 in WO2016028896
CD123scFv5689SEQ ID NO. 202 in WO2016028896
CD123scFv5690SEQ ID NO. 203 in WO2016028896
CD123scFv5691SEQ ID NO. 204 in WO2016028896
CD123scFv5692SEQ ID NO. 205 in WO2016028896
CD123scFv5693SEQ ID NO. 206 in WO2016028896
CD123scFv5694SEQ ID NO. 207 in WO2016028896
CD123scFv5695SEQ ID NO. 208 in WO2016028896
CD123scFv5696SEQ ID NO. 209 in WO2016028896
CD123scFv5697SEQ ID NO. 210 in WO2016028896
CD123scFv5698SEQ ID NO. 211 in WO2016028896
CD123scFv5699SEQ ID NO. 212 in WO2016028896
CD123scFv5700SEQ ID NO. 213 in WO2016028896
CD123scFv5701SEQ ID NO. 214 in WO2016028896
CD123scFv5702SEQ ID NO. 215 in WO2016028896
CD123scFv5703SEQ ID NO. 36 in WO2015092024A2
CD123scFv5704SEQ ID NO. 478 in WO2016028896
CD123scFv5705SEQ ID NO. 480 in WO2016028896
CD123scFv5706SEQ ID NO. 483 in WO2016028896
CD123scFv5707SEQ ID NO. 485 in WO2016028896
CD123scFv5708SEQ ID NO. 57 in WO2016115482A1
CD123scFv5709SEQ ID NO. 36 in EP3083691A2
CD123scFv5710SEQ ID NO. 157 in US20160311907A1
CD124scFv5711SEQ ID NO. 158 in US20160311907A1
CD125scFv5712SEQ ID NO. 159 in US20160311907A1
CD126scFv5713SEQ ID NO. 160 in US20160311907A1
CD127scFv5714SEQ ID NO. 161 in US20160311907A1
CD128scFv5715SEQ ID NO. 162 in US20160311907A1
CD129scFv5716SEQ ID NO. 163 in US20160311907A1
CD130scFv5717SEQ ID NO. 164 in US20160311907A1
CD131scFv5718SEQ ID NO. 165 in US20160311907A1
CD138scFv5719SEQ ID NO. 36 in WO2016130598A1
CD19scFv5720SEQ ID NO. 53 in EP3083671A1
CD19scFv5721SEQ ID NO. 54 in EP3083671A1
CD19scFv5722SEQ ID NO. 1 in WO2015157252
CD19scFv5723SEQ ID NO. 10 in WO2015157252
CD19scFv5724SEQ ID NO. 10 in WO2016033570
CD19scFv5725SEQ ID NO. 11 in WO2015157252
CD19scFv5726SEQ ID NO. 12 in WO2015157252
CD19scFv5727SEQ ID NO. 2 in WO2015157252
CD19scFv5728SEQ ID NO. 2 in WO2016033570
CD19scFv5729SEQ ID NO. 206 in WO2016033570
CD19scFv5730SEQ ID NO. 207 in WO2016033570
CD19scFv5731SEQ ID NO. 208 in WO2016033570
CD19scFv5732SEQ ID NO. 209 in WO2016033570
CD19scFv5733SEQ ID NO. 210 in WO2016033570
CD19scFv5734SEQ ID NO. 211 in WO2016033570
CD19scFv5735SEQ ID NO. 213 in WO2016033570
CD19scFv5736SEQ ID NO. 214 in WO2016033570
CD19scFv5737SEQ ID NO. 215 in WO2016033570
CD19scFv5738SEQ ID NO. 216 in WO2016033570
CD19scFv5739SEQ ID NO. 217 in WO2016033570
CD19scFv5740SEQ ID NO. 218 in WO2016033570
CD19scFv5741SEQ ID NO. 219 in WO2016033570
CD19scFv5742SEQ ID NO. 220 in WO2016033570
CD19scFv5743SEQ ID NO. 221 in WO2016033570
CD19scFv5744SEQ ID NO. 222 in WO2016033570
CD19scFv5745SEQ ID NO. 223 in WO2016033570
CD19scFv5746SEQ ID NO. 224 in WO2016033570
CD19scFv5747SEQ ID NO. 225 in WO2016033570
CD19scFv5748SEQ ID NO. 3 in WO2015157252
CD19scFv5749SEQ ID NO. 4 in WO2015157252
CD19scFv5750SEQ ID NO. 4 in WO2016033570
CD19scFv5751SEQ ID NO. 45 in WO2016033570
CD19scFv5752SEQ ID NO. 47 in WO2016033570
CD19scFv5753SEQ ID NO. 49 in WO2016033570
CD19scFv5754SEQ ID NO. 5 in WO2015155341A1
CD19scFv5755SEQ ID NO. 5 in WO2015157252
CD19scFv5756SEQ ID NO. 51 in WO2016033570
CD19scFv5757SEQ ID NO. 53 in WO2016033570
CD19scFv5758SEQ ID NO. 55 in WO2016033570
CD19scFv5759SEQ ID NO. 57 in WO2016033570
CD19scFv5760SEQ ID NO. 59 in WO2015157252
CD19scFv5761SEQ ID NO. 59 in WO2016033570
CD19scFv5762SEQ ID NO. 6 in WO2015157252
CD19scFv5763SEQ ID NO. 6 in WO2016033570
CD19scFv5764SEQ ID NO. 7 in WO2014184143
CD19scFv5765SEQ ID NO. 7 in WO2015157252
CD19scFv5766SEQ ID NO. 8 in WO2015157252
CD19scFv5767SEQ ID NO. 8 in WO2016033570
CD19scFv5768SEQ ID NO. 87 in WO2016033570
CD19scFv5769SEQ ID NO. 9 in WO2015157252
CD19scFv5770SEQ ID NO. 9 in WO2016139487
CD19scFv5771SEQ ID NO. 10 in US20160152723
CD19scFv5772SEQ ID NO. 2 in US20160152723
CD19scFv5773SEQ ID NO. 206 in US20160152723
CD19scFv5774SEQ ID NO. 207 in US20160152723
CD19scFv5775SEQ ID NO. 208 in US20160152723
CD19scFv5776SEQ ID NO. 209 in US20160152723
CD19scFv5777SEQ ID NO. 210 in US20160152723
CD19scFv5778SEQ ID NO. 211 in US20160152723
CD19scFv5779SEQ ID NO. 212 in US20160152723
CD19scFv5780SEQ ID NO. 213 in US20160152723
CD19scFv5781SEQ ID NO. 214 in US20160152723
CD19scFv5782SEQ ID NO. 215 in US20160152723
CD19scFv5783SEQ ID NO. 216 in US20160152723
CD19scFv5784SEQ ID NO. 217 in US20160152723
CD19scFv5785SEQ ID NO. 218 in US20160152723
CD19scFv5786SEQ ID NO. 219 in US20160152723
CD19scFv5787SEQ ID NO. 220 in US20160152723
CD19scFv5788SEQ ID NO. 221 in US20160152723
CD19scFv5789SEQ ID NO. 222 in US20160152723
CD19scFv5790SEQ ID NO. 223 in US20160152723
CD19scFv5791SEQ ID NO. 224 in US20160152723
CD19scFv5792SEQ ID NO. 225 in US20160152723
CD19scFv5793SEQ ID NO. 32 in EP3083691A2
CD19scFv5794SEQ ID NO. 35 in EP3083691A2
CD19scFv5795SEQ ID NO. 38 in EP3083691A2
CD19scFv5796SEQ ID NO. 4 in US20160152723
CD19scFv5797SEQ ID NO. 45 in US20160152723
CD19scFv5798SEQ ID NO. 47 in US20160152723
CD19scFv5799SEQ ID NO. 49 in US20160152723
CD19scFv5800SEQ ID NO. 51 in US20160152723
CD19scFv5801SEQ ID NO. 53 in US20160152723
CD19scFv5802SEQ ID NO. 55 in US20160152723
CD19scFv5803SEQ ID NO. 57 in US20160152723
CD19scFv5804SEQ ID NO. 59 in US20160152723
CD19scFv5805SEQ ID NO. 6 in US20160152723
CD19scFv5806SEQ ID NO. 8 in US20160152723
CD19scFv5807SEQ ID NO. 87 in US20160152723
CD19scFv5808SEQ ID NO. 89 in US20160152723
CD19scFv5809SEQ ID NO. 39 in WO2016109410
CD19scFv5810SEQ ID NO. 37 in EP3083671A1
CD19scFv5811SEQ ID NO. 174 in WO2016115482A1
CD19scFv5812SEQ ID NO. 20 in WO2012079000
CD19scFv5813SEQ ID NO. 32 in WO2015092024A2
CD19scFv5814SEQ ID NO. 33 in WO2015092024A2
CD19scFv5815SEQ ID NO. 35 in WO2015092024A2
CD19scFv5816SEQ ID NO. 38 in WO2015092024A2
CD19scFv5817SEQ ID NO. 40 in WO2016109410
CD19scFv5818SEQ ID NO. 41 in WO2016109410
CD19scFv5819SEQ ID NO. 42 in WO2016109410
CD19scFv5820SEQ ID NO. 43 in WO2016109410
CD19scFv5821SEQ ID NO. 44 in WO2016109410
CD19scFv5822SEQ ID NO. 45 in WO2016109410
CD19scFv5823SEQ ID NO. 46 in WO2016109410
CD19scFv5824SEQ ID NO. 47 in WO2016109410
CD19scFv5825SEQ ID NO. 48 in WO2016109410
CD19scFv5826SEQ ID NO. 49 in WO2016109410
CD19scFv5827SEQ ID NO. 5 in WO2015155341A1
CD19scFv5828SEQ ID NO. 50 in WO2016109410
CD19scFv5829SEQ ID NO. 51 in WO2016109410
CD19scFv5830SEQ ID NO. 7 in US20160145337A1
CD19scFv5831SEQ ID NO. 9 in US20160145337A1
CD19scFv5832SEQ ID NO. 20 in U.S. Pat. No. 9,499,629B2
CD19scFv5833SEQ ID NO. 6 in WO2015155341A1
CD19scFv5834SEQ ID NO. 73 in WO2016164580
CD19scFv5835SEQ ID NO. 10 in US20160152723
CD19scFv5836SEQ ID NO. 2 in US20160152723
CD19scFv5837SEQ ID NO. 206 in US20160152723
CD19scFv5838SEQ ID NO. 207 in US20160152723
CD19scFv5839SEQ ID NO. 209 in US20160152723
CD19scFv5840SEQ ID NO. 210 in US20160152723
CD19scFv5841SEQ ID NO. 212 in US20160152723
CD19scFv5842SEQ ID NO. 216 in US20160152723
CD19scFv5843SEQ ID NO. 218 in US20160152723
CD19scFv5844SEQ ID NO. 219 in US20160152723
CD19scFv5845SEQ ID NO. 220 in US20160152723
CD19scFv5846SEQ ID NO. 221 in US20160152723
CD19scFv5847SEQ ID NO. 222 in US20160152723
CD19scFv5848SEQ ID NO. 223 in US20160152723
CD19scFv5849SEQ ID NO. 224 in US20160152723
CD19scFv5850SEQ ID NO. 225 in US20160152723
CD19scFv5851SEQ ID NO. 4 in US20160152723
CD19scFv5852SEQ ID NO. 45 in US20160152723
CD19scFv5853SEQ ID NO. 47 in US20160152723
CD19scFv5854SEQ ID NO. 49 in US20160152723
CD19scFv5855SEQ ID NO. 51 in US20160152723
CD19scFv5856SEQ ID NO. 53 in US20160152723
CD19scFv5857SEQ ID NO. 55 in US20160152723
CD19scFv5858SEQ ID NO. 57 in US20160152723
CD19scFv5859SEQ ID NO. 59 in US20160152723
CD19scFv5860SEQ ID NO. 6 in US20160152723
CD19scFv5861SEQ ID NO. 8 in US20160152723
CD19scFv5862SEQ ID NO. 87 in US20160152723
CD19scFv5863SEQ ID NO. 89 in US20160152723
CD19scFv5864SEQ ID NO. 5 in WO2016055551
CD19/CD22BiSpecificscFv5865SEQ ID NO. 1303 in WO2016164731A2
CD19/CD22BiSpecificscFv5866SEQ ID NO. 1307 in WO2016164731A2
CD20scFv5867SEQ ID NO. 691 in WO2016164731A100
CD20scFv5868SEQ ID NO. 692 in WO2016164731A101
CD20scFv5869SEQ ID NO. 693 in WO2016164731A102
CD20scFv5870SEQ ID NO. 694 in WO2016164731A103
CD20scFv5871SEQ ID NO. 695 in WO2016164731A104
CD20scFv5872SEQ ID NO. 696 in WO2016164731A105
CD20scFv5873SEQ ID NO. 175 in WO2016115482A1
CD22scFv5874SEQ ID NO. 5 in WO2013059593
CD22scFv5875SEQ ID NO. 6 in WO2013059593
CD22scFv5876SEQ ID NO. 9 in US20150299317
CD22scFv5877SEQ ID NO. 131 in WO2016164731A2
CD22scFv5878SEQ ID NO. 132 in WO2016164731A2
CD22scFv5879SEQ ID NO. 133 in WO2016164731A2
CD22scFv5880SEQ ID NO. 134 in WO2016164731A2
CD22scFv5881SEQ ID NO. 135 in WO2016164731A2
CD22scFv5882SEQ ID NO. 136 in WO2016164731A2
CD22scFv5883SEQ ID NO. 137 in WO2016164731A2
CD22scFv5884SEQ ID NO. 138 in WO2016164731A2
CD22scFv5885SEQ ID NO. 139 in WO2016164731A2
CD22scFv5886SEQ ID NO. 140 in WO2016164731A2
CD22scFv5887SEQ ID NO. 203 in WO2016164731A2
CD22scFv5888SEQ ID NO. 209 in WO2016164731A2
CD22scFv5889SEQ ID NO. 215 in WO2016164731A2
CD22scFv5890SEQ ID NO. 221 in WO2016164731A2
CD22scFv5891SEQ ID NO. 227 in WO2016164731A2
CD22scFv5892SEQ ID NO. 232 in WO2016164731A2
CD22scFv5893SEQ ID NO. 238 in WO2016164731A2
CD22scFv5894SEQ ID NO. 244 in WO2016164731A2
CD22scFv5895SEQ ID NO. 250 in WO2016164731A2
CD22scFv5896SEQ ID NO. 256 in WO2016164731A2
CD22scFv5897SEQ ID NO. 262 in WO2016164731A2
CD22scFv5898SEQ ID NO. 268 in WO2016164731A2
CD22scFv5899SEQ ID NO. 274 in WO2016164731A2
CD22scFv5900SEQ ID NO. 280 in WO2016164731A2
CD22scFv5901SEQ ID NO. 286 in WO2016164731A2
CD22scFv5902SEQ ID NO. 292 in WO2016164731A2
CD22scFv5903SEQ ID NO. 298 in WO2016164731A2
CD22scFv5904SEQ ID NO. 304 in WO2016164731A2
CD22scFv5905SEQ ID NO. 310 in WO2016164731A2
CD22scFv5906SEQ ID NO. 316 in WO2016164731A2
CD22scFv5907SEQ ID NO. 322 in WO2016164731A2
CD22scFv5908SEQ ID NO. 328 in WO2016164731A2
CD22scFv5909SEQ ID NO. 334 in WO2016164731A2
CD22scFv5910SEQ ID NO. 340 in WO2016164731A2
CD22scFv5911SEQ ID NO. 346 in WO2016164731A2
CD22scFv5912SEQ ID NO. 352 in WO2016164731A2
CD22scFv5913SEQ ID NO. 358 in WO2016164731A2
CD22scFv5914SEQ ID NO. 364 in WO2016164731A2
CD22scFv5915SEQ ID NO. 370 in WO2016164731A2
CD22scFv5916SEQ ID NO. 376 in WO2016164731A2
CD22scFv5917SEQ ID NO. 382 in WO2016164731A2
CD22scFv5918SEQ ID NO. 388 in WO2016164731A2
CD22scFv5919SEQ ID NO. 394 in WO2016164731A2
CD22scFv5920SEQ ID NO. 400 in WO2016164731A2
CD22scFv5921SEQ ID NO. 406 in WO2016164731A2
CD22scFv5922SEQ ID NO. 412 in WO2016164731A2
CD22scFv5923SEQ ID NO. 418 in WO2016164731A2
CD22scFv5924SEQ ID NO. 423 in WO2016164731A2
CD276scFv5925SEQ ID NO. 10 in US20160053017
CD276scFv5926SEQ ID NO. 19 in US20160053017
CD276scFv5927SEQ ID NO. 28 in US20160053017
CD3scFv5928SEQ ID NO. 46 in WO2015153912A1
CD3scFv5929SEQ ID NO. 47 in WO2015153912A1
CD30scFv5930SEQ ID NO 20 in WO2016116035A1
CD30scFv5931SEQ ID NO. 2 in US20160200824A1
CD33scFv5932SEQ ID NO. 262 in WO2016014576
CD33scFv5933SEQ ID NO. 263 in WO2016014576
CD33scFv5934SEQ ID NO. 264 in WO2016014576
CD33scFv5935SEQ ID NO. 265 in WO2016014576
CD33scFv5936SEQ ID NO. 266 in WO2016014576
CD33scFv5937SEQ ID NO. 267 in WO2016014576
CD33scFv5938SEQ ID NO. 268 in WO2016014576
CD33scFv5939SEQ ID NO. 37 in WO2015092024A2
CD33scFv5940SEQ ID NO. 39 in WO2016014576
CD33scFv5941SEQ ID NO. 40 in WO2016014576
CD33scFv5942SEQ ID NO. 41 in WO2016014576
CD33scFv5943SEQ ID NO. 42 in WO2016014576
CD33scFv5944SEQ ID NO. 43 in WO2016014576
CD33scFv5945SEQ ID NO. 44 in WO2016014576
CD33scFv5946SEQ ID NO. 45 in WO2016014576
CD33scFv5947SEQ ID NO. 46 in WO2016014576
CD33scFv5948SEQ ID NO. 47 in WO2016014576
CD33scFv5949SEQ ID NO. 37 in EP3083691A2
CD33scFv5950SEQ ID NO. 153 in WO2016115482A1
CD33scFv5951SEQ ID NO. 154 in WO2016115482A1
CD33scFv5952SEQ ID NO. 155 in WO2016115482A1
CD33scFv5953SEQ ID NO. 156 in WO2016115482A1
CD33scFv5954SEQ ID NO. 157 in WO2016115482A1
CD33scFv5955SEQ ID NO. 158 in WO2016115482A1
CD33scFv5956SEQ ID NO. 159 in WO2016115482A1
CD33scFv5957SEQ ID NO. 160 in WO2016115482A1
CD33scFv5958SEQ ID NO. 161 in WO2016115482A1
CD33scFv5959SEQ ID NO. 162 in WO2016115482A1
CD33scFv5960SEQ ID NO. 163 in WO2016115482A1
CD33/CD3sBiSpecifcscFv5961SEQ ID NO. 33 in WO2014144722A2
CD33/CD3sBiSpecifcscFv5962SEQ ID NO. 34 in WO2014144722A2
CD33/CD3sBiSpecifcscFv5963SEQ ID NO. 84 in WO2014144722A2
CD375964SEQ ID NO. 21 in US20170000900
CD375965SEQ ID NO. 22 in US20170000900
CD44scFv5966SEQ ID NO. 17 in WO2016042461A1
CD46scFv5967SEQ ID NO. in WO2016040683
CD46scFv5968SEQ ID NO. in WO2016040683
CD46scFv5969SEQ ID NO. in WO2016040683
CD46scFv5970SEQ ID NO. in WO2016040683
CD46scFv5971SEQ ID NO. in WO2016040683
CD46scFv5972SEQ ID NO. in WO2016040683
CD46scFv5973SEQ ID NO. in WO2016040683
CD46scFv5974SEQ ID NO. in WO2016040683
CD46scFv5975SEQ ID NO. in WO2016040683
CD46scFv5976SEQ ID NO. in WO2016040683
CD46scFv5977SEQ ID NO. in WO2016040683
CD46scFv5978SEQ ID NO. in WO2016040683
CD46scFv5979SEQ ID NO. in WO2016040683
CD46scFv5980SEQ ID NO. in WO2016040683
CD46scFv5981SEQ ID NO. in WO2016040683
CD46scFv5982SEQ ID NO. in WO2016040683
CD46scFv5983SEQ ID NO. in WO2016040683
CD46scFv5984SEQ ID NO. in WO2016040683
CD46scFv5985SEQ ID NO. in WO2016040683
CD46scFv5986SEQ ID NO. in WO2016040683
CD46scFv5987SEQ ID NO. in WO2016040683
CD46scFv5988SEQ ID NO. in WO2016040683
CD46scFv5989SEQ ID NO. in WO2016040683
CD5scFv5990SEQ ID NO. 16 in WO2016138491
CD79bscFv5991SEQ ID NO. 33 in US20160208021
CEAscFv5992SEQ ID NO. 1 in US20160303166A1
CEAscFv5993SEQ ID NO. 22 in US20140242701A1
CEAscFv5994SEQ ID NO. 22 in US20140242701A1
CentuxiambscFv5995SEQ ID NO. 37 in WO2016112870
CentuximabscFv5996SEQ ID NO. 37 in US20160208021
ClaudinscFv5997SEQ ID NO. 11 in WO2016073649A1
ClaudinscFv5998SEQ ID NO. 17 in WO2014179759A1
ClaudinscFv5999SEQ ID NO. 5 in WO2016073649A1
ClaudinscFv6000SEQ ID NO. 7 in WO2016073649A1
ClaudinscFv6001SEQ ID NO. 9 in WO2016073649A1
Claudin6scFv6002SEQ ID NO. 164 in WO2016115482A1
Claudin7scFv6003SEQ ID NO. 165 in WO2016115482A1
Claudin8scFv6004SEQ ID NO. 166 in WO2016115482A1
CLDN6scFv6005SEQ ID NO. 2 in WO2016150400
CLDN7scFv6006SEQ ID NO. 4 in WO2016150400
CLDN8scFv6007SEQ ID NO. 6 in WO2016150400
CLL1scFv6008SEQ ID NO. 39 in WO2016014535
CLL1scFv6009SEQ ID NO. 40 in WO2016014535
CLL1scFv6010SEQ ID NO. 41 in WO2016014535
CLL1scFv6011SEQ ID NO. 42 in WO2016014535
CLL1scFv6012SEQ ID NO. 43 in WO2016014535
CLL1scFv6013SEQ ID NO. 44 in WO2016014535
CLL1scFv6014SEQ ID NO. 45 in WO2016014535
CLL1scFv6015SEQ ID NO. 46 in WO2016014535
CLL1scFv6016SEQ ID NO. 47 in WO2016014535
CLL1scFv6017SEQ ID NO. 48 in WO2016014535
CLL1scFv6018SEQ ID NO. 49 in WO2016014535
CLL1scFv6019SEQ ID NO. 50 in WO2016014535
CLL1scFv6020SEQ ID NO. 51 in WO2016014535
CLL1scFv6021SEQ ID NO. 200 in US20160311907A1
CLL1scFv6022SEQ ID NO. 201 in US20160311907A1
CLL1scFv6023SEQ ID NO. 202 in US20160311907A1
CLL1scFv6024SEQ ID NO. 203 in US20160311907A1
CLL1scFv6025SEQ ID NO. 204 in US20160311907A1
CLL1scFv6026SEQ ID NO. 205 in US20160311907A1
CLL1scFv6027SEQ ID NO. 206 in US20160311907A1
CLL1scFv6028SEQ ID NO. 207 in US20160311907A1
CLL1scFv6029SEQ ID NO. 208 in US20160311907A1
CLL1scFv6030SEQ ID NO. 209 in US20160311907A1
CLL1scFv6031SEQ ID NO. 210 in US20160311907A1
CLL1scFv6032SEQ ID NO. 211 in US20160311907A1
CLL1scFv6033SEQ ID NO. 212 in US20160311907A1
CLL1scFv6034SEQ ID NO. 213 in US20160311907A1
CMetscFv6035SEQ ID NO. 11 in US20040166544
CMetscFv6036SEQ ID NO. 12 in US20040166544
CMetscFv6037SEQ ID NO. 13 in US20040166544
CMetscFv6038SEQ ID NO. 14 in US20040166544
CMetscFv6039SEQ ID NO. 15 in US20040166544
CMetscFv6040SEQ ID NO. 16 in US20040166544
CMetscFv6041SEQ ID NO. 17 in US20040166544
CMetscFv6042SEQ ID NO. 18 in US20040166544
CMetscFv6043SEQ ID NO. 19 in US20040166544
CMetscFv6044SEQ ID NO. 2 in US20040166544
CMetscFv6045SEQ ID NO. 21 in US20040166544
CMetscFv6046SEQ ID NO. 22 in US20040166544
CMetscFv6047SEQ ID NO. 23 in US20040166544
CMetscFv6048SEQ ID NO. 25 in US20040166544
CMetscFv6049SEQ ID NO. 26 in US20040166544
CMetscFv6050SEQ ID NO. 26 in US20150299326
CMetscFv6051SEQ ID NO. 27 in US20040166544
CMetscFv6052SEQ ID NO. 27 in US20150299326
CMetscFv6053SEQ ID NO. 28 in US20040166544
CMetscFv6054SEQ ID NO. 28 in US20150299326
CMetscFv6055SEQ ID NO. 29 in US20150299326
CMetscFv6056SEQ ID NO. 3 in US20040166544
CMetscFv6057SEQ ID NO. 30 in US20150299326
CMetscFv6058SEQ ID NO. 30 in US20040166544
CMetscFv6059SEQ ID NO. 31 in US20040166544
CMetscFv6060SEQ ID NO. 32 in US20130034559
CMetscFv6061SEQ ID NO. 32 in US20150299326
CMetscFv6062SEQ ID NO. 33 in US20040166544
CMetscFv6063SEQ ID NO. 34 in US20040166544
CMetscFv6064SEQ ID NO. 35 in US20040166544
CMetscFv6065SEQ ID NO. 36 in US20040166544
CMetscFv6066SEQ ID NO. 37 in US20040166544
CMetscFv6067SEQ ID NO. 38 in US20040166544
CMetscFv6068SEQ ID NO. 39 in US20040166544
CMetscFv6069SEQ ID NO. 4 in US20040166544
CMetscFv6070SEQ ID NO. 40 in US20040166544
CMetscFv6071SEQ ID NO. 41 in US20040166544
CMetscFv6072SEQ ID NO. 42 in US20040166544
CMetscFv6073SEQ ID NO. 43 in US20040166544
CMetscFv6074SEQ ID NO. 44 in US20040166544
CMetscFv6075SEQ ID NO. 48 in US20040166544
CMetscFv6076SEQ ID NO. 49 in US20040166544
CMetscFv6077SEQ ID NO. 5 in US20040166544
CMetscFv6078SEQ ID NO. 50 in US20040166544
CMetscFv6079SEQ ID NO. 51 in US20040166544
CMetscFv6080SEQ ID NO. 52 in US20040166544
CMetscFv6081SEQ ID NO. 53 in US20040166544
CMetscFv6082SEQ ID NO. 54 in US20040166544
CMetscFv6083SEQ ID NO. 55 in US20040166544
CMetscFv6084SEQ ID NO. 56 in US20040166544
CMetscFv6085SEQ ID NO. 57 in US20040166544
CMetscFv6086SEQ ID NO. 58 in US20040166544
CMetscFv6087SEQ ID NO. 6 in US20040166544
CMetscFv6088SEQ ID NO. 60 in US20040166544
CMetscFv6089SEQ ID NO. 7 in US20040166544
CMetscFv6090SEQ ID NO. 9 in US20040166544
CMetscFv6091SEQ ID NO. 29 in US20040166544
CS1scFv6092SEQ ID NO. 1 of WO2016090369
CS1scFv6093SEQ ID NO. 17 in WO2014179759A1
CSPG4scFv6094SEQ ID NO. 2 in WO2015080981
CSPG4scFv6095SEQ ID NO. 2 in EP3074025A1
CXCR4scFv6096SEQ ID NO. 83 in US20110020218
CXCR4scFv6097SEQ ID NO. 85 in US20110020218
CXCR4scFv6098SEQ ID NO. 86 in US20110020218
CXCR4scFv6099SEQ ID NO. 89 in US20110020218
E7MCscFv6100SEQ ID NO. 223 in WO2016182957A1
E7MCscFv6101SEQ ID NO. 224 in WO2016182957A1
E7MCscFv6102SEQ ID NO. 225 in WO2016182957A1
E7MCscFv6103SEQ ID NO. 226 in WO2016182957A1
E7MCscFv6104SEQ ID NO. 227 in WO2016182957A1
E7MCscFv6105SEQ ID NO. 228 in WO2016182957A1
E7MCscFv6106SEQ ID NO. 229 in WO2016182957A1
E7MCscFv6107SEQ ID NO. 230 in WO2016182957A1
E7MCscFv6108SEQ ID NO. 231 in WO2016182957A1
E7MCscFv6109SEQ ID NO. 232 in WO2016182957A1
EGFRscFv6110SEQ ID NO. 11 in WO2014130657
EGFRscFv6111SEQ ID NO. 38 in WO2014130657
EGFRscFv6112SEQ ID NO. 41 in WO2014130657
EGFRscFv6113SEQ ID NO. 44 in WO2014130657
EGFRscFv6114SEQ ID NO. 47 in WO2014130657
EGFRscFv6115SEQ ID NO. 50 in WO2014130657
EGFRscFv6116SEQ ID NO. 53 in WO2014130657
EGFRscFv6117SEQ ID NO. 56 in WO2014130657
EGFRscFv6118SEQ ID NO. 59 in WO2014130657
EGFRscFv6119SEQ ID NO. 62 in WO2014130657
EGFRscFv6120SEQ ID NO. 65 in WO2014130657
EGFRscFv6121SEQ ID NO. 68 in WO2014130657
EGFRscFv6122SEQ ID NO. 71 in WO2014130657
EGFRscFv6123SEQ ID NO. 74 in WO2014130657
EGFRscFv6124SEQ ID NO. 77 in WO2014130657
EGFRscFv6125SEQ ID NO. 80 in WO2014130657
EGFRscFv6126SEQ ID NO. 83 in WO2014130657
EGFRscFv6127SEQ ID NO. 88 in WO2014130657
EGFRscFv6128SEQ ID NO. 91 in WO2014130657
EGFRscFv6129SEQ ID NO. 94 in WO2014130657
EGFRscFV6130
EGFRscFv6131
EGFRscFv6132
EGFRscFv6133
EGFRscFv6134
EGFRscFv6135
EGFRscFv6136
EGFRscFv6137
EGFRscFv6138
EGFRscFv6139
EGFRscFv6140
EGFRscFv6141
EGFRscFv6142
EGFRscFv6143
EGFRscFv6144
EGFRscFv6145
EGFRscFv6146
EGFRscFv6147
EGFRscFv6148
EGFRscFv6149
EGFRscFv6150
EGFRscFv6151
EGFRscFv6152
EGFRscFv6153
EGFRscFv6154
EGFRscFv6155
EGFRscFv6156
EGFRvIIIscFv6157SEQ ID NO. 5 in US20140037628
EGFRvIIIscFv6158SEQ ID NO. 174 in US20160311907A1
EGFRvIIIscFv6159SEQ ID NO. 38 in U.S. Pat. No. 9,394,368B2
EGFRvIIIscFv6160SEQ ID NO. 5 in US20160200819A1
END0180scFv6161SEQ ID NO. 6 in WO2013098813
ERBB2scFv6162SEQ ID NO. 26 in US20110059076A1
ERBB2scFv6163SEQ ID NO. 27 in US20110059076A1
ERBB2scFv6164SEQ ID NO. 1 in U.S. Pat. No. 7,244,826
ERBB2scFv6165SEQ ID NO. 2 in U.S. Pat. No. 7,244,826
ESK/WTscFv6166SEQ ID NO. 173 in WO2016115482A1
FcRL5(FcReceptorLike5)scFv6167SEQ ID NO. 11 in WO2016090337
FcRL5(FcReceptorLike5)scFv6168SEQ ID NO. 15 in WO2016090337
FcRL5(FcReceptorLike5)scFv6169SEQ ID NO. 19 in WO2016090337
FcRL5(FcReceptorLike5)scFv6170SEQ ID NO. 23 in WO2016090337
FcRL5(FcReceptorLike5)scFv6171SEQ ID NO. 27 in WO2016090337
FcRL5(FcReceptorLike5)scFv6172SEQ ID NO. 31 in WO2016090337
FcRL5(FcReceptorLike5)scFv6173SEQ ID NO. 35 in WO2016090337
FcRL5(FcReceptorLike5)scFv6174SEQ ID NO. 39 in WO2016090337
FcRL5(FcReceptorLike5)scFv6175SEQ ID NO. 3 in WO2016090337
FcRL5(FcReceptorLike5)scFv6176SEQ ID NO. 43 in WO2016090337
FcRL5(FcReceptorLike5)scFv6177SEQ ID NO. 7 in WO2016090337
FcRL5(FcReceptorLike5)scFv6178SEQ ID NO. 594 in WO2016090337
FcRL5(FcReceptorLike5)scFv6179SEQ ID NO. 596 in WO2016090337
FcRL5(FcReceptorLike5)scFv6180SEQ ID NO. 598 in WO2016090337
FcRL5(FcReceptorLike5)scFv6181SEQ ID NO. 600 in WO2016090337
FcRL5(FcReceptorLike5)scFv6182SEQ ID NO. 602 in WO2016090337
FcRL5(FcReceptorLike5)scFv6183SEQ ID NO. 604 in WO2016090337
FcRL5(FcReceptorLike5)scFv6184SEQ ID NO. 606 in WO2016090337
FcRL5(FcReceptorLike5)scFv6185SEQ ID NO. 608 in WO2016090337
FcRL5(FcReceptorLike5)scFv6186SEQ ID NO. 610 in WO2016090337
FcRL5(FcReceptorLike5)scFv6187SEQ ID NO. 612 in WO2016090337
FcRL5(FcReceptorLike5)scFv6188SEQ ID NO. 614 in WO2016090337
FcRL5(FcReceptorLike5)scFv6189SEQ ID NO. 616 in WO2016090337
FcRL5(FcReceptorLike5)scFv6190SEQ ID NO. 618 in WO2016090337
FcRL5(FcReceptorLike5)scFv6191SEQ ID NO. 620 in WO2016090337
FcRL5(FcReceptorLike5)scFv6192SEQ ID NO. 622 in WO2016090337
FcRL5(FcReceptorLike5)scFv6193SEQ ID NO. 624 in WO2016090337
FcRL5(FcReceptorLike5)scFv6194SEQ ID NO. 626 in WO2016090337
FcRL5(FcReceptorLike5)scFv6195SEQ ID NO. 628 in WO2016090337
FcRL5(FcReceptorLike5)scFv6196SEQ ID NO. 630 in WO2016090337
FcRL5(FcReceptorLike5)scFv6197SEQ ID NO. 632 in WO2016090337
FcRL5(FcReceptorLike5)scFv6198SEQ ID NO. 634 in WO2016090337
FcRL5(FcReceptorLike5)scFv6199SEQ ID NO. 636 in WO2016090337
FcRL5(FcReceptorLike5)scFv6200SEQ ID NO. 638 in WO2016090337
FcRL5(FcReceptorLike5)scFv6201SEQ ID NO. 640 in WO2016090337
FcRL5(FcReceptorLike5)scFv6202SEQ ID NO. 642 in WO2016090337
FcRL5(FcReceptorLike5)scFv6203SEQ ID NO. 644 in WO2016090337
FcRL5(FcReceptorLike5)scFv6204SEQ ID NO. 646 in WO2016090337
FcRL5(FcReceptorLike5)scFv6205SEQ ID NO. 648 in WO2016090337
FcRL5(FcReceptorLike5)scFv6206SEQ ID NO. 652 in WO2016090337
FcRL5(FcReceptorLike5)scFv6207SEQ ID NO. 654 in WO2016090337
FcRL5(FcReceptorLike5)scFv6208SEQ ID NO. 656 in WO2016090337
FcRL5(FcReceptorLike5)scFv6209SEQ ID NO. 658 in WO2016090337
FcRL5(FcReceptorLike5)scFv6210SEQ ID NO. 660 in WO2016090337
FcRL5(FcReceptorLike5)scFv6211SEQ ID NO. 662 in WO2016090337
FcRL5(FcReceptorLike5)scFv6212SEQ ID NO. 664 in WO2016090337
FcRL5(FcReceptorLike5)scFv6213SEQ ID NO. 666 in WO2016090337
FcRL5(FcReceptorLike5)scFv6214SEQ ID NO. 668 in WO2016090337
FcRL5(FcReceptorLike5)scFv6215SEQ ID NO. 670 in WO2016090337
FcRL5(FcReceptorLike5)scFv6216SEQ ID NO. 672 in WO2016090337
FcRL5(FcReceptorLike5)scFv6217SEQ ID NO. 674 in WO2016090337
FcRL5(FcReceptorLike5)scFv6218SEQ ID NO. 676 in WO2016090337
FcRL5(FcReceptorLike5)scFv6219SEQ ID NO. 678 in WO2016090337
FcRL5(FcReceptorLike5)scFv6220SEQ ID NO. 680 in WO2016090337
FcRL5(FcReceptorLike5)scFv6221SEQ ID NO. 682 in WO2016090337
FcRL5(FcReceptorLike5)scFv6222SEQ ID NO. 684 in WO2016090337
FcRL5(FcReceptorLike5)scFv6223SEQ ID NO. 686 in WO2016090337
FcRL5(FcReceptorLike5)scFv6224SEQ ID NO. 688 in WO2016090337
FcRL5(FcReceptorLike5)scFv6225SEQ ID NO. 690 in WO2016090337
FcRL5(FcReceptorLike5)scFv6226SEQ ID NO. 692 in WO2016090337
FcRL5(FcReceptorLike5)scFv6227SEQ ID NO. 694 in WO2016090337
FcRL5(FcReceptorLike5)scFv6228SEQ ID NO. 696 in WO2016090337
FcRL5(FcReceptorLike5)scFv6229SEQ ID NO. 700 in WO2016090337
FcRL5(FcReceptorLike5)scFv6230SEQ ID NO. 702 in WO2016090337
FcRL5(FcReceptorLike5)scFv6231SEQ ID NO. 704 in WO2016090337
FcRL5(FcReceptorLike5)scFv6232SEQ ID NO. 706 in WO2016090337
FcRL5(FcReceptorLike5)scFv6233SEQ ID NO. 708 in WO2016090337
FcRL5(FcReceptorLike5)scFv6234SEQ ID NO. 710 in WO2016090337
FcRL5(FcReceptorLike5)scFv6235SEQ ID NO. 712 in WO2016090337
FcRL5(FcReceptorLike5)scFv6236SEQ ID NO. 714 in WO2016090337
FcRL5(FcReceptorLike5)scFv6237SEQ ID NO. 716 in WO2016090337
FcRL5(FcReceptorLike5)scFv6238SEQ ID NO. 718 in WO2016090337
FcRL5(FcReceptorLike5)scFv6239SEQ ID NO. 720 in WO2016090337
FcRL5(FcReceptorLike5)scFv6240SEQ ID NO. 722 in WO2016090337
FcRL5(FcReceptorLike5)scFv6241SEQ ID NO. 724 in WO2016090337
FcRL5(FcReceptorLike5)scFv6242SEQ ID NO. 726 in WO2016090337
FcRL5(FcReceptorLike5)scFv6243SEQ ID NO. 728 in WO2016090337
FcRL5(FcReceptorLike5)scFv6244SEQ ID NO. 730 in WO2016090337
FcRL5(FcReceptorLike5)scFv6245SEQ ID NO. 732 in WO2016090337
FcRL5(FcReceptorLike5)scFv6246SEQ ID NO. 734 in WO2016090337
FcRL5(FcReceptorLike5)scFv6247SEQ ID NO. 736 in WO2016090337
FcRL5(FcReceptorLike5)scFv6248SEQ ID NO. 738 in WO2016090337
FcRL5(FcReceptorLike5)scFv6249SEQ ID NO. 740 in WO2016090337
FcRL5(FcReceptorLike5)scFv6250SEQ ID NO. 742 in WO2016090337
FcRL5(FcReceptorLike5)scFv6251SEQ ID NO. 744 in WO2016090337
FcRL5(FcReceptorLike5)scFv6252SEQ ID NO. 746 in WO2016090337
FcRL5(FcReceptorLike5)scFv6253SEQ ID NO. 748 in WO2016090337
FcRL5(FcReceptorLike5)scFv6254SEQ ID NO. 750 in WO2016090337
FcRL5(FcReceptorLike5)scFv6255SEQ ID NO. 752 in WO2016090337
FcRL5(FcReceptorLike5)scFv6256SEQ ID NO. 754 in WO2016090337
FcRL5(FcReceptorLike5)scFv6257SEQ ID NO. 756 in WO2016090337
FcRL5(FcReceptorLike5)scFv6258SEQ ID NO. 758 in WO2016090337
FcRL5(FcReceptorLike5)scFv6259SEQ ID NO. 760 in WO2016090337
FcRL5(FcReceptorLike5)scFv6260SEQ ID NO. 762 in WO2016090337
FcRL5(FcReceptorLike5)scFv6261SEQ ID NO. 764 in WO2016090337
FcRL5(FcReceptorLike5)scFv6262SEQ ID NO. 766 in WO2016090337
FcRL5(FcReceptorLike5)scFv6263SEQ ID NO. 768 in WO2016090337
FcRL5(FcReceptorLike5)scFv6264SEQ ID NO. 770 in WO2016090337
FcRL5(FcReceptorLike5)scFv6265SEQ ID NO. 772 in WO2016090337
FcRL5(FcReceptorLike5)scFv6266SEQ ID NO. 774 in WO2016090337
FcRL5(FcReceptorLike5)scFv6267SEQ ID NO. 776 in WO2016090337
FcRL5(FcReceptorLike5)scFv6268SEQ ID NO. 778 in WO2016090337
FcRL5(FcReceptorLike5)scFv6269SEQ ID NO. 780 in WO2016090337
FcRL5(FcReceptorLike5)scFv6270SEQ ID NO. 782 in WO2016090337
FcRL5(FcReceptorLike5)scFv6271SEQ ID NO. 784 in WO2016090337
FcRL5(FcReceptorLike5)scFv6272SEQ ID NO. 786 in WO2016090337
FcRL5(FcReceptorLike5)scFv6273SEQ ID NO. 788 in WO2016090337
FcRL5(FcReceptorLike5)scFv6274SEQ ID NO. 790 in WO2016090337
FcRL5(FcReceptorLike5)scFv6275SEQ ID NO. 792 in WO2016090337
FcRL5(FcReceptorLike5)scFv6276SEQ ID NO. 794 in WO2016090337
FcRL5(FcReceptorLike5)scFv6277SEQ ID NO. 796 in WO2016090337
FcRL5(FcReceptorLike5)scFv6278SEQ ID NO. 798 in WO2016090337
FcRL5(FcReceptorLike5)scFv6279SEQ ID NO. 800 in WO2016090337
FcRL5(FcReceptorLike5)scFv6280SEQ ID NO. 802 in WO2016090337
FcRL5(FcReceptorLike5)scFv6281SEQ ID NO. 804 in WO2016090337
FcRL5(FcReceptorLike5)scFv6282SEQ ID NO. 806 in WO2016090337
FcRL5(FcReceptorLike5)scFv6283SEQ ID NO. 808 in WO2016090337
FcRL5(FcReceptorLike5)scFv6284SEQ ID NO. 810 in WO2016090337
FcRL5(FcReceptorLike5)scFv6285SEQ ID NO. 812 in WO2016090337
FcRL5(FcReceptorLike5)scFv6286SEQ ID NO. 814 in WO2016090337
FcRL5(FcReceptorLike5)scFv6287SEQ ID NO. 816 in WO2016090337
FcRL5(FcReceptorLike5)scFv6288SEQ ID NO. 818 in WO2016090337
FcRL5(FcReceptorLike5)scFv6289SEQ ID NO. 820 in WO2016090337
FcRL5(FcReceptorLike5)scFv6290SEQ ID NO. 822 in WO2016090337
FcRL5(FcReceptorLike5)scFv6291SEQ ID NO. 824 in WO2016090337
FcRL5(FcReceptorLike5)scFv6292SEQ ID NO. 826 in WO2016090337
FcRL5(FcReceptorLike5)scFv6293SEQ ID NO. 828 in WO2016090337
FcRL5(FcReceptorLike5)scFv6294SEQ ID NO. 830 in WO2016090337
FcRL5(FcReceptorLike5)scFv6295SEQ ID NO. 832 in WO2016090337
FcRL5(FcReceptorLike5)scFv6296SEQ ID NO. 834 in WO2016090337
FcRL5(FcReceptorLike5)scFv6297SEQ ID NO. 836 in WO2016090337
FcRL5(FcReceptorLike5)scFv6298SEQ ID NO. 838 in WO2016090337
FcRL5(FcReceptorLike5)scFv6299SEQ ID NO. 840 in WO2016090337
FcRL5(FcReceptorLike5)scFv6300SEQ ID NO. 842 in WO2016090337
FcRL5(FcReceptorLike5)scFv6301SEQ ID NO. 844 in WO2016090337
FcRL5(FcReceptorLike5)scFv6302SEQ ID NO. 846 in WO2016090337
FcRL5(FcReceptorLike5)scFv6303SEQ ID NO. 848 in WO2016090337
FcRL5(FcReceptorLike5)scFv6304SEQ ID NO. 850 in WO2016090337
FcRL5(FcReceptorLike5)scFv6305SEQ ID NO. 852 in WO2016090337
FcRL5(FcReceptorLike5)scFv6306SEQ ID NO. 854 in WO2016090337
FcRL5(FcReceptorLike5)scFv6307SEQ ID NO. 856 in WO2016090337
FcRL5(FcReceptorLike5)scFv6308SEQ ID NO. 858 in WO2016090337
FcRL5(FcReceptorLike5)scFv6309SEQ ID NO. 860 in WO2016090337
FcRL5(FcReceptorLike5)scFv6310SEQ ID NO. 862 in WO2016090337
FcRL5(FcReceptorLike5)scFv6311SEQ ID NO. 864 in WO2016090337
FcRL5(FcReceptorLike5)scFv6312SEQ ID NO. 866 in WO2016090337
FcRL5(FcReceptorLike5)scFv6313SEQ ID NO. 868 in WO2016090337
FcRL5(FcReceptorLike5)scFv6314SEQ ID NO. 870 in WO2016090337
FcRL5(FcReceptorLike5)scFv6315SEQ ID NO. 872 in WO2016090337
FcRL5(FcReceptorLike5)scFv6316SEQ ID NO. 874 in WO2016090337
FcRL5(FcReceptorLike5)scFv6317SEQ ID NO. 876 in WO2016090337
FcRL5(FcReceptorLike5)scFv6318SEQ ID NO. 878 in WO2016090337
FcRL5(FcReceptorLike5)scFv6319SEQ ID NO. 880 in WO2016090337
FcRL5(FcReceptorLike5)scFv6320SEQ ID NO. 882 in WO2016090337
FcRL5(FcReceptorLike5)scFv6321SEQ ID NO. 884 in WO2016090337
FcRL5(FcReceptorLike5)scFv6322SEQ ID NO. 886 in WO2016090337
FcRL5(FcReceptorLike5)scFv6323SEQ ID NO. 888 in WO2016090337
FcRL5(FcReceptorLike5)scFv6324SEQ ID NO. 890 in WO2016090337
FcRL5(FcReceptorLike5)scFv6325SEQ ID NO. 892 in WO2016090337
FcRL5(FcReceptorLike5)scFv6326SEQ ID NO. 894 in WO2016090337
FcRL5(FcReceptorLike5)scFv6327SEQ ID NO. 896 in WO2016090337
FcRL5(FcReceptorLike5)scFv6328SEQ ID NO. 650 in WO2016090337
FcRL5(FcReceptorLike5)scFv6329SEQ ID NO. 678 in WO2016090337
Folate ReceptorscFv6330SEQ ID NO. 15 in US20170002072A1
FOLRl/CD3sBiSpecificscFv6331SEQ ID NO. 90 in WO2014144722A2
GCN4scFv6332SEQ ID NO. 165 in WO2016168773A3
GCN4scFv6333SEQ ID NO. 166 in WO2016168773A3
GCN4scFv6334SEQ ID NO. 167 in WO2016168773A3
GCN4scFv6335SEQ ID NO. 168 in WO2016168773A3
GCN4scFv6336SEQ ID NO. 169 in WO2016168773A3
GCN4scFv6337SEQ ID NO. 170 in WO2016168773A3
GD2scFv6338SEQ ID NO. 19 in WO2016134284
GD2scFv6339SEQ ID NO. 20 in WO2016134284
GD2scFv6340SEQ ID NO. 21 in WO2016134284
GD2scFv6341SEQ ID NO. 7 in WO2015132604
GD2scFv6342SEQ ID NO. 8 in WO2015132604
GPC3scFv6343SEQ ID NO. 1 in WO2016049459
GPC3scFv6344SEQ ID NO. 12 in US20160208015A1
GPC4scFv6345SEQ ID NO. 24 in WO2016049459
GPRC5DscFv6346SEQ ID NO. 100 in WO2016090312
GPRC5DscFv6347SEQ ID NO. 101 in WO2016090312
GPRC5DscFv6348SEQ ID NO. 102 in WO2016090312
GPRC5DscFv6349SEQ ID NO. 103 in WO2016090312
GPRC5DscFv6350SEQ ID NO. 104 in WO2016090312
GPRC5DscFv6351SEQ ID NO. 105 in WO2016090312
GPRC5DscFv6352SEQ ID NO. 106 in WO2016090312
GPRC5DscFv6353SEQ ID NO. 107 in WO2016090312
GPRC5DscFv6354SEQ ID NO. 108 in WO2016090312
GPRC5DscFv6355SEQ ID NO. 109 in WO2016090312
GPRC5DscFv6356SEQ ID NO. 110 in WO2016090312
GPRC5DscFv6357SEQ ID NO. 111 in WO2016090312
GPRC5DscFv6358SEQ ID NO. 112 in WO2016090312
GPRC5DscFv6359SEQ ID NO. 113 in WO2016090312
GPRC5DscFv6360SEQ ID NO. 114 in WO2016090312
GPRC5DscFv6361SEQ ID NO. 115 in WO2016090312
GPRC5DscFv6362SEQ ID NO. 116 in WO2016090312
GPRC5DscFv6363SEQ ID NO. 117 in WO2016090312
GPRC5DscFv6364SEQ ID NO. 118 in WO2016090312
GPRC5DscFv6365SEQ ID NO. 119 in WO2016090312
GPRC5DscFv6366SEQ ID NO. 120 in WO2016090312
GPRC5DscFv6367SEQ ID NO. 121 in WO2016090312
GPRC5DscFv6368SEQ ID NO. 122 in WO2016090312
GPRC5DscFv6369SEQ ID NO. 123 in WO2016090312
GPRC5DscFv6370SEQ ID NO. 301 in WO2016090312
GPRC5DscFv6371SEQ ID NO. 313 in WO2016090312
GPRC5DscFv6372SEQ ID NO. 325 in WO2016090312
GPRC5DscFv6373SEQ ID NO. 337 in WO2016090312
GPRC5DscFv6374SEQ ID NO. 349 in WO2016090312
GPRC5DscFv6375SEQ ID NO. 361 in WO2016090312
GPRC5DscFv6376SEQ ID NO. 373 in WO2016090312
GPRC5DscFv6377SEQ ID NO. 385 in WO2016090312
HER2/CD3scFv6378SEQ ID N0. 9 in WO2014144722A2
humanCD79b1F10scFv6379SEQ ID NO. 33 in WO2016112870
Human collagen VIIscFv6380SEQ ID NO. 34 in WO2016112870
Integrin BivalentscFv6381SEQ ID N0. 2 in WO2009070753
Integrin BivalentscFv6382SEQ ID NO. 1 in WO2009070753
IpilimumabscFv6383SEQ ID NO. 39 in US20160208021
IpilimumabscFv6384SEQ ID NO. 39 in WO2016112870
IL4scFv6385SEQ ID NO. 17 in WO2009121847
IL4RscFv6386SEQ ID NO. 16 in WO2009121847
Mec/CD3sBispecificscFv6387SEQ ID NO. 78 in WO2014144722A2
MesothelinscFv6388SEQ ID NO. 7 WO2015188141
MesothelinscFv6389SEQ ID NO 47 in WO2016090034
MesothelinscFv6390SEQ ID NO in 46 in WO2016090034
MesothelinscFv6391SEQ ID NO in 57 in WO2016090034
MesothelinscFv6392SEQ ID NO. 48 in WO2016090034
MesothelinscFv6393SEQ ID NO. 49 in WO2016090034
MesothelinscFv6394SEQ ID NO. 50 in WO2016090034
MesothelinscFv6395SEQ ID NO. 51 in WO2016090034
MesothelinscFv6396SEQ ID NO. 53 in WO2016090034
MesothelinscFv6397SEQ ID NO. 54 in WO2016090034
MesothelinscFv6398SEQ ID NO. 55 in WO2016090034
MesothelinscFv6399SEQ ID NO. 56 in WO2016090034
MesothelinscFv6400SEQ ID NO. 58 in WO2016090034
MesothelinscFv6401SEQ ID NO. 59 WO2016090034
MesothelinscFv6402SEQ ID NO. 62 in WO2016090034
MesothelinscFv6403SEQ ID NO. 64 in WO2016090034
MesothelinscFv6404SEQ ID NO. 65 in WO2016090034
MesothelinscFv6405SEQ ID NO. 66 in WO2016090034
MesothelinscFv6406SEQ ID NO. 67 in WO2016090034
MesothelinscFv6407SEQ ID NO. 68 in WO2016090034
MesothelinscFv6408SEQ ID NO. 69 in WO2016090034
MesothelinscFv6409SEQ ID NO. 7 WO2015188141
MesothelinscFv6410SEQ ID NO. 70 in WO2016090034
MesothelinscFv6411SEQ ID NO. 52 in WO2016090034
MesothelinscFv6412SEQ ID NO. 60 in WO2016090034
MesothelinscFv6413SEQ ID NO. 61 in WO2016090034
MesothelinscFv6414SEQ ID NO. 63 in WO2016090034
MesothelinscFv6415SEQ ID NO. 10 in WO2013142034
MesothelinscFv6416SEQ ID NO. 11 in WO2013142034
MesothelinscFv6417SEQ ID NO. 12 in WO2013142034
MesothelinscFv6418SEQ ID NO. 11 in WO2013063419
MUC1scFv6419SEQ ID NO. 15 in US20160130357
MUC2scFv6420SEQ ID NO. 17 in US20160130357
MUC3scFv6421SEQ ID NO. 15 in US20160130357
MUC4scFv6422SEQ ID NO. 17 in US20160130357
NivolumabscFv6423SEQ ID NO. 38 in US20160208021
NivolumabscFv6424SEQ ID NO. 38 in WO2016112870
NYBR1scFv6425SEQ ID NO. 21 in US20160333422A1
NYBR1scFv6426SEQ ID NO. 21 in WO2015112830
NYBR16427SEQ ID NO. 18 in WO2015112830
NYBR16428SEQ ID NO. 19 in WO2015112830
O acetylated GD2 gangliosidescFv6429SEQ ID NO. 29 in US20150140023
O acetylated GD2 gangliosidescFv6430SEQ ID NO. 31 in US20150140023
OX40scFv6431SEQ ID NO. 33 in US20150190506
PD1scFv6432SEQ ID NO. 39 in US20160311917A1
PD1scFv6433SEQ ID NO. 40 in US20160311917A1
PD1scFv6434SEQ ID NO. 41 in US20160311917A1
PD1scFv6435SEQ ID NO. 42 in US20160311917A1
PD1scFv6436SEQ ID NO. 43 in US20160311917A1
PD1scFv6437SEQ ID NO. 44 in US20160311917A1
PD1scFv6438SEQ ID NO. 45 in US20160311917A1
PD1scFv6439SEQ ID NO. 46 in US20160311917A1
PD1scFv6440SEQ ID NO. 47 in US20160311917A1
PD1scFv6441SEQ ID NO. 48 in US20160311917A1
PD1scFv6442SEQ ID NO. 49 in US20160311917A1
PD1scFv6443SEQ ID NO. 50 in US20160311917A1
PD1scFv6444SEQ ID NO. 51 in US20160311917A1
PD1scFv6445SEQ ID NO. 52 in US20160311917A1
PD1scFv6446SEQ ID NO. 53 in US20160311917A1
PD1scFv6447SEQ ID NO. 54 in US20160311917A1
PD1scFv6448SEQ ID NO. 55 in US20160311917A1
PD1scFv6449SEQ ID NO. 56 in US20160311917A1
PD1scFv6450SEQ ID NO. 57 in US20160311917A1
PD1scFv6451SEQ ID NO. 58 in US20160311917A1
PD1scFv6452SEQ ID NO. 59 in US20160311917A1
PD1scFv6453SEQ ID NO. 60 in US20160311917A1
PD1scFv6454SEQ ID NO. 61 in US20160311917A1
PDK1scFv6455SEQ ID NO. 15 in WO2016090365
PDL1Nanobody6456SEQ ID NO. 22 in US20110129458
PDL1Nanobody6457SEQ ID NO. 23 in US20110129458
PDL1Nanobody6458SEQ ID NO. 24 in US20110129458
PDL1Nanobody6459SEQ ID NO. 25 in US20110129458
PDL1Nanobody6460SEQ ID NO. 26 in US20110129458
PDL1Nanobody6461SEQ ID NO. 27 in US20110129458
PDL2Nanobody6462SEQ ID NO. 28 in US20110129458
PDL2Nanobody6463SEQ ID NO. 29 in US20110129458
PDL2Nanobody6464SEQ ID NO. 30 in US20110129458
PDL2Nanobody6465SEQ ID NO. 31 in US20110129458
PDL2Nanobody6466SEQ ID NO. 32 in US20110129458
PDL2Nanobody6467SEQ ID NO. 33 in US20110129458
PRAMEscFv6468SEQ ID NO. 63 in WO2016191246A2
PRAMEscFv6469SEQ ID NO. 64 in WO2016191246A2
PRAMEscFv6470SEQ ID NO. 65 in WO2016191246A2
PRAMEscFv6471SEQ ID NO. 66 in WO2016191246A2
PRAMEscFv6472SEQ ID NO. 67 in WO2016191246A2
PRAMEscFv6473SEQ ID NO. 68 in WO2016191246A2
PRAMEscFv6474SEQ ID NO. 69 in WO2016191246A2
PSMAscFv6475SEQ ID NO. 19 in WO2012145714
PSMAscFv6476SEQ ID NO. 21 in WO2012145714
PSMAscFv6477SEQ ID NO. 30 in WO2012145714
PSMAscFv6478SEQ ID NO. 31 in WO2012145714
PSMAscFv6479SEQ ID NO. 34 in WO2012145714
PSMAscFv6480SEQ ID NO. 35 in WO2012145714
PSMADiabody6481SEQ ID NO. 12 in WO2011069019
PSMADiabody6482SEQ ID NO. 13 in WO2011069019
PSMADiabody6483SEQ ID NO. 14 in WO2011069019
PSMADiabody6484SEQ ID NO. 15 in WO2011069019
radiation inducible neoantigenscFv6485SEQ ID NO 22 in WO2005042780A1
radiation inducible neoantigenscFv6486SEQ ID NO 24 in WO2005042780A1
RanibizumanscFv6487SEQ ID NO. 40 in US20160208021
RanibizumanscFv6488SEQ ID NO. 40 in WO2016112870
RASscFv6489SEQ ID NO. 81 in WO2016154047
RituximabscFv6490SEQ ID NO. 36 in US20160208021
RituximabscFv6491SEQ ID NO. 36 in WO2016112870
RORIscFv6492SEQ ID NO. 34 in EP3083691A2
RORIscFv6493SEQ ID NO. 249 in US20160208018A1
RORIscFv6494SEQ ID NO. 250 in US20160208018A1
RORIscFv6495SEQ ID NO. 251 in US20160208018A1
RORIscFv6496SEQ ID NO. 252 in US20160208018A1
RORIscFv6497SEQ ID NO. 253 in US20160208018A1
RORIscFv6498SEQ ID NO. 254 in US20160208018A1
RORIscFv6499SEQ ID NO. 255 in US20160208018A1
RORIscFv6500SEQ ID NO. 256 in US20160208018A1
RORIscFv6501SEQ ID NO. 257 in US20160208018A1
RORIscFv6502SEQ ID NO. 258 in US20160208018A1
RORIscFv6503SEQ ID NO. 259 in US20160208018A1
RORIscFv6504SEQ ID NO. 260 in US20160208018A1
RORIscFv6505SEQ ID NO. 261 in US20160208018A1
RORIscFv6506SEQ ID NO. 262 in US20160208018A1
RORIscFv6507SEQ ID NO. 263 in US20160208018A1
RORIscFv6508SEQ ID NO. 264 in US20160208018A1
RORIscFv6509SEQ ID NO. 265 in US20160208018A1
RORIscFv6510SEQ ID NO. 266 in US20160208018A1
RORIscFv6511SEQ ID NO. 267 in US20160208018A1
RORIscFv6512SEQ ID NO. 268 in US20160208018A1
RORIscFv6513SEQ ID NO. 57 in EP3083671A1
RORIscFv6514SEQ ID NO. 1 in US20160304619A1
RORIscFv6515SEQ ID NO. 2 in US20160304619A1
RORIscFv6516SEQ ID NO. 34 in WO2015092024A2
TeplizumabscFv6517SEQ ID NO. 42 in WO2016112870
Teplizumab(mutated)scFv6518SEQ ID NO. 42 in US20160208021
TOSOscFv6519SEQ ID NO. 2 in EP3098237A1
TrastuzumabscFv6520SEQ ID NO. 35 in US20160208021
TrastuzumabscFv6521SEQ ID NO. 35 in WO2016112870
TRBC1scFv6522SEQ ID NO. 13 in WO2015132598
TRBC1scFv6523SEQ ID NO. 14 in WO2015132598
TRBC1scFv6524SEQ ID NO. 15 in WO2015132598
TRBC1scFv6525SEQ ID NO. 16 in WO2015132598
TRBC1scFv6526SEQ ID NO. 17 in WO2015132598
TRBC1scFv6527SEQ ID NO. 18 in WO2015132598
TRBC1scFv6528SEQ ID NO. 19 in WO2015132598
TRBC1scFv6529SEQ ID NO. 20 in WO2015132598
TRBC1scFv6530SEQ ID NO. 21 in WO2015132598
TRBC1scFv6531SEQ ID NO. 22 in WO2015132598
TRBC1scFv6532SEQ ID NO. 3 in WO2015132598
TRBC2scFv6533SEQ ID NO. 23 in WO2015132598
TRBC2scFv6534SEQ ID NO. 24 in WO2015132598
TRBC2scFv6535SEQ ID NO. 25 in WO2015132598
TRBC2scFv6536SEQ ID NO. 26 in WO2015132598
TRBC2scFv6537SEQ ID NO. 27 in WO2015132598
TRBC2scFv6538SEQ ID NO. 28 in WO2015132598
TRBC2scFv6539SEQ ID NO. 29 in WO2015132598
TRBC2scFv6540SEQ ID NO. 30 in WO2015132598
TRBC2scFv6541SEQ ID NO. 31 in WO2015132598
TRBC2scFv6542SEQ ID NO. 32 in WO2015132598
TSLPRscFv6543SEQ ID NO. 1 in US20160311910A1
TSLPRscFv6544SEQ ID NO. 2 in US20160311910A1
TSLPRscFv6545SEQ ID NO. 1 in WO2015084513
TSLPRscFv6546SEQ ID NO. 2 in WO2015084513
VEGFscFv6547SEQ ID NO. 168 in US20160090427
VEGFscFv6548SEQ ID NO. 169 in US20160090427
VEGFscFv6549SEQ ID NO. 170 in US20160090427
VEGFscFv6550SEQ ID NO. 171 in US20160090427
VEGFscFv6551SEQ ID NO. 172 in US20160090427
VEGFscFv6552SEQ ID NO. 173 US20160090427
VEGFscFv6553SEQ ID NO. 174 in US20160090427
VEGFscFv6554SEQ ID NO. 175 in US20160090427
VEGFRscFv6555SEQ ID NO. 498 in US20110177074A1
VEGFRscFv6556SEQ ID NO. 500 in US20110177074A1
VEGFRscFv6557SEQ ID NO. 502 in US20110177074A1
VEGFRscFv6558SEQ ID NO. 504 in US20110177074A1
VEGFRscFv6559SEQ ID NO. 506 in US20110177074A1
VEGFRscFv6560SEQ ID NO. 508 in US20110177074A1
VEGFR2scFv6561SEQ ID NO. 1 in US20120213783
VEGFR2scFv6562SEQ ID NO. 2 in US20120213783
WT1/HLA BispecificscFv6563SEQ ID NO. 108 in WO2015070061
WT1/HLA BispecificscFv6564SEQ ID NO. 113 in WO2015070061
WT1/HLA BispecificscFv6565SEQ ID NO. 18 in WO2015070061
WT1/HLA BispecificscFv6566SEQ ID NO. 36 in WO2015070061
WT1/HLA BispecificscFv6567SEQ ID NO. 54 in WO2015070061
WT1/HLA BispecificscFv6568SEQ ID NO. 72 in WO2015070061
WT1/HLA BispecificscFv6569SEQ ID NO. 90 in WO2015070061
αfolate receptor(FRα)scFv6570SEQ ID NO. 15 in WO2012099973
αfolate receptor(FRα)scFv6571SEQ ID NO. 23 in WO2012099973

In one embodiment, the targeting moiety of the CAR may recognize CD19. CD19 is a well-known B cell surface molecule, which upon B cell receptor activation enhances B-cell antigen receptor induced signaling and expansion of B cell populations. CD19 is broadly expressed in both normal and neoplastic B cells. Malignancies derived from B cells such as chronic lymphocytic leukemia, acute lymphocytic leukemia and many non-Hodgkin lymphomas frequently retain CD19 expression. This near universal expression and specificity for a single cell lineage has made CD19 an attractive target for immunotherapies. Human CD19 has 14 exons wherein exon 1-4 encode the extracellular portion of the CD19, exon 5 encodes the transmembrane portion of CD19 and exons 6-14 encode the cytoplasmic tail. In one embodiment, the targeting moiety may comprise scFvs derived from the variable regions of the FMC63 antibody. FMC63 is an IgG2a mouse monoclonal antibody clone specific to the CD19 antigen that reacts with CD19 antigen on cells of the B lineage. The epitope of CD19 recognized by the FMC63 antibody is in exon 2 (Sotillo et al (2015) Cancer Discov; 5(12):1282-95; the contents of which are incorporated by reference in their entirety). In some embodiments, the targeting moiety of the CAR may be derived from the variable regions of other CD19 monoclonal antibody clones including but not limited to 4G7, SJ25C1, CVID3/429, CVID3/155, HIB19, and J3-119.

In some embodiments, the targeting moiety of a CAR may recognize a tumor specific antigen (TSA), for example a cancer neoantigen that is only expressed by tumor cells because of genetic mutations or alterations in transcription which alter protein coding sequences, therefore creating novel, foreign antigens. The genetic changes result from genetic substitution, insertion, deletion or any other genetic changes of a native cognate protein (i.e. a molecule that is expressed in normal cells). In the context of CD19, TSAs may include a transcript variant of human CD19 lacking exon 2 or lacking exon 5-6 or both (see International patent publication No. WO2016061368; the contents of which are incorporated herein by reference in their entirety). Since FMC63 binding epitope is in exon 2, CD19 lacking exon 2 is not recognized by FMC63 antibody. Thus, in some embodiments, the targeting moiety of the CAR may be an FMC63-distinct scFV. As used herein “FMC63-distinct” refers, to an antibody, scFv or a fragment thereof that is immunologically specific and binds to an epitope of the CD19 antigen that is different or unlike the epitope of CD19 antigen that is bound by FMC63. In some instances, targeting moiety may recognize a CD19 antigen lacking exon2. In one embodiment, the targeting moiety recognizes a fragment of CD19 encoded by exon 1, 3 and/or 4. In one example, the targeting moiety recognizes the epitope that bridges the portion of CD19 encoded by exon 1 and the portion of CD19 encoded by exon 3.

Intracellular Signaling Domains

The intracellular domain of a CAR fusion polypeptide, after binding to its target molecule, transmits a signal to the immune effector cell, activating at least one of the normal effector functions of immune effector cells, including cytolytic activity (e.g., cytokine secretion) or helper activity. Therefore, the intracellular domain comprises an “intracellular signaling domain” of a T cell receptor (TCR).

In some aspects, the entire intracellular signaling domain can be employed. In other aspects, a truncated portion of the intracellular signaling domain may be used in place of the intact chain as long as it transduces the effector function signal.

In some embodiments, the intracellular signaling domain of the present invention may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs (ITAMs). Examples of ITAM containing cytoplasmic signaling sequences include those derived from TCR CD3 zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, and CD66d. In one example, the intracellular signaling domain is a CD3 zeta (CD3ζ) signaling domain.

In some embodiments, the intracellular region of the present invention further comprises one or more costimulatory signaling domains which provide additional signals to the immune effector cells. These costimulatory signaling domains, in combination with the signaling domain can further improve expansion, activation, memory, persistence, and tumor-eradicating efficiency of CAR engineered immune cells (e.g., CART cells). In some cases, the costimulatory signaling region contains 1, 2, 3, or 4 cytoplasmic domains of one or more intracellular signaling and/or costimulatory molecules. The costimulatory signaling domain may be the intracellular/cytoplasmic domain of a costimulatory molecule, including but not limited to CD2, CD7, CD27, CD28, 4-1BB (CD137), OX40 (CD134), CD30, CD40, ICOS (CD278), GITR (glucocorticoid-induced tumor necrosis factor receptor), LFA-1 (lymphocyte function-associated antigen-1), LIGHT, NKG2C, B7-H3. In one example, the costimulatory signaling domain is derived from the cytoplasmic domain of CD28. In another example, the costimulatory signaling domain is derived from the cytoplasmic domain of 4-1BB (CD137). In another example, the co-stimulatory signaling domain may be an intracellular domain of GITR as taught in U.S. Pat. NO.: 9, 175, 308; the contents of which are incorporated herein by reference in its entirety.

In some embodiments, the intracellular region of the present invention may comprise a functional signaling domain from a protein selected from the group consisting of an MHC class I molecule, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation protein (SLAM) such as CD48, CD229, 2B4, CD84, NTB-A, CRACC, BLAME, CD2F-10, SLAMF6, SLAMF7, an activating NK cell receptor, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, IL15Rα, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, NKD2C SLP76, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, CD270 (HVEM), GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds with CD83, DAP 10, TRIM, ZAP70, Killer immunoglobulin receptors (KIRs) such as KIR2DL1, KIR2DL2/L3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DL1/S1, KIR3DL2, KIR3DL3, and KIR2DP1; lectin related NK cell receptors such as Ly49, Ly49A, and Ly49C.

In some embodiments, the intracellular signaling domain of the present invention may contain signaling domains derived from JAK-STAT. In other embodiments, the intracellular signaling domain of the present invention may contain signaling domains derived from DAP-12 (Death associated protein 12) (Topfer et al., Immunol., 2015, 194: 3201-3212; and Wang et al., Cancer Immunol., 2015, 3: 815-826). DAP-12 is a key signal transduction receptor in NK cells. The activating signals mediated by DAP-12 play important roles in triggering NK cell cytotoxicity responses toward certain tumor cells and virally infected cells. The cytoplasmic domain of DAP12 contains an Immunoreceptor Tyrosine-based Activation Motif (ITAM). Accordingly, a CAR containing a DAP12-derived signaling domain may be used for adoptive transfer of NK cells.

In some embodiments, T cells engineered with two or more CARs incorporating distinct co-stimulatory domains and regulated by distinct DD may be used to provide kinetic control of downstream signaling.

In some embodiments, the payload of the invention may be any of the co-stimulatory molecules and/or intracellular domains described herein. In some embodiments, one or more co-stimulatory molecules, each under the control of different SRE may be used in the present invention. SRE regulated co-stimulatory molecules may also be expressed in conjunction with a first-generation CAR, a second-generation CAR, a third-generation CAR, a fourth-generation, or any other CAR design described herein.

In some embodiments, the intracellular domain of the present invention may comprise amino acid sequences of Table 12.

TABLE 12
Intracellular signaling and co-stimulatory domains
SEQ ID
DomainAmino Acid SequenceNO.
2B4 co-stimulatory domainWRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTF6572
PGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSRKSGSRK
RNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS
CD27 co-stimulatory domainHQRRKYRSNKGESPVEPAEPCRYSCPREEEGSTIPIQEDY6573
RKPEPACSP
CD272 (BTLA1) co-RRHQGKQNELSDTAGREINLVDAKLKSEQTEASTRQNSQ6574
stimulatory domainVLLSETGIYDNDPDLCFRMQEGSEVYSNPCLEENKPGIVY
ASLNHSVIGPNSRLARNVKEAPIEYASICVRS
CD272 (BTLA1) co-CCLRRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQ6575
stimulatory domainNSQVLLSETGIYDNDPDLCFRMQEGSEVYSNPCLEENKP
GIVYASLNHSVIGPNSRLARNVKEAPIEYASICVRS
CD28 co-stimulatoryFWVLVVVGGVLACYSLLVTVAFIIFWV6576
CD28 co-stimulatory domainKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG6577
CEL
CD28 co-stimulatory domainFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRD6578
FAAYRS
CD28 co-stimulatory domainRSKRSRGGHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA6579
YRS
CD28 co-stimulatory domainRSKRSRGGHSDYIVINMTPRRPGPTRKHYQPYAPPRDFA6580
AYRS
CD28 co-stimulatoryMLRLLLALNLFPSIQVTGNKILVKQSPMLVAYDNAVNLS6581
signaling regionCKYSYNLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQ
VYSKTGFNCDGKLGNESVTFYLQNLYVNQTDIYFCKIEV
MYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVL
VVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNM
TPRRPGPTRKHYQPYAPPRDFAAYRS
CD30 co-stimulatory domainRRACRKRIRQKLHLCYPVQTSQPKLELVDSRPRRSSTQLR6582
SGASVTEPVAEERGLMSQPLMETCHSVGAAYLESLPLQD
ASPAGGPSSPRDLPEPRVSTEHTNNKIEKIYIMKADTVIVG
TVKAELPEGRGLAGPAEPELEEELEADHTPHYPEQEIEPP
LGSCSDVMLSVEEEGKEDPLPTAASGK
CD30 co-stimulatory domainRRACRKRIRQKLHLCYPVQTSQPKLELVDSRPRRSSTQLR6583
SGASVTEPVAEERGLMSQPLMETCHSVGAAYLESLPLQD
ASPAGGPSSPRDLPEPRVSTEHTNNKIEKIYIMKADTVIVG
TVKAELPEGRGLAGPAEPELEEELEADHTPHYPEQETEPP
LGSCSDVMLSVEEEGKEDPLPTAASGK
GITR co-stimulatory domainHIWQLRSQCMWPRETQLLLEVPPSTEDARSCQFPEEERG6584
ERSAEEKGRLGDLWV
HVEM co-stimulatoryCVKRRKPRGDVVKVIVSVQRKRQEAEGEATVIEALQAPP6585
domainDVTTVAVEETIPSFTGRSPNH
ICOS co-stimulatory domainTKKKYSSSVHDPNGEYMFMRAVNTAKKSRLTDVTL6586
ICOS co-stimulatoryCWLTKKKYSSSVHDPNGEYMFMRAVNTAKKSRLTDVT6587
signaling domainL
LAG-3 co-stimulatory regionHLWRRQWRPRRFSALEQGIHPPQAQSKIEELEQEPEPEPE6588
PEPEPEPEPEPEQL
OX40 co-stimulatory domainALYLLRRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTL6589
AKI
OX40 co-stimulatory domainRRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKI6590
4-1BB intracellular domainKRGRKKLLYIFKQPFMRPVQTIQEEDGCSCRFPEEEEGGC6591
EL
4-1BB signaling domainKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG6592
YEL
4-1BB-CD3Zeta intracellularTGTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR6593
domainGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR
SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE
MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR
RGKGHDGLYQGLSTATKDTYDALHMQALPPR
4-1BB-Z endodomain fusionKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG6594
CELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVL
DKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS
EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP
PR
CD127 intracellular domainKRIKPIVWPSLPDHKKTLEHLCKKPRKNLNVSFNPESFLD6595
CQIHRVDDIQARDEVEGFLQDTFPQQLEESEKQRLGGDV
QSPNCPSEDVVITPESFGRDSSLTCLAGNVSACDAPILSSS
RSLDCRESGKNGPHVYQDLLLSLGTTNSTLPPPFSLQSGIL
TLNPVAQGQPILTSLGSNQEEAYVTMSSFYQNQ
CD137 intracellular domainRFSVVKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEE6596
EEGGCEL
CD148 intracellular domainRKKRKDAKNNEVSFSQIKPKKSKLIRVENFEAYFKKQQA6597
DSNCGFAEEYEDLKLVGISQPKYAAELAENRGKNRYNN
VLPYDISRVKLSVQTHSTDDYINANYMPGYHSKKDFIAT
QGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCE
EYWPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTS
ESHPLRQFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQS
PPESPILVHCSAGVGRTGTFIAIDRLIYQIENENTVDVYGI
VYDLRMHRPLMVQTEDQYVFLNQCVLDIVRSQKDSKVD
LIYQNTTAMTIYENLAPVTTFGKTNGYIA
CD27 intracellular domainQRRKYRSNKGESPVEPAEPCHYSCPREEEGSTIPIQEDYR6598
KPEPACSP
CD28 intracellular domainFAAYRS6599
CD28 signaling chainFWVLVVVGGVLACYSLLVTVAFBFWVRSKRSRLLHSDY6600
MNMTPRRPGPTRKHYQPYAPPRDFAAYRS
CD28 signaling domainRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA6601
YRS
CD28 signaling domainSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAY6602
RS
CD28 signaling domainIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPF6603
WVLVVVGGVLACYSLLVTVAFIIFWRSKRSRLLHSDYM
NMTPRRPGPTRKHYQPYAPPRDFAAYRS
CD28, 4-1BB, and/or CD3ζRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA6604
signaling domainYRSRFSVVKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCR
FPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNLGR
REEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDK
MAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL
HMQALPPR
CD28/CD3CAAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPS6605
KPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHS
DYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRS
ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE
MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR
RGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD28-0XZ intracellularRSKRSRLLHSDYNMTPRRPGPTRKHYQPYAPPRDFAAYR6606
domainSRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKIRVK
FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR
DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD28-4-1BB intracellularMFWVLVVVGGVLACYSLLVTVAFIIFWVKRGRKKLLYIF6607
domainKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL
CD28-4-1BB intracellularIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPF6608
domainWVLVVVGGVLACYSLLVTVAFIIFWVKRGRKKLLYIFKQ
PFMRPVQTTQEEDGCSCRFPEEEEGGCEL
CD28-CD3 Zeta intracellularRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAA6609
domainYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVL
DKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS
EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP
PR
CD28-CD3 Zeta intracellularKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYR6610
domainSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK
RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIG
MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 delta chain intracellularMEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI6611
signaling domainTWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD
KESTVQVHYRMCQSCVELDPATVAGIIVTDVIATLLLAL
GVFCfa*gHETGRLSGAADTQALLRNDQVYQPLRDRDDA
QYSHLGGNWARNK
CD3 delta chain intracellularMEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI6612
signaling domainTWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD
KESTVQVHYRTADTQALLRNDQVYQPLRDRDDAQYSHL
GGNWARNK
CD3 delta chain intracellularDQVYQPLRDRDDAQYSHLGGN6613
signaling domain
CD3 delta intracellularMEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI6614
domainTWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD
KESTVQVHYRMCQSCVELDPATVAGIIVTDVIATLLLAL
GVFCfa*gHETGRLSGAADTQALLRNDQVYQPLRDRDDA
QYSHLGGNWARNK
CD3 delta intracellularMEHSTFLSGLVLATLLSQVSPFKIPIEELEDRVFVNCNTSI6615
domainTWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGTDIYKD
KESTVQVHYRTADTQALLRNDQVYQPLRDRDDAQYSHL
GGNWARNK
CD3 delta intracellularDQVYQPLRDRDDAQYSHLGGN6616
domain
CD3 epsilon intracellularMQSGTHWRVLGLCLLSVGVWGQDGNEEMGGITQTPYK6617
domainVSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDDKNIGS
DEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRA
RVCENCMEMDVMSVATIVIVDICITGGLLLLVYYWSKNR
KAKAKPVTRGAGAGGRQRGQNKERPPPVPNPDYEPIRK
GQRDLYSGLNQRRI
CD3 epsilon intracellularNPDYEPIRKGQRDLYSGLNQR6618
domain
CD3 gamma intracellularMEQGKGLAVLILAIILLQGTLAQSIKGNHLVKVYDYQED6619
domainGSVLLTCDAEAKNITWFKDGKMIGFLTEDKKKWNLGSN
AKDPRGMYQCKGSQNKSKPLQVYYRMCQNCIELNAATI
SGFLFAEIVSIFVLAVGVYFIAGQDGVRQSRASDKQTLLP
NDQLYQPLKDREDDQYSHLQGNQLRRN
CD3 gamma intracellularDQLYQPLKDREDDQYSHLQGN6620
domain
CD3 gamma intracellularDQLYQPLKDREDDQYSHLQGN6621
domain
CD3 gamma intracellularMEQGKGLAVLILAIILLQGTLAQSIKGNHLVKVYDYQED6622
domainGSVLLTCDAEAKNITWFKDGKMIGFLTEDKKKWNLGSN
AKDPRGMYQCKGSQNKSKPLQVYYRMCQNCIELNAATI
SGFLFAEIVSIFVLAVGVYFIAGQDGVRQSRASDKQTLLP
NDQLYQPLKDREDDQYSHLQGNQLRRN
CD3 zeta intracellularMKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF6623
domainIYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR
REEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDK
MAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL
HMQALPPR
CD3 zeta intracellularMKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF6624
domainIYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR
REEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNELQKD
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD
ALHMQALPPR
CD3 zeta intracellularMKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF6625
domainIYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR
REEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNELQKD
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD
ALHMQALPPR
CD3 zeta inttacellularNQLYNELNLGRREEYDVLDKR6626
domain
CD3 zeta domain 2RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR6627
(NM_000734.3)RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM
KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularDGLYQGLSTATKDTYDALHMQ6628
domain
CD3 zeta intracellularRVKFSRSAEPPAYQQGQNQLYNELNLGRREEYDVLDKR6629
domainRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM
KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR6630
domainRGRDPEMGGKPQRRKNPQEGLYNELQKDKMAEAYSEIG
MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLD6631
domainKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEI
GMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPP
R
CD3 zeta intracellularRVKFSRSADAPAYQQGEYDVLDKRRGRDPEMGGKPRRK6632
domainNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL
YQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularRVKFSRSADAPAYQQGQNQLYNELNLGRREEVDVLDKR6633
domainRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM
KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularMIPAVVLLLLLLVEQAAALGEPQLCYILDAILFLVGIVLTL6634
domainLVCRLKIQVRKAAITSYEKSRVKFSRSADAPAYQQGQNQ
LYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG
LYNELQKDKMAEAVSEIGMKGERRRGKGHDGLYQGLST
ATKDTYDALHMQALPPR
CD3 zeta intracellularLRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK6635
domainRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIG
MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR6636
domainRGRDPEMGGKPQRRKNPQEGLY
CD3 zeta intracellularLRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK6637
domainRRGRDPEMGGKPQRRKNPQEGLYNELQKDKMAEAYSEI
GMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPP
R
CD3 zeta intracellularRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK6638
domainRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIG
MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularNQLYNELNLGRREEYDVLDKR6639
domain
CD3 zeta intracellularEGLYNELQKDKMAEAYSEIGMK6640
domain
CD3 zeta intracellularDGLYQGLSTATKDTYDALHMQ6641
domain
CD3 zeta intracellularRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR6642
domainRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM
KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKR6643
domainRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM
KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR6644
domainRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM
KGERRRGKGHDGLYQGLSTATKDTYDALHMQALP
CD3 zeta intracellularDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQG6645
domainQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRK
NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGL
YQGLSTATKDTYDALHMQALPPR
CD3 zeta intracellularMKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILF6646
domainIYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGR
REEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDK
MAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL
HMQALPPR
CD40 intracellular domainRSRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKI6647
CD79A intracellular domainMPGGPGVLQALPATIFLLFLLSAVYLGPGCQALWMHKV6648
PASLMVSLGEDAHFQCPHNSSNNANVTWWRVLHGNYT
WPPEFLGPGEDPNGTLIIQNVNKSHGGIYVCRVQEGNESY
QQSCGTYLRVRQPPPRPFLDMGEGTKNRIITAEGIILLFCA
VVPGTLLLFRKRWQNEKLGLDAGDEYEDENLYEGLNLD
DCSMYEDISRGLQGTYQDVGSLNIGDVQLEKP
CD79A intracellular domainMPGGPGVLQALPATIFLLFLLSAVYLGPGCQALWMHKV6649
PASLMVSLGEDAHFQCPHNSSNNANVTWWRVLHGNYT
WPPEFLGPGEDPNEPPPRPFLDMGEGTKNRIITAEGIILLF
CAVVPGTLLLFRKRWQNEKLGLDAGDEYEDENLYEGLN
LDDCSMYEDISRGLQGTYQDVGSLNIGDVQLEKP
CD79A intracellular domainMPGGPGVLQALPATIFLLFLLSAVYLGPGCQALWMHKV6650
PASLMVSLGEDAHFQCPHNSSNNANVTWWRVLHGNYT
WPPEFLGPGEDPNGTLIIQNVNKSHGGIYVCRVQEGNESY
QQSCGTYLRVRQPPPRPFLDMGEGTKNRIITAEGIILLFCA
VVPGTLLLFRKRWQNEKLGLDAGDEYEDENLYEGLNLD
DCSMYEDISRGLQGTYQDVGSLNIGDVQLEKP
CD79A intracellular domainENLYEGLNLDDCSMYEDISRG6651
CD8 intracellular domainFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAA6652
GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCN
HRNR
CD8 intracellular domainFVPVFLPAKPITTPAPRPPTPAPTIASQPLSLRPEACRPAAG6653
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNH
RNR
CD8a intracellular domainPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL6654
DFACDI
CTLA4 intracellular domainAVSLSKMLKKRSPLTTGVFVKMAPTEAECEKQFQPYFIPI6655
N
CTLA4 intracellular domainAVSLSKMLKKRSPLTTGVYMNMTPRRPECEKQFQPYAPP6656
RDFAAYRS
DAP10 intracellular domainRPRRSPAQDGKVYINMPGRG6657
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP6658
GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEAA
TRKQRITETESPYQELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP6659
GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEATR
KQRITETESPYQELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD6660
LVLTVLIALAVYFLGRLVPRGRGAAEAATRKQRITETESP
YQELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD6661
LVLTVLIALAVYFLGRLVPRGRGAAEATRKQRITETESPY
QELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP6662
GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEAA
TRKQRITETESPYQELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSGLRPVQAQAQSDCSCSTVSP6663
GVLAGIVMGDLVLTVLIALAVYFLGRLVPRGRGAAEATR
KQRITETESPYQELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD6664
LVLTVLIALAVYFLGRLVPRGRGAAEAATRKQRITETESP
YQELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainMGGLEPCSRLLLLPLLLAVSDCSCSTVSPGVLAGIVMGD6665
LVLTVLIALAVYFLGRLVPRGRGAAEATRKQRITETESPY
QELQGQRSDVYSDLNTQRPYYK
DAP12 intracellular domainESPYQELQGQRSDVYSDLNTQ6666
DAP12 intracellular domainESPYQELQGQRSDVYSDLNTQ6667
GITR intracellular domainRSQCMVVPRETQLLLEVPPSTEDARSCQFPEEERGERSAEE6668
KGRLGDLWV
ICOS intracellular domainTKKKYSSSVHDPNGEFMFMRAVNTAKKSRLTDVTL6669
IL15Ra intracellular domainKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHL6670
OX40-CD3 Zeta intracellularRRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKIRVK6671
domainFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR
DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
ZAP70 intracellular domainMPDPAAHLPFFYGSISRAEAEEHLKLAGMADGLFLLRQC6672
LRSLGGYVLSLVHDVRFHHFPIERQLNGTYAIAGGKAHC
GPAELCEFYSRDPDGLPCNLRKPCNRPSGLEPQPGVFDCL
RDAMVRDYVRQTWKLEGEALEQAIISQAPQVEKLIATTA
HERMPWYHSSLTREEAERKLYSGAQTDGKFLLRPRKEQ
GTYALSLIYGKTVYHYLISQDKAGKYCIPEGTKFDTLWQ
LVEYLKLKADGLIYCLKEACPNSSASNASGAAAPTLPAH
PSTLTHPQRRIDTLNSDGYTPEPARITSPDKPRPMPMDTS
VYESPYSDPEELKDKKLFLKRDNLLIADIELGCGNFGSVR
QGVYRMRKKQIDVAIKVLKQGTEKADTEEMMREAQIM
HQLDNPYIVRLIGVCQAEALMLVMEMAGGGPLHKFLVG
KREEIPVSNVAELLHQVSMGMKYLEEKNFVHRDLAARN
VLLVNRHYAKISDFGLSKALGADDSYYTARSAGKWPLK
WYAPECINFRKFSSRSDVWSYGVTMWEALSYGQKPYKK
MKGPEVMAFIEQGKRMECPPECPPELYALMSDCWIYKW
EDRPDFLTVEQRMRACYYSLASKVEGPPGSTQKAEAAC
A
CD28 intracellular domainMLRLLLALNLFPSIQVTGNKILVKQSPMLVAYDNAVNLS6673
CKYSYNLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQ
VYSKTGFNCDGKLGNESVTFYLQNLYVNQTDIYFCKIEV
MYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVL
VVVGGVLACYSLLVTVAFIIFWVR
4-1BB intracellular domainMGNSCYNIVATLLLVLNFERTRSLQDPCSNCPAGTFCDN6674
NRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECS
STSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGC
KDCCFGTFNDQKRGICRPWTNCSLDGKSVLVNGTKERD
VVCGPSPADLSPGASSVTPPAPAREPGHSPQIISFFLALTST
ALLFLLFFLTLRFSVVKRGRKKLLYIFKQPFMRPVQTTQE
EDG
Fc epsilon Receptor I gammaMIPAVVLLLLLLVEQAAALGEPQLCYILDAILFLYGIVLTL6675
chain intracellular domainLYCRLKIQVRKAAITSYEKSDGVYTGLSTRNQETYETLK
HEKPPQ
Fc epsilon Receptor I gammaDGVYTGLSTRNQETYETLKHE6676
chain intracellular domain
Fc epsilon Receptor I gammaDPKLCYILDAILFLYGIVLTLLYCRLKIQVRKAAITSYEKS6677
chain intracellular domainDGVYTGLSTRNQETYETLKHEKPPQ
Fc epsilon Receptor I gammaDGVYTGLSTRNQETYETLKHE6678
chain intracellular domain

Transmembrane Domains

In some embodiments, the CAR of the present invention may comprise a transmembrane domain. As used herein, the term “Transmembrane domain (TM)” refers broadly to an amino acid sequence of about 15 residues in length which spans the plasma membrane. More preferably, a transmembrane domain includes at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 amino acid residues and spans the plasma membrane. In some embodiments, the transmembrane domain of the present invention may be derived either from a natural or from a synthetic source. The transmembrane domain of a CAR may be derived from any naturally membrane-bound or transmembrane protein. For example, the transmembrane region may be derived from (i.e. comprise at least the transmembrane region(s) of) the alpha, beta or zeta chain of the T-cell receptor, CD3 epsilon, CD4, CD5, CD8, CD8a, CD9, CD16, CD22, CD33, CD28, CD37, CD45, CD64, CD80, CD86, CD134, CD137, CD152, or CD154.

Alternatively, the transmembrane domain of the present invention may be synthetic. In some aspects, the synthetic sequence may comprise predominantly hydrophobic residues such as leucine and valine.

In some embodiments, the transmembrane domain of the present invention may be selected from the group consisting of a CD8α transmembrane domain, a CD4 transmembrane domain, a CD 28 transmembrane domain, a CTLA-4 transmembrane domain, a PD-1 transmembrane domain, and a human IgG4 Fc region. As non-limiting examples, the transmembrane domain may be a CTLA-4 transmembrane domain comprising the amino acid sequences of SEQ ID NOs.: 1-5 of International Patent Publication NO.: WO2014/100385; and a PD-1 transmembrane domain comprising the amino acid sequences of SEQ ID NOs.: 6-8 of International Patent Publication NO.: WO2014100385; the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, the CAR of the present invention may comprise an optional hinge region (also called spacer). A hinge sequence is a short sequence of amino acids that facilitates flexibility of the extracellular targeting domain that moves the target binding domain away from the effector cell surface to enable proper cell/cell contact, target binding and effector cell activation (Patel et al., Gene Therapy, 1999; 6: 412-419). The hinge sequence may be positioned between the targeting moiety and the transmembrane domain. The hinge sequence can be any suitable sequence derived or obtained from any suitable molecule. The hinge sequence may be derived from all or part of an immunoglobulin (e.g., IgGl, IgG2, IgG3, IgG4) hinge region, i.e., the sequence that falls between the CHI and CH2 domains of an immunoglobulin, e.g., an IgG4 Fc hinge, the extracellular regions of type 1 membrane proteins such as CD8a CD4, CD28 and CD7, which may be a wild type sequence or a derivative. Some hinge regions include an immunoglobulin CH3 domain or both a CH3 domain and a CH2 domain. In certain embodiments, the hinge region may be modified from an IgG1, IgG2, IgG3, or IgG4 that includes one or more amino acid residues, for example, 1, 2, 3, 4 or 5 residues, substituted with an amino acid residue different from that present in an unmodified hinge. Table 13 provides various transmembrane regions that can be used in the CARs described herein.

TABLE 13
Transmembrane domains
SEQ ID
Transmembrane domainAmino Acid SequenceNO.
CD8 TransmembraneTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6679
domainFACDI
4-1BB TransmembraneIISFFLALTSTALLFLLFFLTLRFSVVKRGR6680
domain
4-1BB TransmembraneIISFFLALTSTALLFLLFFLTLRFSVV6681
domain
CD134 (OX40)VAAILGLGLVLGLLGPLAILLALYLL6682
Transmembrane domain
CD148 TransmembraneAVFGCIFGALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKP6683
and intracellular domainKKSKLIRVENFEAYFKKQQADSNCGFAEEYEDLKLVGISQ
PKYAAELAENRGKNRYNNVLPYDISRVKLSVQTHSTDDYI
NANYMPGYHSKKDFIATQGPLPNTLKDFWRMVWEKNVY
AIIMLTKCVEQGRTKCEEYWPSKQAQDYGDITVAMTSEIV
LPEVVTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTTD
LLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDR
LIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQYVFLNQ
CVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTN
GYIA
CD148 TransmembraneAVFGCIFGALVIVTVGGFIFW6684
domain
CD2 TransmembraneKEITNALETWGALGQDINLDIPSFQMSDDIDDIKWEKTSD6685
domainKKKIAQFRKEKETFKEKDTYKLFKNGTLKIKHLKTDDQDI
YKVSIYDTKGKNVLEKIFDLKIQERVSKPKISWTCINTTLT
CEVMNGTDPELNLYQDGKHLKLSQRVITHKWTTSLSAKF
KCTAGNKVSKESSVEPVSCPEKGLD
CD28 Transmembrane andIEVMYPPPYLDNEKSNGTITHVKGKHLCPSPLFPGPSKPFW6686
intracellular domainVLVVVGGVLACYSLLVTVAHIFWVRSKRSRLLHSDYMN
MTPRRPGPTRKHYQPYAPPRDFAAYRS
CD28 TransmembraneFWVLVVVGGVLACYSLLVTVAFIIFWV6687
domain
CD28 TransmembraneIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFW6688
domainVLVVVGGVLACYSLLVTVAFIIFWV
CD28 TransmembraneIFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRR6689
domain
CD28 TransmembraneFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY6690
domainMNMTPRRPGPTRKHYQPYAPPRDFAAYRS
CD28 TransmembraneMFWVLVVVGGVLACYSLLVTVAFIIFWV6691
domain
CD28 TransmembraneFWVLVVVGGVLACYSLLVTVAFHFWV6692
domain
CD28 TransmembraneMFWVLVVVGGVLACYSGGVTVAFIIFWV6693
domain
CD28 TransmembraneWVLVVVGGVLACYSLLVTVAFIIFWV6694
domain
CD28 TransmembranePFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY6695
domainMNMTPRRPGPTRKHYQPYAPPRDFAAYRS
CD28 TransmembraneFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY6696
domain and CD28 andMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADA
CD3 Zeta intracellularPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK
domainPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH
DGLYQGLSTATKDTYDALHMQALPPR
CD28 TransmembraneFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY6697
domain and CD28, OX40,MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRDQRLPPDAH
and CD3 Zeta intracellularKPPGGGSFRTPIQEEQADAHSTLAKIRVKFSRSADAPAYQ
domainQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK
NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY
QGLSTATKDTYDALHMQALPPR
CD28 TransmembraneFWVLVVVGGVLACYSLLVTVAFIIFWVRRVKFSRSADAP6698
domain and CD3 ZetaAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP
intmcellular domainRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD
GLYQGLSTATKDTYDALHMQALPPR
CD28 transmembrane-CD3AAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSK6699
zeta signaling domainPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDY
(“28z”)MNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADA
PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGK
PRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH
DGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta TransmembraneLCYLLDGILFIYGVILTALFLRV6700
domain
CD3 zeta TransmembraneMKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILFI6701
domainYGVILTALFL
CD3 zeta TransmembraneLCYLLDGILFIYGVILTALFL6702
domain
CD4 TransmembraneALIVLGGVAGLLLFIGLGIFFCVRC6703
domain
CD4 TransmembraneMALIVLGGVAGLLLFIGLGIFF6704
domain
CD45 Transmembrane andALIAFLAFLIIVTSIALLVVLYKIYDLHKKRSCNLDEQQELV6705
intracellular domainERDDEKQLMNVEPIHADILLETYKRKIADEGRLFLAEFQSI
PRVFSKFPIKEARKPFNQNKNRYVDILPYDYNRVELSEING
DAGSNYINASYIDGFKEPRKYIAAQGPRDETVDDFWRMI
WEQKATVIVMVTRCEEGNRNKCAEYWPSMEEGTRAFGD
VVVKINQHKRCPDYIIQKLNIVNKKEKATGREVTHIQFTS
WPDHGVPEDPHLLLKLRRRVNAFSNFFSGPIWHCSAGVG
RTGTYIGIDAMLEGLEAENKVDVYGYVVKLRRQRCLMV
QVEAQYILIHQALVEYNQFGETEVNLSELHPYLHNMKKR
DPPSEPSPLEAEFQRLPSYRSWRTQHIGNQEENKSKNRNSN
VIPYDYNRVPLKHELEMSKESEHDSDESSDDDSDSEEPSK
YINASFIMSYWKPEVMIAAQGPLKETIGDFWQMIFQRKVK
VIVMLTELKHGDQEICAQYWGEGKQTYGDIEVDLKDTDK
SSTYTLRVFELRHSKRKDSRTVYQYQYTNWSVEQLPAEP
KELISMIQWKQKLPQKNSSEGNKHHKSTPLLIHCRDGSQQ
TGIFCALLNLLESAETEEWDIFQWKALRKARPGMVSTFEQ
YQFLYDVIASTYPAQNGQVKKNNHQEDKIEFDNEVDKVK
QDANCVNPLGAPEKLPEAKEQAEGSEPTSGIEGPEHSVNG
PASPALNQGS
CD62L TransmembranePLFIPVAVMVTAFSGLAFIIWLA6706
domain
CD7 TransmembraneALPAALAVISFLLGLGLGVACVLA6707
domain
CD8 TransmembraneMALPVTALLLPLALLLHAARP6708
domain
CD8 TransmembraneAAAFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRP6709
domain and CD28AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
signaling domainNHRNRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRD
FAAYRSRFSVVKRGRKKLLYIFKQPFMRPVQTTQEEDGCS
CRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYNELNL
GRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQK
DKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD
ALHMQALPPR
CD8 transmembraneAAATTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR6710
domain-CD137 (4-1BB)GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYI
signaling domain and CD3FKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA
zeta signaling domainDAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG
(“BBz”)GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK
GHDGLYQGLSTATKDTYDALHMQALPPR
CD8a TransmembraneFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG6711
domainGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRN
CD8a TransmembraneIWAPLAGTCGVLLLSLVITLYC6712
domain
CD8a TransmembraneIYIWAPLAGTCGVLLLSLVITLYC6713
domain
CD8a TransmembraneIYIWAPLAGTCGVLLLSLVITLYCR6714
domain
CD8a TransmembraneIYIWAPLAGTCGVLLLSLVITLVCR6715
domain
CD8a TransmembraneIYIWAPLAGTCGVLLLSLVIT6716
domain
CD8a TransmembraneIYIWAPLAGTCGVLLLSLVITLY6717
domain
CD8b TransmembraneLGLLVAGVLVLLVSLGVAIHLCC6718
domain
EpoR TransmembraneAPVGLVARLADESGHVVLRWLPPPETPMTSHIRYEVDVS6719
domainAGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRARM
AEPSFGGFWSAWSEPVSLLTPSD
FcERIa-TransmembraneMAPAMESPTLLCVALLFFAPDGVLAVPQKPKVSLNPPWN6720
domainRIFKGENVTLTCNGNNFFEVSSTKWFHNGSLSEETNSSLNI
VNAKFEDSGEYKCQHQQVNESEPVYLEVFSDWLLLQASA
EVVMEGQPLFLRCHGWRNWDVYKVIYYKDGEALKYWY
ENHNISITNATVEDSGTYYCTGKVWQLDYESEPLNITVIKA
PREKYWLQFFIPLLVVILFAVDTGLFISTQQQVTFLLKIKRT
RKGFRLLNPHPKPNPKNN
FceRIa TransmembraneDIFIPLLVVILFAVDTGLFISTQQQVTFLLKIKRTRKGFRLL6721
domainNPHPKPNPKNNR
GITR TransmembranePLGWLTVVLLAVAACVLLLTSAQLGLHIWQL6722
domain
Her2 TransmembraneSIISAVVGILLVVVLGVVFGILII6723
domain
Her2 TransmembraneCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCP6724
domainSGVKPDLSYMPIWKFPDEEGACQPCPINCTHSCVDLDDKG
CPAEQRASPLTSIISAVVGILLVVVLGVVFGILI
ICOS TransmembraneFWLPIGCAAFVVVCILGCILI6725
domain
IgG1 TransmembraneEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP6726
domainEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK
TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD
OX40 TransmembraneVAAILGLGLVLGLLGPLAILL6727
domain
Transmembrane domainIYIWAPLAGTCGVLLLSLVITLYC6728
Transmembrane domainIYIWAPLAGTCGVLLLSLVITLYC6729

Hinge region sequences useful in the present invention are provided in Table 14.

TABLE 14
Hinge regions
SEQ ID
Hinge DomainAmino Acid SequenceNO.
HingeDKTHT6730
HingeCPPC6731
HingeCPEPKSCDTPPPCPR6732
HingeELKTPLGDTTHT6733
HingeKSCDKTHTCP6734
HingeKCCVDCP6735
C233P HingeKYGPPCP6736
C233S HingeVEPKSPDKTHTCPPCP6737
CD28 HingeLDPKSSDKTHTCPPCP6738
CD8a HingeIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKP6739
CD8a HingeGGAVHTRGLDFA6740
CD8a HingeTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6741
FACD
CD8a HingeAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR6742
GLDFACD
CD8a HingeTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6743
FACD
CD8a HingeTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6744
FACD
CD8a HingeTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6745
FACDEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDT
CD8a HingePAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT6746
RGLDFACDIY
CD8a HingeTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6747
FACDIYIWAPLAGTCGVLLLSLVITLYC
CD8a HingeTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDF6748
ACD
Delta5 HingeTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6749
FACDIY
EpoR HingeLDKTHTCPPCP6750
FCRIIα HingeAPVGLVARLADESGHVVLRWLPPPETPMTSHIRYEVDVS6751
AGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRARM
AEPSFGGFWSAWSEPVSLLTPSD
FcγRIIIα HingeGLAVSTISSFFPPGYQ6752
HingeGLAVSTISSFFPPGYQ6753
HingeRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6754
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS
LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE
VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW
AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS
YVTDH
HingeYVTVSSQDPAEPKSPDKTHTCPPCPAPELLGGPSVFLFPPK6755
PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH
NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV
SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS
LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF
FLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
SPGKKDPK
HingeKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG6756
LDFA
HingeLEPKSCDKTHTCPPCP6757
HingeKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG6758
LD
HingeEPKSCDKTHTCPPCP6759
HingeELKTPLGDTHTCPRCP6760
HingeEPKSCDTPPPCPRCP6761
HingeESKYGPPCPSCP6762
Hinge (CH2-ERKCCVECPPCP6763
CH3)
Hinge (CH3)ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT6764
CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGK
IgD HingeESKYGPPCPPCPGQPREPQVYTLPPSQEEMTKNQVSLTCL6765
VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS
RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
IgD HingeRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6766
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS
LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE
VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW
AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS
YVTDH
IgD HingeRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6767
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLHPSL
PPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCEV
SGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFWA
WSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSY
VTDH
IgD HingeRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6768
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS
LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE
VSGFSPPNILLMVVLEDQREVNTSGFAPARPPPQPGSTTFW
AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS
YVTDH
IgD HingeESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEE6769
KKKEKEKEEQEERETKTP
IgD HingeRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6770
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS
LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE
VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW
AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS
YVTDH
IgD HingeRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6771
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS
LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE
VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW
AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS
YVTDH
IgD HingeRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6772
GGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS
LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE
VSGFSPPNILLMWLEDQREVNTSGFAPARPPQPGSTTFWA
WSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSY
VTDH
IgG1 (CH2CH3)RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGR6773
Hinge domainGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAV
QDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGV
EEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPS
LPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCE
VSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFW
AWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVS
YVTDH
IgG1 (CH2CH3)AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIART6774
Hinge domainPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE
QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD
KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD
IgG1 HingeAEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIART6775
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE
QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVD
KSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD
IgG1 HingeAEPKSPDKTHTCPPCPKDPK6776
IgG1 HingeEPKSCDKTHTCPPCP6777
IgG1 HingeEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP6778
EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
YNSTYRVVSVLTVLHQDWLNGKEVKCKVSNKALPAPIEK
TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD
IgG1 HingeSVFLFPPKPKDTL6779
IgG1 HingeEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP6780
EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK
TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
IgG1 HingeEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP6781
EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK
TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKDPK
IgG1 HingeVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD6782
(CH2CH3VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV
domain)SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP
REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES
NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV
FSCSVMHEALHNHYTQKSLSLSPGK
IgG2 HingeDPAEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIA6783
RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR
EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT
VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKK
IgG3 HingeERKCCVECPPCP6784
IgG3 HingeELKTPLGDTTHTCPRCP6785
IgG4 (CH2 andELKTPLGDTHTCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPC6786
CH3)PRCPEPKSCDTPPPCPRCP
IgG4 (CH2 andESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT6787
CH3)CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGKM
IgG4 HingeESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVT6788
CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFQS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGKM
IgG4 HingeSPNMVPHAHHAQ6789
IgG4 HingeGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE6790
WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE
GNVFSCSVMHEALHNHYTQKSLSLSLGK
IgG4 HingeESKYGPPCPPCPGGGSSGGGSGGQPREPQVYTLPPSQEEM6791
TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL
DSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYT
QKSLSLSLGK
IgG4 HingeESKYGPPCPSCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVT6792
CVVVDVSQEDPEVQFNWYVDGVEVHQAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFVPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGK
IgG4 HingeESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVT6793
CVVVDVSQEDPEVQFNWYVDGVEVHQAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFVPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGK
IgG4 HingeESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT6794
CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGKM
IgG4 HingeESKYGPPCPPCP6795
IgG4 HingeESKYGPPCPPCPGQPREPQVYTLPPSQEEMTKNQVSLTCL6796
VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS
RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
IgG4 HingeESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT6797
CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGK
IgG4 HingeESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT6798
CVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGK
IgG4 HingeYGPPCPPCP6799
IgG4 HingeKYGPPCPPCP6800
IgG4 HingeEVVKYGPPCPPCP6801
IgG4 Hinge andESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVT6802
LinkerCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDLSRW
QEGNVFSCSVMHEALHNHYTQKSLSLSLGK
lgGl HingeESKYGPPCPPCPGGGSSGGGSG6803
lgGl HingeEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP6804
EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK
TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS
DIAVEWESNGQPENNYKTIPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
lgGl HingeEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP6805
EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK
TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS
DIAVEWESNGQPENNYKTIPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
lgGl HingeEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTP6806
EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ
YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK
TISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

In some embodiments, hinge domains and the transmembrane domains may be paired. The hinge domain may be present at the N terminus of the transmembrane domain, at C terminus of the transmembrane domain or within the transmembrane domain. Hinge and transmembrane region sequences which may be useful in the present invention are provided in Table 15.

TABLE 15
Paired Hinge and Transmembrane regions
SEQ ID
Hinge DomainAmino Acid SequenceNO.
CD8aTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDF6807
TransmembraneACDIYIWAPLAGTCGVLLLSLVITLYC
and Hinge
CD8aDIQMTQSSSYLSVSLGGRVTITCKASDHINNWLAWYQQK6808
TransmembranePGNAPRLLISGATSLETGVPSRFSGSGSGKDYTLSITSLQTE
and HingeDVATYYCQQYWSTPFTFGSGTKLEIKGGGGSGGGGSGGG
GSQVQLKESGPGLVAPSQSLSITSTVSGFSLSRYSVHWVR
QPPGKGLEWLGMIWGGGSTDYNSALKSRLSISKDNSKSQ
VFLKMNSLQTDDTAMYYCARNEGDTTAGTWFAYWGQG
TLVTVSS
CD8aALSNSIMYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQPLS6809
TransmembraneLRPEACRPAAGGAVHTRGLD
and Hinge
CD8aTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLD6810
TransmembraneFACDIYIWAPLAGTCGVLLLSLVITLY
and Hinge
CD8aKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG6811
TransmembraneLDFACDIYIWAPLAGTCGVLLLSLVITLY
and Hinge

In some embodiments, the CAR of the present invention may comprise one or more linkers between any of the domains of the CAR. The linker may be between 1-30 amino acids long. In this regard, the linker may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids in length. In other embodiments, the linker may be flexible.

In some embodiments, the components including the targeting moiety, transmembrane domain and intracellular signaling domains of the present invention may be constructed in a single fusion polypeptide. The fusion polypeptide may be the payload of an effector module of the invention. In some embodiments, more than one CAR fusion polypeptides may be included in an effector module, for example, two, three or more CARs may be included in the effector module under the control of a single SRE (e.g., a DD). Representative effector modules comprising the CAR payload are illustrated in FIGS. 2-6.

In some embodiments, payloads of the present invention may comprise the CAR constructs including the extracellular targeting domain, transmembrane domain and intracellular signaling domains that are taught in the art, for example, a CAR targeting mesothelin (U.S. Pat. Nos. 9,272,002 and 9,359,447); EGFRvIII specific CARs in U.S. Pat. No. 9,266,960; anti-TAG CARs in U.S. Pat. No. 9,233,125; CD19 CARs in U.S. Patent publication NO.: 2016014533; CD19 CAR having the amino acid sequence of SEQ ID NO.: 24 of U.S. Pat. NO.: 9, 328, 156; CD19 CARs in U.S. Pat. Nos. 8,911,993; 8,975,071; 9,101,584; 9,102,760; and 9,102,761; BCMA (CD269) specific CARs disclosed in International patent publication NOs: WO2016/014565 (SEQ ID Nos.: 109-113 and 213 to 233) and WO2016/014789; CLL-1 (C-type lectin-like molecule 1) CARs comprising the amino acid sequences of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93, 94, 95, 97, 98, 103, and 197 disclosed in International patent publication NO.: WO2016014535; CD33 specific CARs comprising the amino acid sequences of SEQ ID NOs: 48-56 in International patent publication NO.: WO2016014576; CD33 specific CARs comprising the amino acid sequences of SEQ ID NOs: 19-22, 27-30 and 35-38 in International patent publication NO.: WO2015150526; CD37 specific CARs encoded by the nucleic acids of SEQ ID NOs: 1-5 in U.S. patent publication NO.: US20150329640; GPC3 CAR (International patent publication NO.: WO2016036973), GFR alpha 4 CARs having the amino acid sequences of SEQ ID NOs: 85, 86, 90, 92, 94, 96, 98, 100, 102, and 104 in International patent publication NO.: WO2016025880; CD123 CARs comprising the amino acid sequences of SEQ ID NO: 98, 99, 100 and 101 in International patent publication NOs: WO2016028896; CD123 specific multi-chain CARs in International patent publication NO: WO2015193406; CD123 CARS comprising the amino acid sequences of SEQ ID NO.: 160, 171, 188-197 in International patent publication NO: WO2016/120220; ROR-1 specific CARs comprising the amino acid sequences of SEQ ID NOs: 93, 95 and 117 in International patent publication NO.: WO2016/016344; ROR-1 specific multi-chain CARs in International patent publication NO.: WO2016/016343; trophoblast glycoprotein (5T4, TPBG) specific CARs comprising the amino acid sequences of SEQ ID NOs: 21, 27, 33, 39, 23, 29, 34, 41, 19, 25, 31, 37, 20, 26, 32, 38, 22, 28, 34, 40, 24, 30, 36 and 42 in International patent publication NO.: WO2016034666; EGFRvIII specific CARs comprising the amino acid sequences of SEQ ID NOs: 15, 17, 24, 25, 26 and 27 in International patent publication NO.: WO2016016341; a TEM 8 CAR comprising the amino acid sequence of SEQ ID NO: 1 in International patent publication NO.: WO2014164544, a TEM1 CAR comprising the amino acid sequence of SEQ ID NO:2 in International patent publication NO.: WO2014164544; GPC-3 CAR having the amino acid sequences of SEQ ID NOs: 3 and 26 in International patent publication NO.: WO2016/049459; a chondroitin sulfate proteoglycan-4 (CSPG4) CAR in International patent publication NO.: WO2015/080981; Kappa/lambda CARs in International patent publication NO.: WO2015/164739; GD2 CAR in International patent publication NO.: WO2016/134284; CLL1 CARs in International patent publication NO.: WO2016120218; CLL1 multi-subunit CARs in International patent publication NO.: WO2016120219; Hsp 70 CARs in International patent publication NO.: WO2016120217; mAb-driven CARs in International patent publication NO.: WO2016120216; the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, the CAR constructs of the present invention may include CAIX (carboxy-anhydrase-IX (CAIX) specific CAR (Lamers et al., Biochem Soc Trans, 2016, 44(3): 951-959), HIV-1 specific CAR (Ali et al., J Virol., 2016, May 25, pii: JVI.00805-16), CD20 specific CAR (Rufener et al., Cancer Immunol. Res., 2016, 4(6): 509-519), a CD20/CD19 bispecific CAR (Zah et al., Cancer Immunol Res., 2016, 4(6): 498-508), a CD22/CD19 CAR (International Publication No: WO2016/149578), a CD138/BCMA bi-specific CAR (International Publication No: WO2016/130598) an EGFR specific CARs and anti EGFR viii specific CAR; the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, the CAR sequences may be selected from Table 16.

TABLE 16
CAR sequences
DescriptionSEQ ID NOSource
CD70 CAR6812SEQ ID NO. 99 in WO2015121454
Acid/Base Leucine zipper zip CAR6813SEQ ID NO. 34 in WO2016124930
Acid/Base Leucine zipper zip CAR6814SEQ ID NO. 35 in WO2016124930
ALK CAR6815SEQ ID NO. 43 in WO2015069922
ALK CAR6816SEQ ID NO. 44 in WO2015069922
ALK CAR6817SEQ ID NO. 45 in WO2015069922
ALK CAR6818SEQ ID NO. 46 in WO2015069922
ALK CAR6819SEQ ID NO. 47 in WO2015069922
ALK CAR6820SEQ ID NO. 48 in WO2015069922
ALK CAR6821SEQ ID NO. 49 in WO2015069922
ALK CAR6822SEQ ID NO. 50 in WO2015069922
ALK CAR6823SEQ ID NO. 51 in WO2015069922
ALK CAR6824SEQ ID NO. 52 in WO2015069922
ALK CAR6825SEQ ID NO. 53 in WO2015069922
ALK CAR6826SEQ ID NO. 54 in WO2015069922
ALK CAR6827SEQ ID NO. 55 in WO2015069922
ALK CAR6828SEQ ID NO. 56 in WO2015069922
ALK CAR6829SEQ ID NO. 57 in WO2015069922
ALK CAR6830SEQ ID NO. 58 in WO2015069922
ALK CAR6831SEQ ID NO. 59 in WO2015069922
ALK CAR6832SEQ ID NO. 60 in WO2015069922
ALK CAR6833SEQ ID NO. 61 in WO2015069922
ALK CAR6834SEQ ID NO. 62 in WO2015069922
ALK CAR6835SEQ ID NO. 63 in WO2015069922
ALK CAR6836SEQ ID NO. 64 in WO2015069922
ALK CAR6837SEQ ID NO. 65 in WO2015069922
ALK CAR6838SEQ ID NO. 66 in WO2015069922
ALK CAR6839SEQ ID NO. 67 in WO2015069922
ALK CAR6840SEQ ID NO. 68 in WO2015069922
ALK CAR6841SEQ ID NO. 69 in WO2015069922
ALK CAR6842SEQ ID NO. 70 in WO2015069922
ALK CAR6843SEQ ID NO. 71 in WO2015069922
ALK CAR6844SEQ ID NO. 72 in WO2015069922
ALK CAR6845SEQ ID NO. 73 in WO2015069922
ALK CAR6846SEQ ID NO. 74 in WO2015069922
ALK CAR6847SEQ ID NO. 75 in WO2015069922
ALK CAR6848SEQ ID NO. 76 in WO2015069922
ALK CAR6849SEQ ID NO. 77 in WO2015069922
ALK CAR6850SEQ ID NO. 78 in WO2015069922
ALK CAR6851SEQ ID NO. 79 in WO2015069922
ALK CAR6852SEQ ID NO. 80 in WO2015069922
ALK CAR6853SEQ ID NO. 81 in WO2015069922
ALK CAR6854SEQ ID NO. 82 in WO2015069922
ALK CAR6855SEQ ID NO. 83 in WO2015069922
ALK CAR6856SEQ ID NO. 84 in WO2015069922
ALK CAR6857SEQ ID NO. 85 in WO2015069922
ALK CAR6858SEQ ID NO. 86 in WO2015069922
ALK CAR6859SEQ ID NO. 87 in WO2015069922
ALK CAR6860SEQ ID NO. 88 in WO2015069922
ALK CAR6861SEQ ID NO. 89 in WO2015069922
ALK CAR6862SEQ ID NO. 90 in WO2015069922
APRIL IgG1 hinge based CAR6863SEQ ID NO: 53 in US20160296562A1
APRIL Fcpvaa based CAR6864SEQ ID NO: 52 in US20160296562A1
BCMA CAR6865SEQ ID NO: 180 in WO2016168595A1
BCMA CAR6866SEQ ID NO: 180 in WO2016168595A1
BCMA CAR6867SEQ ID NO: 162 in WO2016168595A1
BCMA CAR6868SEQ ID NO: 168 in WO2016168595A1
BCMA CAR6869SEQ ID NO: 174 in WO2016168595A1
BCMA CAR6870SEQ ID NO: 144 in WO2016168595A1
BCMA CAR6871SEQ ID NO. 150 in WO2016168595A1
BCMA CAR6872SEQ ID NO: 186 in WO2016168595A1
BCMA CAR6873SEQ ID NO: 192 in WO2016168595A1
BCMA CAR6874SEQ ID NO: 198 in WO2016168595A1
BCMA CAR6875SEQ ID NO. 204 in WO2016168595A1
BCMA CAR6876SEQ ID NO: 210 in WO2016168595A1
BCMA CAR6877SEQ ID NO: 156 in WO2016168595A1
BCMA CAR6878SEQ ID NO: 216 in WO2016168595A1
BCMA CAR6879SEQ ID NO: 222 in WO2016168595A1
BCMA CAR6880SEQ ID NO: 228 in WO2016168595A1
BCMA CAR6881SEQ ID NO: 234 in WO2016168595A1
BCMA CAR6882SEQ ID NO: 240 in WO2016168595A1
BCMA CAR6883SEQ ID NO: 246 in WO2016168595A1
BCMA CAR6884SEQ ID NO: 252 in WO2016168595A1
BCMA CAR6885SEQ ID NO: 258 in WO2016168595A1
BCMA CAR6886SEQ ID NO: 264 in WO2016168595A1
BCMA CAR6887SEQ ID NO: 270 in WO2016168595A1
BCMA CAR6888SEQ ID NO: 276 in WO2016168595A1
BCMA CAR6889SEQ ID NO. 48 in WO2015158671A1
BCMA CAR6890SEQ ID NO. 49 in WO2015158671A1
BCMA CAR6891SEQ ID NO. 50 in WO2015158671A1
BCMA CAR6892SEQ ID NO. 51 in WO2015158671A1
BCMA CAR6893SEQ ID NO. 52 in WO2015158671A1
BCMA CAR6894SEQ ID NO. 53 in WO2015158671A1
BCMA CAR6895SEQ ID NO. 54 in WO2015158671A1
BCMA CAR6896SEQ ID NO. 55 in WO2015158671A1
BCMA CAR6897SEQ ID NO. 56 in WO2015158671A1
BCMA CAR6898SEQ ID NO. 57 in WO2015158671A1
BCMA CAR6899SEQ ID NO. 58 in WO2015158671A1
BCMA CAR6900SEQ ID NO. 59 in WO2015158671A1
BCMA CAR6901SEQ ID NO. 19 in WO2015158671A1
BCMA CAR6902SEQ ID NO. 20 in WO2015158671A1
BCMA CAR6903SEQ ID NO. 21 in WO2015158671A1
BCMA CAR6904SEQ ID NO. 22 in WO2015158671A1
BCMA CAR6905SEQ ID NO. 23 in WO2015158671A1
BCMA CAR6906SEQ ID NO. 24 in WO2015158671A1
BCMA CAR6907SEQ ID NO. 25 in WO2015158671A1
BCMA CAR6908SEQ ID NO. 26 in WO2015158671A1
BCMA CAR6909SEQ ID NO. 27 in WO2015158671A1
BCMA CAR6910SEQ ID NO. 28 in WO2015158671A1
BCMA CAR6911SEQ ID NO. 29 in WO2015158671A1
BCMA CAR6912SEQ ID NO. 30 in WO2015158671A1
BCMA CAR6913SEQ ID NO. 31 in WO2015158671A1
BCMA CAR6914SEQ ID NO. 32 in WO2015158671A1
BCMA CAR6915SEQ ID NO. 33 in WO2015158671A1
BCMA CAR6916SEQ ID NO. 34 in WO2015158671A1
BCMA CAR6917SEQ ID NO. 35 in WO2015158671A1
BCMA CAR6918SEQ ID NO. 36 in WO2015158671A1
BCMA CAR6919SEQ ID NO. 37 in WO2015158671A1
BCMA CAR6920SEQ ID NO. 38 in WO2015158671A1
BCMA CAR6921SEQ ID NO. 39 in WO2015158671A1
BCMA CAR6922SEQ ID NO. 40 in WO2015158671A1
BCMA CAR6923SEQ ID NO. 41 in WO2015158671A1
BCMA CAR6924SEQ ID NO. 42 in WO2015158671A1
BCMA CAR6925SEQ ID NO: 330 in WO2016168595A1
BCMA CAR6926SEQ ID NO: 282 in WO2016168595A1
BCMA CAR6927SEQ ID NO: 300 in WO2016168595A1
BCMA CAR6928SEQ ID NO: 306 in WO2016168595A1
BCMA CAR6929SEQ ID NO. 336 in WO2016168595A1
BCMA CAR6930SEQ ID NO: 354 in WO2016168595A1
BCMA CAR6931SEQ ID NO: 288 in WO2016168595A1
BCMA CAR6932SEQ ID NO: 312 in WO2016168595A1
BCMA CAR6933SEQ ID NO: 294 in WO2016168595A1
BCMA CAR6934SEQ ID NO. 342 in WO2016168595A1
BCMA CAR6935SEQ ID NO. 324 in WO2016168595A1
BCMA CAR6936SEQ ID NO: 318 in WO2016168595A1
BCMA CAR6937SEQ ID NO: 348 in WO2016168595A1
BCMA CAR6938SEQ ID NO. 124 (WO2016014565)
BCMA CAR6939SEQ ID NO. 114 (WO2016014565)
BCMA CAR6940SEQ ID NO. 115 (WO2016014565)
BCMA CAR6941SEQ ID NO. 116 (WO2016014565)
BCMA CAR6942SEQ ID NO. 117 (WO2016014565)
BCMA CAR6943SEQ ID NO. 118 (WO2016014565)
BCMA CAR6944SEQ ID NO. 119 (WO2016014565)
BCMA CAR6945SEQ ID NO. 120 (WO2016014565)
BCMA CAR6946SEQ ID NO. 121 (WO2016014565)
BCMA CAR6947SEQ ID NO. 122 (WO2016014565)
BCMA CAR6948SEQ ID NO. 123 (WO2016014565)
BCMA CAR6949SEQ ID NO. 125 (WO2016014565)
BCMA CAR6950SEQ ID NO. 126 (WO2016014565)
BCMA CAR6951SEQ ID NO. 127 (WO2016014565)
BCMA CAR6952SEQ ID NO. 128 (WO2016014565)
BCMA CAR6953SEQ ID NO. 234 (WO2016014565)
BCMA CAR6954SEQ ID NO. 235 (WO2016014565)
BCMA CAR6955SEQ ID NO. 236 (WO2016014565)
BCMA CAR6956SEQ ID NO. 237 (WO2016014565)
BCMA CAR6957SEQ ID NO. 238 (WO2016014565)
BCMA CAR6958SEQ ID NO. 239 (WO2016014565)
BCMA CAR6959SEQ ID NO. 240 (WO2016014565)
BCMA CAR6960SEQ ID NO. 241 (WO2016014565)
BCMA CAR6961SEQ ID NO. 242 (WO2016014565)
BCMA CAR6962SEQ ID NO. 243 (WO2016014565)
BCMA CAR6963SEQ ID NO. 244 (WO2016014565)
BCMA CAR6964SEQ ID NO. 245 (WO2016014565)
BCMA CAR6965SEQ ID NO. 246 (WO2016014565)
BCMA CAR6966SEQ ID NO. 247 (WO2016014565)
BCMA CAR6967SEQ ID NO. 248 (WO2016014565)
BCMA CAR6968SEQ ID NO. 249 (WO2016014565)
BCMA CAR6969SEQ ID NO. 250 (WO2016014565)
BCMA CAR6970SEQ ID NO. 251 (WO2016014565)
BCMA CAR6971SEQ ID NO. 252 (WO2016014565)
BCMA CAR6972SEQ ID NO. 253 (WO2016014565)
BCMA CAR6973SEQ ID NO. 254 (WO2016014565)
BCMA CAR6974SEQ ID NO. 267 (WO2016014565)
BCMA CAR6975SEQ ID NO. 268 (WO2016014565)
BCMA CAR6976SEQ ID NO. 269 (WO2016014565)
BCMA CAR6977SEQ ID NO. 270 (WO2016014565)
BCMA CAR6978SEQ ID NO. 1 in WO2015052538
BCMA CAR6979SEQ ID NO. 2 in WO2015052538
BCMA CAR6980SEQ ID NO. 3 in WO2015052538
BCMA CAR6981SEQ ID NO. 4 in WO2015052538
BCMA CAR6982SEQ ID NO. 5 in WO2015052538
BCMA CAR6983SEQ ID NO. 20 in WO2015052538
BCMA CAR6984SEQ ID No. 1 in US20160237139A1
BCMA CAR6985SEQ ID No. 2 in US20160237139A1
BCMA CAR6986SEQ ID No. 3 in US20160237139A1
BCMA CAR6987SEQ ID No. 4 in US20160237139A1
BCMA CAR6988SEQ ID No. 5 in US20160237139A1
BCMA CAR6989SEQ ID No. 6 in US20160237139A1
BCMA CAR6990SEQ ID NO: 9 in WO2016094304A3
BCMA CAR6991SEQ ID NO. 4 in WO2013154760
BCMA CAR6992SEQ ID NO. 5 in WO2013154760
BCMA CAR6993SEQ ID NO. 6 in WO2013154760
BCMA CAR6994SEQ ID NO. 8 in WO2013154760
BCMA CAR6995SEQ ID NO. 9 in WO2013154760
BCMA CAR6996SEQ ID NO. 10 in WO2013154760
BCMA CAR6997SEQ ID NO. 11 in WO2013154760
BCMA CAR6998SEQ ID NO. 12 in WO2013154760
BCMA CAR6999SEQ ID NO. 15 in WO2016014789
BCMA CAR7000SEQ ID NO. 16 in WO2016014789
BCMA CAR7001SEQ ID NO. 17 in WO2016014789
BCMA CAR7002SEQ ID NO. 18 in WO2016014789
BCMA CAR7003SEQ ID NO. 19 in WO2016014789
BCMA CAR7004SEQ ID NO. 20 in WO2016014789
BCMA CAR7005SEQ ID NO. 21 in WO2016014789
BCMA CAR7006SEQ ID NO. 22 in WO2016014789
BCMA CAR7007SEQ ID NO. 23 in WO2016014789
BCMA CAR7008SEQ ID NO. 24 in WO2016014789
BCMA CAR7009SEQ ID NO. 25 in WO2016014789
BCMA CAR7010SEQ ID NO. 26 in WO2016014789
BCMA CAR7011SEQ ID NO. 27 in WO2016014789
BCMA CAR7012SEQ ID NO. 28 in WO2016014789
BCMA CAR7013SEQ ID NO. 29 in WO2016014789
BCMA CAR7014SEQ ID NO. 71 in WO2016014789
BCMA CAR7015SEQ ID NO. 73 in WO2016014789
BCMA CAR7016SEQ ID NO. 125 in WO2016120216
BCMA CAR7017SEQ ID NO. 126 in WO2016120216
BCMA CAR7018SEQ ID NO. 127 in WO2016120216
BCMA CAR7019SEQ ID NO. 128 in WO2016120216
BCMA CAR7020SEQ ID NO. 129 in WO2016120216
BCMA CAR7021SEQ ID NO. 130 in WO2016120216
BCMA CAR7022SEQ ID NO. 131 in WO2016120216
BCMA CAR7023SEQ ID NO. 132 in WO2016120216
BCMA CAR7024SEQ ID NO. 133 in WO2016120216
BCMA CAR7025SEQ ID NO. 134 in WO2016120216
BCMA CAR7026SEQ ID NO. 135 in WO2016120216
BCMA CAR7027SEQ ID NO. 136 in WO2016120216
BCMA CAR7028SEQ ID NO. 137 in WO2016120216
BCMA CAR7029SEQ ID NO. 138 in WO2016120216
BCMA CAR7030SEQ ID NO. 139 in WO2016120216
BCMA CAR7031SEQ ID NO. 140 in WO2016120216
BCMA CAR7032SEQ ID NO. 141 in WO2016120216
BCMA CAR7033SEQ ID NO. 145 in WO2016120216
BCMA CAR7034SEQ ID NO. 146 in WO2016120216
BCMA CAR7035SEQ ID NO. 147 in WO2016120216
BCMA CAR7036SEQ ID NO. 148 in WO2016120216
BCMA CAR7037SEQ ID NO. 149 in WO2016120216
BCMA CAR7038SEQ ID NO. 150 in WO2016120216
BCMA NCAR7039SEQ ID NO: 102 in WO2016097231
BCMA NCAR7040SEQ ID NO: 106 in WO2016097231
BCMA NCAR7041SEQ ID NO: 107 in WO2016097231
BCMA NCAR7042SEQ ID NO: 108 in WO2016097231
BCMA NCAR7043SEQ ID NO: 109 in WO2016097231
BCMA NCAR7044SEQ ID NO: 110 in WO2016097231
BCMA NCAR7045SEQ ID NO: 111 in WO2016097231
BCMA NCAR7046SEQ ID NO: 112 in WO2016097231
BCMA NCAR7047SEQ ID NO: 129 in WO2016097231
BCMA NCAR7048SEQ ID NO: 130 in WO2016097231
BCMA NCAR7049SEQ ID NO: 131 in WO2016097231
BCMA NCAR7050SEQ ID NO: 132 in WO2016097231
BCMA NCAR7051SEQ ID NO: 133 in WO2016097231
BCMA NCAR7052SEQ ID NO: 134 in WO2016097231
BCMA NCAR7053SEQ ID NO: 135 in WO2016097231
BCMA NCAR7054SEQ ID NO: 136 in WO2016097231
BCMA NCAR7055SEQ ID NO: 113 in WO2016097231
BCMA NCAR7056SEQ ID NO: 114 in WO2016097231
BCMA NCAR7057SEQ ID NO: 115 in WO2016097231
BCMA NCAR7058SEQ ID NO: 116 in WO2016097231
BCMA NCAR7059SEQ ID NO: 117 in WO2016097231
BCMA NCAR7060SEQ ID NO: 118 in WO2016097231
BCMA NCAR7061SEQ ID NO: 101 in WO2016097231
BCMA NCAR7062SEQ ID NO: 100 in WO2016097231
BCMA NCAR7063SEQ ID NO: 137 in WO2016097231
BCMA NCAR7064SEQ ID NO: 119 in WO2016097231
BCMA NCAR7065SEQ ID NO: 120 in WO2016097231
BCMA NCAR7066SEQ ID NO: 121 in WO2016097231
BCMA NCAR7067SEQ ID NO: 122 in WO2016097231
BCMA NCAR7068SEQ ID NO: 123 in WO2016097231
BCMA NCAR7069SEQ ID NO: 124 in WO2016097231
BCMA NCAR7070SEQ ID NO: 125 in WO2016097231
BCMA NCAR7071SEQ ID NO: 126 in WO2016097231
BCMA NCAR7072SEQ ID NO: 127 in WO2016097231
BCMA NCAR7073SEQ ID NO: 128 in WO2016097231
BCMA NCAR7074SEQ ID NO: 103 in WO2016097231
BCMA NCAR7075SEQ ID NO: 104 in WO2016097231
BCMA NCAR7076SEQ ID NO: 105 in WO2016097231
BCMA NCAR7077SEQ ID NO: 213 in WO2016097231
CAR7078SEQ ID NO: 6 in US20160296562A1
CAR AND gate (CD19 AND CD33)7079SEQ ID NO: 2 in US20160296562A1
CD148 phosphatase
CAR AND gate (CD19 AND CD5)7080SEQ ID NO: 43 in US20160296562A1
CAR AND gate (CD19 AND EGFRvIII)7081SEQ ID NO: 45 in US20160296562A1
CAR AND gate (CD19 AND GD2)7082SEQ ID NO: 41 in US20160296562A1
CAR AND gate (CD19 OR CD33)7083SEQ ID NO: 3 in US20160296562A1
CD45 phosphatase
CAR AND NOT gate (CD19 AND NOT7084SEQ ID NO: 4 in US20160296562A1
CD33)
CAR AND NOT gate (CD19 AND NOT7085SEQ ID NO: 5 in US20160296562A1
CD33)
CAR AND NOT gate 17086SEQ ID NO: 48 in US20160296562A1
CAR AND NOT gate 27087SEQ ID NO: 49 in US20160296562A1
CAR AND NOT gate 37088SEQ ID NO: 50 in US20160296562A1
CAR OR gate (CD19 OR CD33)7089SEQ ID NO: 1 in US20160296562A1
CAT19 CAR with a CD28Zeta7090SEQ ID NO. 12 in WO2016139487
endodomain
CAT19 CAR with an OX40Zeta7091SEQ ID NO. 11 in WO2016139487
endodomain
CAT19 chimeric gen receptor (CAR)7092SEQ ID NO. 10 in WO2016139487
using Campana architecture
CD123 CAR7093SEQ ID NO. 69 in WO2016142532
CD123 CAR7094SEQ ID NO. 23 in WO2015140268A1
CD123 CAR7095SEQ ID NO. 24 in WO2015140268A1
CD123 CAR7096SEQ ID NO. 25 in WO2015140268A1
CD123 CAR7097SEQ ID NO. 26 in WO2015140268A1
CD123 CAR7098SEQ ID NO. 27 in WO2015140268A1
CD123 CAR7099SEQ ID NO. 28 in WO2015140268A1
CD123 CAR7100SEQ ID NO. 29 in WO2015140268A1
CD123 CAR7101SEQ ID NO. 30 in WO2015140268A1
CD123 CAR7102SEQ ID NO. 31 in WO2015140268A1
CD123 CAR7103SEQ ID NO. 32 in WO2015140268A1
CD123 CAR7104SEQ ID NO. 33 in WO2015140268A1
CD123 CAR7105SEQ ID NO. 34 in WO2015140268A1
CD123 CAR7106SEQ ID NO. 35 in WO2015140268A1
CD123 CAR7107SEQ ID NO. 36 in WO2015140268A1
CD123 CAR7108SEQ ID NO. 37 in WO2015140268A1
CD123 CAR7109SEQ ID NO. 38 in WO2015140268A1
CD123 CAR7110SEQ ID NO. 39 in WO2015140268A1
CD123 CAR7111SEQ ID NO. 40 in WO2015140268A1
CD123 CAR7112SEQ ID NO. 41 in WO2015140268A1
CD123 CAR7113SEQ ID NO. 42 in WO2015140268A1
CD123 CAR7114SEQ ID NO. 43 in WO2015140268A1
CD123 CAR7115SEQ ID NO. 44 in WO2015140268A1
CD123 CAR7116SEQ ID NO. 45 in WO2015140268A1
CD123 CAR7117SEQ ID NO. 46 in WO2015140268A1
CD123 CAR7118SEQ ID NO. 47 in WO2015140268A1
CD123 CAR7119SEQ ID NO. 48 in WO2015140268A1
CD123 CAR7120SEQ ID NO: 9 (US20140271582)
CD123 CAR7121SEQ ID NO: 10 (US20140271582)
CD123 CAR7122SEQ ID NO. 11 (US20140271582)
CD123 CAR7123SEQ ID NO: 12 (US20140271582)
CD123 CAR7124SEQ ID NO: 56 in WO2016097231
CD123 CAR7125SEQ ID NO. 57 in WO2016097231
CD123 CAR7126SEQ ID NO: 58 in WO2016097231
CD123 CAR7127SEQ ID NO: 59 in WO2016097231
CD123 CAR7128SEQ ID NO: 60 in WO2016097231
CD123 CAR7129SEQ ID NO: 61 in WO2016097231
CD123 CAR7130SEQ ID NO. 98 in WO2016028896
CD123 CAR7131SEQ ID NO. 99 in WO2016028896
CD123 CAR7132SEQ ID NO. 100 in WO2016028896
CD123 CAR7133SEQ ID NO. 101 in WO2016028896
CD123 CAR7134SEQ ID NO. 125 in WO2016028896
CD123 CAR7135SEQ ID NO. 126 in WO2016028896
CD123 CAR7136SEQ ID NO. 127 in WO2016028896
CD123 CAR7137SEQ ID NO. 128 in WO2016028896
CD123 CAR7138SEQ ID NO. 129 in WO2016028896
CD123 CAR7139SEQ ID NO. 130 in WO2016028896
CD123 CAR7140SEQ ID NO. 131 in WO2016028896
CD123 CAR7141SEQ ID NO. 132 in WO2016028896
CD123 CAR7142SEQ ID NO. 133 in WO2016028896
CD123 CAR7143SEQ ID NO. 134 in WO2016028896
CD123 CAR7144SEQ ID NO. 135 in WO2016028896
CD123 CAR7145SEQ ID NO. 136 in WO2016028896
CD123 CAR7146SEQ ID NO. 137 in WO2016028896
CD123 CAR7147SEQ ID NO. 138 in WO2016028896
CD123 CAR7148SEQ ID NO. 139 in WO2016028896
CD123 CAR7149SEQ ID NO. 140 in WO2016028896
CD123 CAR7150SEQ ID NO. 141 in WO2016028896
CD123 CAR7151SEQ ID NO. 142 in WO2016028896
CD123 CAR7152SEQ ID NO. 143 in WO2016028896
CD123 CAR7153SEQ ID NO. 144 in WO2016028896
CD123 CAR7154SEQ ID NO. 145 in WO2016028896
CD123 CAR7155SEQ ID NO. 146 in WO2016028896
CD123 CAR7156SEQ ID NO. 147 in WO2016028896
CD123 CAR7157SEQ ID NO. 148 in WO2016028896
CD123 CAR7158SEQ ID NO. 149 in WO2016028896
CD123 CAR7159SEQ ID NO. 150 in WO2016028896
CD123 CAR7160SEQ ID NO. 151 in WO2016028896
CD123 CAR7161SEQ ID NO. 152 in WO2016028896
CD123 CAR7162SEQ ID NO. 153 in WO2016028896
CD123 CAR7163SEQ ID NO. 154 in WO2016028896
CD123 CAR7164SEQ ID NO. 155 in WO2016028896
CD123 CAR7165SEQ ID NO. 156 in WO2016028896
CD123 CAR7166SEQ ID NO. 31 in WO2016120220
CD123 CAR7167SEQ ID NO. 32 in WO2016120220
CD123 CAR7168SEQ ID NO. 33 in WO2016120220
CD123 CAR7169SEQ ID NO. 34 in WO2016120220
CD123 CAR7170SEQ ID NO. 35 in WO2016120220
CD123 CAR7171SEQ ID NO. 36 in WO2016120220
CD123 CAR7172SEQ ID NO. 37 in WO2016120220
CD123 CAR7173SEQ ID NO. 38 in WO2016120220
CD123 CAR7174SEQ ID NO. 39 in WO2016120220
CD123 CAR7175SEQ ID NO. 40 in WO2016120220
CD123 CAR7176SEQ ID NO. 41 in WO2016120220
CD123 CAR7177SEQ ID NO. 42 in WO2016120220
CD123 CAR7178SEQ ID NO. 43 in WO2016120220
CD123 CAR7179SEQ ID NO. 44 in WO2016120220
CD123 CAR7180SEQ ID NO. 45 in WO2016120220
CD123 CAR7181SEQ ID NO. 46 in WO2016120220
CD123 CAR7182SEQ ID NO. 47 in WO2016120220
CD123 CAR7183SEQ ID NO. 48 in WO2016120220
CD123 CAR7184SEQ ID NO. 49 in WO2016120220
CD123 CAR7185SEQ ID NO. 50 in WO2016120220
CD123 CAR7186SEQ ID NO. 51 in WO2016120220
CD123 CAR7187SEQ ID NO. 52 in WO2016120220
CD123 CAR7188SEQ ID NO. 53 in WO2016120220
CD123 CAR7189SEQ ID NO. 54 in WO2016120220
CD123 CAR7190SEQ ID NO. 55 in WO2016120220
CD123 CAR7191SEQ ID NO. 56 in WO2016120220
CD123 CAR7192SEQ ID NO. 57 in WO2016120220
CD123 CAR7193SEQ ID NO. 58 in WO2016120220
CD123 CAR7194SEQ ID NO. 59 in WO2016120220
CD123 CAR7195SEQ ID NO. 60 in WO2016120220
CD123 CAR7196SEQ ID NO. 61 in WO2016120220
CD123 CAR7197SEQ ID NO. 62 in WO2016120220
CD123 CAR7198SEQ ID NO. 63 in WO2016120220
CD123 CAR7199SEQ ID NO. 64 in WO2016120220
CD123 CAR7200SEQ ID NO. 65 in WO2016120220
CD123 CAR7201SEQ ID NO. 66 in WO2016120220
CD123 CAR7202SEQ ID NO. 67 in WO2016120220
CD123 CAR7203SEQ ID NO. 68 in WO2016120220
CD123 CAR7204SEQ ID NO. 69 in WO2016120220
CD123 CAR7205SEQ ID NO. 70 in WO2016120220
CD123 CAR7206SEQ ID NO. 71 in WO2016120220
CD123 CAR7207SEQ ID NO. 72 in WO2016120220
CD123 CAR7208SEQ ID NO. 73 in WO2016120220
CD123 CAR7209SEQ ID NO. 74 in WO2016120220
CD123 CAR7210SEQ ID NO. 75 in WO2016120220
CD123 CAR7211SEQ ID NO. 76 in WO2016120220
CD123 CAR7212SEQ ID NO. 77 in WO2016120220
CD123 CAR7213SEQ ID NO. 78 in WO2016120220
CD123 CAR7214SEQ ID NO. 79 in WO2016120220
CD123 CAR7215SEQ ID NO. 80 in WO2016120220
CD123 CAR7216SEQ ID NO. 81 in WO2016120220
CD123 CAR7217SEQ ID NO. 82 in WO2016120220
CD123 CAR7218SEQ ID NO. 83 in WO2016120220
CD123 CAR7219SEQ ID NO. 84 in WO2016120220
CD123 CAR7220SEQ ID NO. 85 in WO2016120220
CD123 CAR7221SEQ ID NO. 86 in WO2016120220
CD123 CAR7222SEQ ID NO. 87 in WO2016120220
CD123 CAR7223SEQ ID NO. 88 in WO2016120220
CD123 CAR7224SEQ ID NO. 89 in WO2016120220
CD123 CAR7225SEQ ID NO. 90 in WO2016120220
CD123 CAR7226SEQ ID NO. 91 in WO2016120220
CD123 CAR7227SEQ ID NO. 92 in WO2016120220
CD123 CAR7228SEQ ID NO. 93 in WO2016120220
CD123 CAR7229SEQ ID NO. 94 in WO2016120220
CD123 CAR7230SEQ ID NO. 95 in WO2016120220
CD123 CAR7231SEQ ID NO. 96 in WO2016120220
CD123 CAR7232SEQ ID NO. 97 in WO2016120220
CD123 CAR7233SEQ ID NO. 98 in WO2016120220
CD123 CAR7234SEQ ID NO. 99 in WO2016120220
CD123 CAR7235SEQ ID NO. 100 in WO2016120220
CD123 CAR7236SEQ ID NO. 101 in WO2016120220
CD123 CAR7237SEQ ID NO. 102 in WO2016120220
CD123 CAR7238SEQ ID NO. 103 in WO2016120220
CD123 CAR7239SEQ ID NO. 104 in WO2016120220
CD123 CAR7240SEQ ID NO. 105 in WO2016120220
CD123 CAR7241SEQ ID NO. 106 in WO2016120220
CD123 CAR7242SEQ ID NO. 107 in WO2016120220
CD123 CAR7243SEQ ID NO. 108 in WO2016120220
CD123 CAR7244SEQ ID NO. 109 in WO2016120220
CD123 CAR7245SEQ ID NO. 110 in WO2016120220
CD123 CAR7246SEQ ID NO. 111 in WO2016120220
CD123 CAR7247SEQ ID NO. 112 in WO2016120220
CD123 CAR7248SEQ ID NO. 113 in WO2016120220
CD123 CAR7249SEQ ID NO. 114 in WO2016120220
CD123 CAR7250SEQ ID NO. 115 in WO2016120220
CD123 CAR7251SEQ ID NO. 116 in WO2016120220
CD123 CAR7252SEQ ID NO. 117 in WO2016120220
CD123 CAR7253SEQ ID NO. 118 in WO2016120220
CD123 CAR7254SEQ ID NO. 119 in WO2016120220
CD123 CAR7255SEQ ID NO. 120 in WO2016120220
CD123 CAR7256SEQ ID NO. 121 in WO2016120220
CD123 CAR7257SEQ ID NO. 122 in WO2016120220
CD123 CAR7258SEQ ID NO. 123 in WO2016120220
CD123 CAR7259SEQ ID NO. 124 in WO2016120220
CD123 CAR7260SEQ ID NO. 125 in WO2016120220
CD123 CAR7261SEQ ID NO. 126 in WO2016120220
CD123 CAR7262SEQ ID NO. 127 in WO2016120220
CD123 CAR7263SEQ ID NO. 128 in WO2016120220
CD123 CAR7264SEQ ID NO. 129 in WO2016120220
CD123 CAR7265SEQ ID NO. 130 in WO2016120220
CD123 CAR7266SEQ ID NO. 131 in WO2016120220
CD123 CAR7267SEQ ID NO. 132 in WO2016120220
CD123 CAR7268SEQ ID NO. 133 in WO2016120220
CD123 CAR7269SEQ ID NO. 134 in WO2016120220
CD123 CAR7270SEQ ID NO. 135 in WO2016120220
CD123 CAR7271SEQ ID NO. 136 in WO2016120220
CD123 CAR7272SEQ ID NO. 137 in WO2016120220
CD123 CAR7273SEQ ID NO. 138 in WO2016120220
CD123 CAR7274SEQ ID NO. 139 in WO2016120220
CD123 CAR7275SEQ ID NO. 140 in WO2016120220
CD123 CAR7276SEQ ID NO. 141 in WO2016120220
CD123 CAR7277SEQ ID NO. 142 in WO2016120220
CD123 CAR7278SEQ ID NO. 143 in WO2016120220
CD123 CAR7279SEQ ID NO. 144 in WO2016120220
CD123 CAR7280SEQ ID NO. 145 in WO2016120220
CD123 CAR7281SEQ ID NO. 146 in WO2016120220
CD123 CAR7282SEQ ID NO. 147 in WO2016120220
CD123 CAR7283SEQ ID NO. 148 in WO2016120220
CD123 CAR7284SEQ ID NO. 149 in WO2016120220
CD123 CAR7285SEQ ID NO. 150 in WO2016120220
CD123 CAR7286SEQ ID NO. 151 in WO2016120220
CD123 CAR7287SEQ ID NO. 152 in WO2016120220
CD123 CAR7288SEQ ID NO. 153 in WO2016120220
CD123 CAR7289SEQ ID NO. 154 in WO2016120220
CD123 CAR7290SEQ ID NO. 155 in WO2016120220
CD123 CAR7291SEQ ID NO. 156 in WO2016120220
CD123 CAR7292SEQ ID NO. 157 in WO2016120220
CD123 CAR7293SEQ ID NO. 158 in WO2016120220
CD123 CAR7294SEQ ID NO. 159 in WO2016120220
CD123 CAR7295SEQ ID NO. 160 in WO2016120220
CD123 CAR7296SEQ ID NO. 172 in WO2016120220
CD123 CAR7297SEQ ID NO. 173 in WO2016120220
CD123 CAR7298SEQ ID NO. 174 in WO2016120220
CD123 CAR7299SEQ ID NO. 175 in WO2016120220
CD123 CAR7300SEQ ID NO. 176 in WO2016120220
CD123 CAR7301SEQ ID NO. 177 in WO2016120220
CD123 CAR7302SEQ ID NO. 178 in WO2016120220
CD123 CAR7303SEQ ID NO. 179 in WO2016120220
CD123 CAR7304SEQ ID NO. 180 in WO2016120220
CD123 CAR7305SEQ ID NO. 181 in WO2016120220
CD123 CAR7306SEQ ID NO. 182 in WO2016120220
CD123 CAR7307SEQ ID NO. 183 in WO2016120220
CD123 CAR7308SEQ ID NO. 184 in WO2016120220
CD123 CAR7309SEQ ID NO. 185 in WO2016120220
CD123 CAR7310SEQ ID NO. 186 in WO20I6120220
CD123 CAR7311SEQ ID NO. 187 in WO2016120220
CD123 CAR7312SEQ ID NO. 188 in WO2016120220
CD123 CAR7313SEQ ID NO. 189 in WO2016120220
CD123 CAR7314SEQ ID NO. 190 in WO2016120220
CD123 CAR7315SEQ ID NO. 191 in WO2016120220
CD123 CAR7316SEQ ID NO. 192 in WO2016120220
CD123 CAR7317SEQ ID NO. 193 in WO2016120220
CD123 CAR7318SEQ ID NO. 194 in WO2016120220
CD123 CAR7319SEQ ID NO. 195 in WO2016120220
CD123 CAR7320SEQ ID NO. 196 in WO2016120220
CD123 CAR7321SEQ ID NO. 197 in WO2016120220
CD123 CAR7322SEQ ID NO. 1 in WO2016120216
CD123 CAR7323SEQ ID NO. 2 in WO2016120216
CD123 CAR7324SEQ ID NO. 3 in WO2016120216
CD123 CAR7325SEQ ID NO. 4 in WO2016120216
CD123 CAR7326SEQ ID NO. 5 in WO2016120216
CD123 CAR7327SEQ ID NO. 6 in WO2016120216
CD123 CAR7328SEQ ID NO. 7 in WO2016120216
CD123 CAR7329SEQ ID NO. 8 in WO2016120216
CD123 CAR7330SEQ ID NO. 9 in WO2016120216
CD123 CAR7331SEQ ID NO. 10 in WO2016120216
CD123 CAR7332SEQ ID NO. 142 in WO2016120216
CD19/IL13 Bispecific CAR7333SEQ ID NO: 10 in US20160340649A1
CD19 CAR7334SEQ ID NO: 12 in U.S. Pat. No. 9,499,629B2
CD19 CAR7335SEQ ID NO: 24 in US20160333108A1
CD19 CAR7336SEQ ID NO. 25 in US20160333108A1
CD19 CAR7337SEQ ID NO: 26 in US20160333108A1
CD19 CAR7338SEQ ID NO: 27 in US20160333108A1
CD19 CAR7339SEQ ID NO: 1 in EP2997134A4
CD19 CAR7340SEQ ID NO: 19 in EP3071687A1
CD19 CAR7341SEQ ID NO: 20 in EP3071687A1
CD19 CAR7342SEQ ID NO: 181 in WO2016168773A3
CD19 CAR7343SEQ ID NO: 2 in WO2015157399A9
CD19 CAR7344SEQ ID NO: 56 in WO2016174409A1
CD19 CAR7345SEQ ID NO: 62 in WO2016174409A1
CD19 CAR7346SEQ ID NO: 145 in WO2016179319A1
CD19 CAR7347SEQ ID NO: 293 in US20160311907A1
CD19 CAR7348SEQ ID NO: 294 in US20160311907A1
CD19 CAR7349SEQ ID NO: 295 in US20160311907A1
CD19 CAR7350SEQ ID NO: 296 in US20160311907A1
CD19 CAR7351SEQ ID NO: 297 in US20160311907A1
CD19 CAR7352SEQ ID NO: 298 in US20160311907A1
CD19 CAR7353SEQ ID NO. 73 in WO2013176915A1
CD19 CAR7354SEQ ID NO. 73 in WO2013176916A1
CD19 CAR7355SEQ ID NO. 73 in US20130315884A1
CD19 CAR7356SEQ ID NO. 73 in US20140134142A1
CD19 CAR7357SEQ ID NO. 73 in US20150017136A1
CD19 CAR7358SEQ ID NO. 73 in US20150203817A1
CD19 CAR7359SEQ ID NO. 73 in US20160120905A1
CD19 CAR7360SEQ ID NO. 73 in US20160120906A1
CD19 CAR7361SEQ ID NO. 8 in WO2015124715
CD19 CAR7362SEQ ID NO. 5 in WO2015124715
CD19 CAR7363SEQ ID NO. 73 in WO2014184744
CD19 CAR7364SEQ ID NO. 73 in WO2014184741
CD19 CAR7365SEQ ID NO. 14 in US20160145337A1
CD19 CAR7366SEQ ID NO. 15 in US20160145337A1
CD19 CAR7367SEQ ID NO. 14 in WO2014184143
CD19 CAR7368SEQ ID NO. 15 in WO2014184143
CD19 CAR7369SEQ ID NO. 15 in WO2015075175
CD19 CAR7370SEQ ID NO. 16 in WO2015075175
CD19 CAR7371SEQ ID NO. 16 in US20160145337A1
CD19 CAR7372SEQ ID NO. 16 in WO2014184143
CD19 CAR7373SEQ ID NO 12 in WO2012079000
CD19 CAR7374SEQ ID NO. 31 in WO2016164580
CD19 CAR7375SEQ ID NO. 32 in WO2016164580
CD19 CAR7376SEQ ID NO. 33 in WO2016164580
CD19 CAR7377SEQ ID NO. 34 in WO2016164580
CD19 CAR7378SEQ ID NO. 35 in WO2016164580
CD19 CAR7379SEQ ID NO. 36 in WO2016164580
CD19 CAR7380SEQ ID NO. 37 in WO2016164580
CD19 CAR7381SEQ ID NO. 38 in WO2016164580
CD19 CAR7382SEQ ID NO. 39 in WO2016164580
CD19 CAR7383SEQ ID NO. 40 in WO2016164580
CD19 CAR7384SEQ ID NO. 41 in WO2016164580
CD19 CAR7385SEQ ID NO. 42 in WO2016164580
CD19 CAR7386SEQ ID NO. 58 in WO2016164580
CD19 CAR7387SEQ ID NO: 14 in US20160296563A1
CD19 CAR7388SEQ ID NO: 15 in US20160296563A1
CD19 CAR7389SEQ ID NO. 31 in WO2015157252
CD19 CAR7390SEQ ID NO. 32 in WO2015157252
CD19 CAR7391SEQ ID NO. 33 in WO2015157252
CD19 CAR7392SEQ ID NO. 34 in WO2015157252
CD19 CAR7393SEQ ID NO. 35 in WO2015157252
CD19 CAR7394SEQ ID NO. 36 in WO2015157252
CD19 CAR7395SEQ ID NO. 37 in WO2015157252
CD19 CAR7396SEQ ID NO. 38 in WO2015157252
CD19 CAR7397SEQ ID NO. 39 in WO2015157252
CD19 CAR7398SEQ ID NO. 40 in WO2015157252
CD19 CAR7399SEQ ID NO. 41 in WO2015157252
CD19 CAR7400SEQ ID NO. 42 in WO2015157252
CD19 CAR7401SEQ ID NO. 14 in WO2016139487
CD19 CAR7402SEQ ID NO. 15 in WO2016139487
CD19 CAR7403SEQ ID NO: 53 in US20160250258A1
CD19 CAR7404SEQ ID NO: 54 in US20160250258A1
CD19 CAR7405SEQ ID NO: 55 in US20160250258A1
CD19 CAR7406SEQ ID NO: 56 in US20160250258A1
CD19 CAR7407SEQ ID NO: 57 in US20160250258A1
CD19 CAR7408SEQ ID NO: 58 in US20160250258A1
CD19 CAR7409SEQ ID NO. 1 in WO2015187528
CD19 CAR7410SEQ ID NO. 2 in WO2015187528
CD19 CAR7411SEQ ID NO. 3 in WO2015187528
CD19 CAR7412SEQ ID NO. 4 in WO2015187528
CD19 CAR7413SEQ ID NO. 5 in WO2015187528
CD19 CAR7414SEQ ID NO. 6 in WO2015187528
CD19 CAR7415SEQ ID NO. 7 in WO2015187528
CD19 CAR7416SEQ ID NO. 8 in WO2015187528
CD19 CAR7417SEQ ID NO. 9 in WO2015187528
CD19 CAR7418SEQ ID NO. 10 in WO2015187528
CD19 CAR7419SEQ ID NO. 11 in WO2015187528
CD19 CAR7420SEQ ID NO. 12 in WO2015187528
CD19 CAR7421SEQ ID NO. 13 in WO2015187528
CD19 CAR7422SEQ ID. NO. 31 in WO2015157252
CD19 CAR7423SEQ ID. NO. 32 in WO2015157252
CD19 CAR7424SEQ ID. NO. 33 in WO2015157252
CD19 CAR7425SEQ ID. NO. 34 in WO2015157252
CD19 CAR7426SEQ ID. NO. 35 in WO2015157252
CD19 CAR7427SEQ ID. NO. 36 in WO2015157252
CD19 CAR7428SEQ ID. NO. 37 in WO2015157252
CD19 CAR7429SEQ ID. NO. 38 in WO2015157252
CD19 CAR7430SEQ ID. NO. 39 in WO2015157252
CD19 CAR7431SEQ ID. NO. 40 in WO2015157252
CD19 CAR7432SEQ ID. NO. 41 in WO2015157252
CD19 CAR7433SEQ ID. NO. 42 in WO2015157252
CD19 CAR7434SEQ ID. NO. 58 in WO2015157252
CD19 CAR7435SEQ ID NO. 31 in WO2014153270
CD19 CAR7436SEQ ID NO. 32 in WO2014153270
CD19 CAR7437SEQ ID NO. 33 in WO2014153270
CD19 CAR7438SEQ ID NO. 34 in WO2014153270
CD19 CAR7439SEQ ID NO. 35 in WO2014153270
CD19 CAR7440SEQ ID NO. 36 in WO2014153270
CD19 CAR7441SEQ ID NO. 37 in WO2014153270
CD19 CAR7442SEQ ID NO. 38 in WO2014153270
CD19 CAR7443SEQ ID NO. 39 in WO2014153270
CD19 CAR7444SEQ ID NO. 40 in WO2014153270
CD19 CAR7445SEQ ID NO. 41 in WO2014153270
CD19 CAR7446SEQ ID NO. 42 in WO2014153270
CD19 CAR7447in WO2016134284 (no SEQ ID NO)
CD19 CAR (Third generation)7448SEQ ID NO. 13 in WO2016139487
CD19 or CD33 CAR (a CAR OR gate7449SEQ ID NO. 1 in WO2015075468
which recognizes CD19 OR CD33)
CD19CD20 CAR Bispecific CAR7450SEQ ID NO: 1308 in WO2016164731A2
CD19CD20 CAR Bispecific CAR7451SEQ ID NO: 2 in U.S. Pat. No. 9,447,194B2
CD19CD20 CAR Bispecific CAR7452SEQ ID NO: 8 in U.S. Pat. No. 9,447,194B2
CD19CD20 CAR Bispecific CAR7453SEQ ID NO: 11 in U.S. Pat. No. 9,447,194B2
CD2 CAR7454SEQ ID NO. 10 in WO2016138491
CD2 CAR7455SEQ ID NO. 11 in WO2016138491
CD20 CAR7456SEQ ID NO: 25 in WO2015157399A9
CD20 NCAR7457SEQ ID NO: 177 in WO2016097231
CD20 NCAR7458SEQ ID NO: 181 in WO2016097231
CD20 NCAR7459SEQ ID NO: 182 in WO2016097231
CD20 NCAR7460SEQ ID NO: 183 in WO2016097231
CD20 NCAR7461SEQ ID NO: 184 in WO2016097231
CD20 NCAR7462SEQ ID NO: 185 in WO2016097231
CD20 NCAR7463SEQ ID NO: 186 in WO2016097231
CD20 NCAR7464SEQ ID NO: 187 in WO2016097231
CD20 NCAR7465SEQ ID NO: 205 in WO2016097231
CD20 NCAR7466SEQ ID NO: 206 in WO2016097231
CD20 NCAR7467SEQ ID NO: 207 in WO2016097231
CD20 NCAR7468SEQ ID NO: 208 in WO2016097231
CD20 NCAR7469SEQ ID NO: 209 in WO2016097231
CD20 NCAR7470SEQ ID NO: 210 in WO2016097231
CD20 NCAR7471SEQ ID NO: 211 in WO2016097231
CD20 NCAR7472SEQ ID NO: 188 in WO2016097231
CD20 NCAR7473SEQ ID NO: 189 in WO2016097231
CD20 NCAR7474SEQ ID NO: 190 in WO2016097231
CD20 NCAR7475SEQ ID NO: 191 in WO2016097231
CD20 NCAR7476SEQ ID NO: 192 in WO2016097231
CD20 NCAR7477SEQ ID NO: 193 in WO2016097231
CD20 NCAR7478SEQ ID NO: 176 in WO2016097231
CD20 NCAR7479SEQ ID NO: 212 in WO2016097231
CD20 NCAR7480SEQ ID NO: 194 in WO2016097231
CD20 NCAR7481SEQ ID NO: 195 in WO2016097231
CD20 NCAR7482SEQ ID NO: 196 in WO2016097231
CD20 NCAR7483SEQ ID NO: 197 in WO2016097231
CD20 NCAR7484SEQ ID NO: 198 in WO2016097231
CD20 NCAR7485SEQ ID NO: 199 in WO2016097231
CD20 NCAR7486SEQ ID NO: 200 in WO2016097231
CD20 NCAR7487SEQ ID NO. 201 in WO2016097231
CD20 NCAR7488SEQ ID NO: 202 in WO2016097231
CD20 NCAR7489SEQ ID NO: 203 in WO2016097231
CD20 NCAR7490SEQ ID NO: 178 in WO2016097231
CD20 NCAR7491SEQ ID NO: 179 in WO2016097231
CD20 NCAR7492SEQ ID NO: 180 in WO2016097231
CD22 CAR7493SEQ ID NO: 380 in WO2016164731A2
CD22 CAR7494SEQ ID NO: 204 in WO2016164731A2
CD22 CAR7495SEQ ID NO: 260 in WO2016164731A2
CD22 CAR7496SEQ ID NO: 266 in WO2016164731A2
CD22 CAR7497SEQ ID NO: 272 in WO2016164731A2
CD22 CAR7498SEQ ID NO. 278 in WO2016164731A2
CD22 CAR7499SEQ ID NO: 284 in WO2016164731A2
CD22 CAR7500SEQ ID NO: 290 in WO2016164731A2
CD22 CAR7501SEQ ID NO: 296 in WO2016164731A2
CD22 CAR7502SEQ ID NO: 302 in WO2016164731A2
CD22 CAR7503SEQ ID NO: 308 in WO2016164731A2
CD22 CAR7504SEQ ID NO: 314 in WO2016164731A2
CD22 CAR7505SEQ ID NO: 213 in WO2016164731A2
CD22 CAR7506SEQ ID NO: 320 in WO2016164731A2
CD22 CAR7507SEQ ID NO: 326 in WO2016164731A2
CD22 CAR7508SEQ ID NO: 332 in WO2016164731A2
CD22 CAR7509SEQ ID NO: 338 in WO2016164731A2
CD22 CAR7510SEQ ID NO: 347 in WO2016164731A2
CD22 CAR7511SEQ ID NO: 350 in WO2016164731A2
CD22 CAR7512SEQ ID NO: 356 in WO2016164731A2
CD22 CAR7513SEQ ID NO: 362 in WO2016164731A2
CD22 CAR7514SEQ ID NO: 368 in WO2016164731A2
CD22 CAR7515SEQ ID NO: 374 in WO2016164731A2
CD22 CAR7516SEQ ID NO: 219 in WO2016164731A2
CD22 CAR7517SEQ ID NO: 386 in WO2016164731A2
CD22 CAR7518SEQ ID NO: 392 in WO2016164731A2
CD22 CAR7519SEQ ID NO: 398 in WO2016164731A2
CD22 CAR7520SEQ ID NO: 404 in WO2016164731A2
CD22 CAR7521SEQ ID NO: 410 in WO2016164731A2
CD22 CAR7522SEQ ID NO: 416 in WO2016164731A2
CD22 CAR7523SEQ ID NO: 421 in WO2016164731A2
CD22 CAR7524SEQ ID NO: 427 in WO2016164731A2
CD22 CAR7525SEQ ID NO: 225 in WO2016164731A2
CD22 CAR7526SEQ ID NO: 230 in WO2016164731A2
CD22 CAR7527SEQ ID NO: 1109 in WO2016164731A2
CD22 CAR7528SEQ ID NO: 236 in WO2016164731A2
CD22 CAR7529SEQ ID NO: 242 in WO2016164731A2
CD22 CAR7530SEQ ID NO: 248 in WO2016164731A2
CD22 CAR7531SEQ ID NO: 254 in WO2016164731A2
CD22 CAR7532SEQ ID NO. 15 in WO2013059593
CD22 CAR7533SEQ ID NO. 16 in WO2013059593
CD22 CAR7534SEQ ID NO. 17 in WO2013059593
CD22 CAR7535SEQ ID NO. 18 in WO2013059593
CD22 CAR7536SEQ ID NO. 19 in WO2013059593
CD22 CAR7537SEQ ID NO. 20 in WO2013059593
CD22 CAR7538SEQ ID NO. 32 in WO2013059593
CD22 CAR7539SEQ ID NO. 22 in US20150299317
CD22 CAR7540SEQ ID NO. 23 in US20150299317
CD22 CAR7541SEQ ID NO. 24 in US20150299317
CD22CD19 Bispecific CAR7542SEQ ID NO. 29 in WO2016149578
CD22CD19 Bispecific CAR7543SEQ ID NO. 30 in WO2016149578
CD22CD19 Bispecific CAR7544SEQ ID NO: 1304 in WO2016164731A2
CD276 CAR7545SEQ ID NO. 39 in US20160053017
CD276 CAR7546SEQ ID NO. 40 in US20160053017
CD276 CAR7547SEQ ID NO. 41 in US20160053017
CD276 CAR7548SEQ ID NO. 42 in US20160053017
CD276 CAR7549SEQ ID NO. 43 in US20160053017
CD276 CAR7550SEQ ID NO. 44 in US20160053017
CD276 CAR7551SEQ ID NO. 45 in US20160053017
CD276 CAR7552SEQ ID NO. 46 in US20160053017
CD276 CAR7553SEQ ID NO. 47 in US20160053017
CD276 CAR7554SEQ ID NO. 122 in US20160053017
CD276 CAR7555SEQ ID NO. 123 in US20160053017
CD276 CAR7556SEQ ID NO. 124 in US20160053017
CD276 CAR7557SEQ ID NO. 125 in US20160053017
CD276 CAR7558SEQ ID NO. 126 in US20160053017
CD276 CAR7559SEQ ID NO. 127 in US20160053017
CD276 CAR7560SEQ ID NO. 128 in US20160053017
CD276 CAR7561SEQ ID NO. 129 in US20160053017
CD276 CAR7562SEQ ID NO. 130 in US20160053017
CD3 CAR7563SEQ ID NO. 12 in WO2016138491
CD30 CAR7564SEQ ID NO. 20 in WO2016008973A1
CD30 CAR7565SEQ ID NO 1 in WO2016116035A1
CD30 CAR7566in WO2016134284 (no SEQ ID NO)
CD30 CAR7567SEQ ID NO. 2 in WO2016008973A1
CD33 CAR7568SEQ ID NO. 48 in WO2016014576
CD33 CAR7569SEQ ID NO. 49 in WO2016014576
CD33 CAR7570SEQ ID NO. 50 in WO2016014576
CD33 CAR7571SEQ ID NO. 51 in WO2016014576
CD33 CAR7572SEQ ID NO. 52 in WO2016014576
CD33 CAR7573SEQ ID NO. 53 in WO2016014576
CD33 CAR7574SEQ ID NO. 54 in WO2016014576
CD33 CAR7575SEQ ID NO. 55 in WO2016014576
CD33 CAR7576SEQ ID NO. 83 in WO2016014576
CD33 CAR7577SEQ ID NO. 19 in WO2015150526A2
CD33 CAR7578SEQ ID NO. 20 in WO2015150526A2
CD33 CAR7579SEQ ID NO. 21 in WO2015150526A2
CD33 CAR7580SEQ ID NO. 22 in WO2015150526A2
CD33 CAR7581SEQ ID NO. 23 in WO2015150526A2
CD33 CAR7582SEQ ID NO. 24 in WO2015150526A2
CD33 CAR7583SEQ ID NO. 25 in WO2015150526A2
CD33 CAR7584SEQ ID NO. 26 in WO2015150526A2
CD33 CAR7585SEQ ID NO. 27 in WO2015150526A2
CD33 CAR7586SEQ ID NO. 28 in WO2015150526A2
CD33 CAR7587SEQ ID NO. 29 in WO2015150526A2
CD33 CAR7588SEQ ID NO. 30 in WO2015150526A2
CD33 CAR7589SEQ ID NO. 31 in WO2015150526A2
CD33 CAR7590SEQ ID NO. 32 in WO2015150526A2
CD33 CAR7591SEQ ID NO. 33 in WO2015150526A2
CD33 CAR7592SEQ ID NO. 34 in WO2015150526A2
CD33 CAR7593SEQ ID NO. 35 in WO2015150526A2
CD33 CAR7594SEQ ID NO. 36 in WO2015150526A2
CD33 CAR7595SEQ ID NO. 37 in WO2015150526A2
CD33 CAR7596SEQ ID NO. 38 in WO2015150526A2
CD33 CAR7597SEQ ID NO. 39 in WO2015150526A2
CD33 CAR7598SEQ ID NO. 40 in WO2015150526A2
CD33 CAR7599SEQ ID NO. 41 in WO2015150526A2
CD33 CAR7600SEQ ID NO. 42 in WO2015150526A2
CD33 CAR7601SEQ ID NO. 48 in WO2015150526A2
CD33 CAR7602SEQ ID NO. 49 in WO2015150526A2
CD33 CAR7603SEQ ID NO. 50 in WO2015150526A2
CD33 CAR7604SEQ ID NO. 51 in WO2015150526A2
CD33 CAR7605SEQ ID NO. 52 in WO2015150526A2
CD33 CAR7606SEQ ID NO. 53 in WO2015150526A2
CD33 CAR7607SEQ ID NO. 54 in WO2015150526A2
CD33 CAR7608SEQ ID NO. 55 in WO2015150526A2
CD33 CAR7609SEQ ID NO. 56 in WO2015150526A2
CD33 CAR7610SEQ ID NO. 57 in WO2015150526A2
CD33 CAR7611SEQ ID NO. 58 in WO2015150526A2
CD33 CAR7612SEQ ID NO. 59 in WO2015150526A2
CD33 CAR7613SEQ ID NO. 60 in WO2015150526A2
CD33 CAR7614SEQ ID NO. 61 in WO2015150526A2
CD33 CAR7615SEQ ID NO. 62 in WO2015150526A2
CD33 CAR7616SEQ ID NO. 63 in WO2015150526A2
CD33 CAR7617SEQ ID NO. 64 in WO2015150526A2
CD33 CAR7618SEQ ID NO. 65 in WO2015150526A2
CD33 CAR7619SEQ ID NO. 66 in WO2015150526A2
CD33 CAR7620SEQ ID NO. 67 in WO2015150526A2
CD33 CAR7621SEQ ID NO. 68 in WO2015150526A2
CD33 CAR7622SEQ ID NO. 69 in WO2015150526A2
CD33 CAR7623SEQ ID NO. 70 in WO2015150526A2
CD33 CAR7624SEQ ID NO. 71 in WO2015150526A2
CD38 CAR7625SEQ ID NO: 70 in WO2016097231
CD38 CAR7626SEQ ID NO: 71 in WO2016097231
CD38 CAR7627SEQ ID NO: 72 in WO2016097231
CD38 CAR7628SEQ ID NO: 64 in WO2016097231
CD38 CAR7629SEQ ID NO: 65 in WO2016097231
CD38 CAR7630SEQ ID NO: 66 in WO2016097231
CD38 CAR7631SEQ ID NO: 67 in WO2016097231
CD38 CAR7632SEQ ID NO: 68 in WO2016097231
CD38 CAR7633SEQ ID NO: 69 in WO2016097231
CD38 CAR7634SEQ ID No. 35 in WO2015121454
CD38 CAR7635SEQ ID No. 36 in WO2015121454
CD38 CAR7636SEQ ID No. 37 in WO2015121454
CD4 CAR7637SEQ ID NO. 13 in WO2016138491
CD4 CAR7638SEQ ID NO. 14 in WO2016138491
CD410 CAR7639SEQ ID NO: 7 in EP3074419A2
CD435 CAR7640SEQ ID NO: 5 in EP3074419A2
CD44 CAR7641SEQ ID NO. 21 in WO2016042461A1
CD44 CAR7642SEQ ID NO. 22 in WO2016042461A1
CD44 CAR7643SEQ ID NO. 23 in WO2016042461A1
CD44 CAR7644SEQ ID NO. 24 in WO2016042461A1
CD44 CAR7645SEQ ID NO. 25 in WO2016042461A1
CD44 CAR7646SEQ ID NO. 26 in WO2016042461A1
CD44 CAR7647SEQ ID NO. 27 in WO2016042461A1
CD44 CAR7648SEQ ID NO. 28 in WO2016042461A1
CD44 CAR7649SEQ ID NO. 31 in WO2016042461A1
CD44 CAR7650SEQ ID NO. 32 in WO2016042461A1
CD44 CAR7651SEQ ID NO. 33 in WO2016042461A1
CD44 CAR7652SEQ ID NO. 34 in WO2016042461A1
CD44 CAR7653SEQ ID NO. 35 in WO2016042461A1
CD4-DDY3 CAR7654SEQ ID NO: 9 in EP3074419A2
CD5 CAR7655SEQ ID NO. 15 in WO2016138491
CD5 CAR7656SEQ ID NO: 13 in WO2016172606A1
CD52 CAR7657SEQ ID NO. 18 in WO2016138491
CD7 CAR7658SEQ ID NO. 17 in WO2016138491
CD70 CAR7659SEQ ID NO. 100 in WO2015121454
CD70 CAR7660SEQ ID NO. 93 in WO2015121454
CD70 CAR7661SEQ ID NO. 94 in WO2015121454
CD70 CAR7662SEQ ID NO. 96 in WO2015121454
CD70 CAR7663SEQ ID NO. 101 in WO2015121454
CD70 CAR7664SEQ ID NO. 95 in WO2015121454
CD70 CAR7665SEQ ID NO. 97 in WO2015121454
CD70 CAR7666SEQ ID NO. 98 in WO2015121454
CD8 stalk APRIL CAR7667SEQ ID NO: 51 in US20160296562A1
CEA CAR7668SEQ ID NO. 4 in WO2016008973A1
CEA CAR7669SEQ ID NO. 29 in US20140242701A
CEA CAR7670SEQ ID NO. 30 in US20140242701A
Chimeric VNARCAR 17671SEQ ID NO: 105 in US20160333094A1
Chimeric VNARCAR 27672SEQ ID NO: 106 in US20160333094A1
Chimeric VNARCAR 37673SEQ ID NO: 107 in US20160333094A1
Chimeric VNARCAR 47674SEQ ID NO: 108 in US20160333094A1
Chimeric VNARCAR 57675SEQ ID NO: 109 in US20160333094A1
Chimeric VNARCAR 67676SEQ ID NO: 110 in US20160333094A1
CLDN6 CAR7677SEQ ID NO. 22 in WO2016150400
CLDN6 CAR7678SEQ ID NO. 23 in WO2016150400
CLDN6 CAR7679SEQ ID NO. 24 in WO2016150400
CLL1 CAR7680SEQ ID NO: 148 in WO2016179319A1
CLL1 CAR7681SEQ ID NO. 35 in WO2016120218
CLL1 CAR7682SEQ ID NO. 36 in WO2016120218
CLL1 CAR7683SEQ ID NO. 37 in WO2016120218
CLL1 CAR7684SEQ ID NO. 38 in WO2016120218
CLL1 CAR7685SEQ ID NO. 39 in WO2016120218
CLL1 CAR7686SEQ ID NO. 40 in WO2016120218
CLL1 CAR7687SEQ ID NO. 41 in WO2016120218
CLL1 CAR7688SEQ ID NO. 42 in WO2016120218
CLL1 CAR7689SEQ ID NO. 43 in WO2016120218
CLL1 CAR7690SEQ ID NO. 44 in WO2016120218
CLL1 CAR7691SEQ ID NO. 45 in WO2016120218
CLL1 CAR7692SEQ ID NO. 46 in WO2016120218
CLL1 CAR7693SEQ ID NO. 47 in WO2016120218
CLL1 CAR7694SEQ ID NO. 48 in WO2016120218
CLL1 CAR7695SEQ ID NO. 49 in WO2016120218
CLL1 CAR7696SEQ ID NO. 50 in WO2016120218
CLL1 CAR7697SEQ ID NO. 51 in WO2016120218
CLL1 CAR7698SEQ ID NO. 52 in WO2016120218
CLL1 CAR7699SEQ ID NO. 53 in WO2016120218
CLL1 CAR7700SEQ ID NO. 54 in WO2016120218
CLL1 CAR7701SEQ ID NO. 55 in WO2016120218
CLL1 CAR7702SEQ ID NO. 56 in WO2016120218
CLL1 CAR7703SEQ ID NO. 57 in WO2016120218
CLL1 CAR7704SEQ ID NO. 58 in WO2016120218
CLL1 CAR7705SEQ ID NO. 59 in WO2016120218
CLL1 CAR7706SEQ ID NO. 60 in WO2016120218
CLL1 CAR7707SEQ ID NO. 61 in WO2016120218
CLL1 CAR7708SEQ ID NO. 62 in WO2016120218
CLL1 CAR7709SEQ ID NO. 63 in WO2016120218
CLL1 CAR7710SEQ ID NO. 64 in WO2016120218
CLL1 CAR7711SEQ ID NO. 65 in WO2016120218
CLL1 CAR7712SEQ ID NO. 66 in WO2016120218
CLL1 CAR7713SEQ ID NO. 67 in WO2016120218
CLL1 CAR7714SEQ ID NO. 68 in WO2016120218
CLL1 CAR7715SEQ ID NO. 69 in WO2016120218
CLL1 CAR7716SEQ ID NO. 70 in WO2016120218
CLL1 CAR7717SEQ ID NO. 71 in WO2016120218
CLL1 CAR7718SEQ ID NO. 72 in WO2016120218
CLL1 CAR7719SEQ ID NO. 73 in WO2016120218
CLL1 CAR7720SEQ ID NO. 74 in WO2016120218
CLL1 CAR7721SEQ ID NO. 75 in WO2016120218
CLL1 CAR7722SEQ ID NO. 76 in WO2016120218
CLL1 CAR7723SEQ ID NO. 77 in WO2016120218
CLL1 CAR7724SEQ ID NO. 78 in WO2016120218
CLL1 CAR7725SEQ ID NO. 79 in WO2016120218
CLL1 CAR7726SEQ ID NO. 80 in WO2016120218
CLL1 CAR7727SEQ ID NO. 81 in WO2016120218
CLL1 CAR7728SEQ ID NO. 82 in WO2016120218
CLL1 CAR7729SEQ ID NO. 83 in WO2016120218
CLL1 CAR7730SEQ ID NO. 84 in WO2016120218
CLL1 CAR7731SEQ ID NO. 85 in WO2016120218
CLL1 CAR7732SEQ ID NO. 86 in WO2016120218
CLL1 CAR7733SEQ ID NO. 87 in WO2016120218
CLL1 CAR7734SEQ ID NO. 88 in WO2016120218
CLL1 CAR7735SEQ ID NO. 89 in WO2016120218
CLL1 CAR7736SEQ ID NO. 90 in WO2016120218
CLL1 CAR7737SEQ ID NO. 91 in WO2016120218
CLL1 CAR7738SEQ ID NO. 92 in WO2016120218
CLL1 CAR7739SEQ ID NO. 93 in WO2016120218
CLL1 CAR7740SEQ ID NO. 94 in WO2016120218
CLL1 CAR7741SEQ ID NO. 95 in WO2016120218
CLL1 CAR7742SEQ ID NO. 96 in WO2016120218
CLL1 CAR7743SEQ ID NO. 97 in WO2016120218
CLL1 CAR7744SEQ ID NO. 98 in WO2016120218
CLL1 CAR7745SEQ ID NO. 99 in WO2016120218
CLL1 CAR7746SEQ ID NO. 100 in WO2016120218
CLL1 CAR7747SEQ ID NO. 101 in WO2016120218
CLL1 CAR7748SEQ ID NO. 102 in WO2016120218
CLL1 CAR7749SEQ ID NO. 103 in WO2016120218
CLL1 CAR7750SEQ ID NO. 104 in WO2016120218
CLL1 CAR7751SEQ ID NO. 105 in WO2016120218
CLL1 CAR7752SEQ ID NO. 106 in WO2016120218
CLL1 CAR7753SEQ ID NO. 107 in WO2016120218
CLL1 CAR7754SEQ ID NO. 108 in WO2016120218
CLL1 CAR7755SEQ ID NO. 109 in WO2016120218
CLL1 CAR7756SEQ ID NO. 110 in WO2016120218
CLL1 CAR7757SEQ ID NO. 111 in WO2016120218
CLL1 CAR7758SEQ ID NO. 112 in WO2016120218
CLL1 CAR7759SEQ ID NO. 91 in WO2016014535
CLL1 CAR7760SEQ ID NO. 92 in WO2016014535
CLL1 CAR7761SEQ ID NO. 93 in WO2016014535
CLL1 CAR7762SEQ ID NO. 94 in WO2016014535
CLL1 CAR7763SEQ ID NO. 95 in WO2016014535
CLL1 CAR7764SEQ ID NO. 96 in WO2016014535
CLL1 CAR7765SEQ ID NO. 97 in WO2016014535
CLL1 CAR7766SEQ ID NO. 98 in WO2016014535
CLL1 CAR7767SEQ ID NO. 99 in WO2016014535
CLL1 CAR7768SEQ ID NO. 100 in WO2016014535
CLL1 CAR7769SEQ ID NO. 101 in WO2016014535
CLL1 CAR7770SEQ ID NO. 102 in WO2016014535
CLL1 CAR7771SEQ ID NO. 103 in WO2016014535
CLL1 CAR7772SEQ ID NO. 197 in WO2016014535
COM22 CAR7773SEQ ID NO: 358 in US20160297884A1
COM22 CAR7774SEQ ID NO: 359 in US20160297884A1
COM22 CAR7775SEQ ID NO: 360 in US20160297884A1
CS1 CAR7776SEQ ID No. 55 in WO2015121454
CS1 CAR7777SEQ ID No. 57 in WO2015121454
CS1 CAR7778SEQ ID No. 60 in WO2015121454
CS1 CAR7779SEQ ID No. 54 in WO2015121454
CS1 CAR7780SEQ ID No. 56 in WO2015121454
CS1 CAR7781SEQ ID No. 48 in WO2015121454
CS1 CAR7782SEQ ID No. 49 in WO2015121454
CS1 CAR7783SEQ ID No. 50 in WO2015121454
CS1 CAR7784SEQ ID No. 51 in WO2015121454
CS1 CAR7785SEQ ID No. 52 in WO2015121454
CS1 CAR7786SEQ ID No. 53 in WO2015121454
CS1 CAR7787SEQ ID No. 58 in WO2015121454
CS1 CAR7788SEQ ID No. 59 in WO2015121454
CS1 CAR7789SEQ ID No. 61 in WO2015121454
CS1 CAR7790SEQ ID No. 62 in WO2015121454
CS1 CAR7791SEQ ID NO. 28 in WO2014179759A1
DDD1/AD1 based zip CAR7792SEQ ID NO. 36 in WO2016124930
DDD1/AD1 Zip CAR7793SEQ ID NO. 37 in WO2016124930
EGFR CAR7794SEQ ID NO. 3 in WO2014130657
EGFR CAR7795SEQ ID NO. 2 in WO2014130657
EGFR CAR7796SEQ ID NO. 36 in US20140242701A
EGFR CAR7797SEQ ID NO. 37 in US20140242701A
EGFR CAR7798SEQ ID NO. 38 in US20140242701A
EGFR CAR7799SEQ ID NO. 39 in US20140242701A
EGFR CAR7800SEQ ID NO. 35 in US20140242701A
EGFR CAR7801SEQ ID NO. 43 in WO2014130657
EGFR CAR7802SEQ ID NO. 96 in WO2014130657
EGFR CAR7803SEQ ID NO. 49 in WO2014130657
EGFR CAR7804SEQ ID NO. 55 in WO2014130657
EGFR CAR7805SEQ ID NO. 61 in WO2014130657
EGFR CAR7806SEQ ID NO. 67 in WO2014130657
EGFR CAR7807SEQ ID NO. 73 in WO2014130657
EGFR CAR7808SEQ ID NO. 79 in WO2014130657
EGFR CAR7809SEQ ID NO. 85 in WO2014130657
EGFR CAR7810SEQ ID NO. 90 in WO2014130657
EGFR CAR7811SEQ ID NO. 1 in WO2014130657
EGFR vIII CAR7812SEQ ID NO. 15 in WO2016016341
EGFR vIII CAR7813SEQ ID NO. 16 in WO2016016341
EGFR vIII CAR7814SEQ ID NO. 17 in WO2016016341
EGFR vIII CAR7815SEQ ID NO. 18 in WO2016016341
EGFR vIII CAR7816SEQ ID NO. 24 in WO2016016341
EGFR vIII CAR7817SEQ ID NO. 25 in WO2016016341
EGFR vIII CAR7818SEQ ID NO. 26 in WO2016016341
EGFR vIII CAR7819SEQ ID NO. 27 in WO2016016341
EGFR vIII CAR7820SEQ ID NO: 5 in US20160311907A1
EGFR vIII CAR7821SEQ ID NO: 10 in US20160311907A1
EGFR vIII CAR7822SEQ ID NO: 12 in US20160311907A1
EGFR vIII CAR7823SEQ ID NO: 8 in US20160311907A1
EGFR vIII CAR7824SEQ ID NO: 31 in US20160311907A1
EGFR vIII CAR7825SEQ ID NO: 30 in US20160311907A1
EGFR vIII CAR7826SEQ ID NO: 3 in US20160311907A1
EGFR vIII CAR7827SEQ ID NO: 10 in US20160200819A1
EGFRvIII CAR7828SEQ ID NO: 43 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7829SEQ ID NO: 49 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7830SEQ ID NO: 55 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7831SEQ ID NO: 61 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7832SEQ ID NO: 67 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7833SEQ ID NO: 73 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7834SEQ ID NO: 79 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7835SEQ ID NO: 85 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7836SEQ ID NO: 90 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7837SEQ ID NO: 96 in U.S. Pat. No. 9,394,368B2
EGFRvIII CAR7838SEQ ID NO. 49 in US20170008963A1
EGFRvIII CAR7839SEQ ID NO. 55 in US20170008963A1
EGFRvIII CAR7840SEQ ID NO. 61 in US20170008963A1
EGFRvIII CAR7841SEQ ID NO. 67 in US20170008963A1
EGFRvIII CAR7842SEQ ID NO. 73 in US20170008963A1
EGFRvIII CAR7843SEQ ID NO. 79 in US20170008963A1
EGFRvIII CAR7844SEQ ID NO. 85 in US20170008963A1
EGFRvIII CAR7845SEQ ID NO. 90 in US20170008963A1
EGFRvIII CAR7846SEQ ID NO. 10 in US20140037628
EGFRvIII CAR7847SEQ ID NO. 11 in US20140037628
EGFRvIII CAR7848SEQ ID NO. 2 in US20170008963A1
EGFRvIII CAR7849
″EGFRvIII scFv7850SEQ ID NO. 1 in US20170008963A1
EGFRvIII scFv7851
FcRL5 CAR7852SEQ ID NO. 11 in US20170008963A1
Folate Receptor CAR7853
Folate Receptor CAR7854SEQ ID NO. 12 in US20170008963A1
Fra CAR7855SEQ ID NO: 959 (WO2016090337)
Fra CAR7856SEQ ID NO. 13 in US20170002072A1
FRβ CAR7857SEQ ID NO. 22 in US20170002072A1
FRβ CAR7858SEQ ID NO: 13 in U.S. Pat. No. 9,402,865B2
FRβ CAR7859SEQ ID NO: 22 in U.S. Pat. No. 9,402,865B2
FRβ CAR7860SEQ ID NO: 2 in U.S. Pat. No. 9,446,105B2
FRβ CAR7861SEQ ID NO: 4 in U.S. Pat. No. 9,446,105B2
FRβ CAR7862SEQ ID NO: 6 in U.S. Pat. No. 9,446,105B2
GCN4 CAR7863SEQ ID NO: 8 in U.S. Pat. No. 9,446,105B2
GCN4 CAR7864SEQ ID NO: 10 in U.S. Pat. No. 9,446,105B2
GD2 CAR7865SEQ ID NO: 12 in U.S. Pat. No. 9,446,105B2
GD2 CAR7866SEQ ID NO: 273 in WO2016168773A3
GD2 CAR7867SEQ ID NO: 274 in WO2016168773A3
GD2 CAR7868SEQ ID No. 26 in WO2015132604
GD2 CAR7869SEQ ID No. 27 in WO2015132604
GD2 CAR7870SEQ ID No. 28 in WO2015132604
GD2 CAR7871SEQ ID No. 29 in WO2015132604
GD2 CAR7872SEQ ID No. 30 in WO2015132604
GD2 CAR7873SEQ ID No. 31 in WO2015132604
GD2 CAR7874SEQ ID No. 32 in WO2015132604
GD2 CAR7875SEQ ID No. 33 in WO2015132604
GD2 CAR7876SEQ ID No. 34 in WO2015132604
GD2 CAR7877SEQ ID No. 35 in WO2015132604
GD2 CAR7878SEQ ID No. 36 in WO2015132604
GD2 CAR7879SEQ ID No. 37 in WO2015132604
GD2 CAR7880in WO2016134284 (no SEQ ID NO)
GD3 CAR7881in WO2016134284 (no SEQ ID NO)
GD3 CAR7882in WO2016134284 (no SEQ ID NO)
GD3 CAR7883in WO2016134284 (no SEQ ID NO)
GD3 CAR7884SEQ ID NO: 19 in WO2016185035A1
GD3 CAR7885SEQ ID NO: 20 in WO2016185035A1
GD3 CAR7886SEQ ID NO: 21 in WO2016185035A1
GD3 CAR7887SEQ ID NO: 22 in WO2016185035A1
GD3 CAR7888SEQ ID NO: 23 in WO2016185035A1
GD3 CAR7889SEQ ID NO: 24 in WO2016185035A1
GD3 CAR7890SEQ ID NO: 25 in WO2016185035A1
GD3 CAR7891SEQ ID NO: 26 in WO2016185035A1
GFRalpha CAR7892SEQ ID NO: 27 in WO2016185035A1
GPC3 CAR7893SEQ ID NO: 28 in WO2016185035A1
GPC3 CAR7894SEQ ID NO: 29 in WO2016185035A1
GPC3 CAR7895
GPC3 CAR7896SEQ ID NO. 3 in WO2016049459
GPC3 CAR7897SEQ ID NO. 27 in WO2016049459
GPC3 CAR7898SEQ ID NO. 10 in WO2016049459
GPC3 CAR7899SEQ ID NO. 29 in WO2016049459
GPC3 CAR7900SEQ ID NO. 14 in WO2016049459
GPC3 CAR7901SEQ ID NO. 30 in WO2016049459
GPC3CAR7902SEQ ID NO. 31 in WO2016049459
GPC3CAR7903SEQ ID NO. 18 in WO2016049459
GPC3CAR7904SEQ ID NO. 33 in WO2016049459
GPC3CAR7905SEQ ID NO: 22 in US20160215261A1
Her1/Her3 CAR Bispecific7906SEQ ID NO: 23 in US20160215261A1
Her1/Her3 CAR Bispecific7907SEQ ID NO: 24 in US20160215261A1
HER2 CAR7908SEQ ID NO: 25 in US20160215261A1
HER2 CAR7909SEQ ID NO: 9 of WO2016073629
HER2 CAR7910SEQ ID NO: 10 of WO2016073629
HER2 CAR7911SEQ ID NO: 17 in US20160333114A1
HER2 CAR7912SEQ ID NO: 28 in US20160333114A1
HER2 CAR7913SEQ ID NO: 98 in US20160333114A1
HER2 CAR7914SEQ ID NO: 110 in US20160333114A1
HER2 CAR7915SEQ ID NO: 271 in WO2016168773A3
HER2 CAR7916SEQ ID NO: 272 in WO2016168773A3
HER2 CAR7917SEQ ID NO: 5 in WO2016168769A1
HERVK CAR7918SEQ ID NO: 6 in WO2016168769A1
HIV Env CAR7919SEQ ID NO: 48 in WO2016168766A1
HIV Env CAR7920SEQ ID NO: 49 in WO2016168766A1
HIV Env CAR7921SEQ ID NO: 4 in EP2997134A4
HIV Env CAR7922SEQ ID NO. 7 in WO2015077789
HIV Env CAR7923SEQ ID NO. 9 in WO2015077789
HIV Env CAR7924SEQ ID NO. 47 in WO2015077789
HIV Env CAR7925SEQ ID NO. 49 in WO2015077789
HSP70 CAR7926SEQ ID NO. 51 in WO2015077789
HSP70 CAR7927SEQ ID NO. 53 in WO2015077789
HSP70 CAR7928SEQ ID NO. 5 in WO2015077789
HSP70 CAR7929SEQ ID NO. 21 in WO2016120217
HSP70 CAR7930SEQ ID NO. 22 in WO2016120217
HSP70 CAR7931SEQ ID NO. 23 in WO2016120217
HSP70 CAR7932SEQ ID NO. 24 in WO2016120217
HSP70 CAR7933SEQ ID NO. 25 in WO2016120217
HSP70 CAR7934SEQ ID NO. 26 in WO2016120217
HSP70 CAR7935SEQ ID NO. 27 in WO2016120217
HSP70 CAR7936SEQ ID NO. 28 in WO2016120217
HSP70 CAR7937SEQ ID NO. 29 in WO2016120217
IL 13 CAR7938SEQ ID NO. 30 in WO2016120217
IL 13 CAR7939SEQ ID NO. 31 in WO2016120217
IL 13 CAR7940SEQ ID NO. 32 in WO2016120217
IL13Ra2specific CAR7941SEQ ID NO. 4 in WO2016089916A1
IL13Ra2specific CAR7942SEQ ID NO. 5 in WO2016089916A1
IL13Ra2specific CAR7943SEQ ID NO. 6 in WO2016089916A1
IL13Ra2specific CAR7944SEQ ID NO. 47 in WO2016123143
IL13Ra2specific CAR7945SEQ ID NO. 49 in WO2016123143
IL13Rα2 CAR7946SEQ ID NO. 51 in WO2016123143
IL13Rα2 CAR7947SEQ ID NO. 53 in WO2016123143
IL13Rα2 CAR7948SEQ ID NO. 55 in WO2016123143
IL13Rα2 CAR7949SEQ ID NO: 1 in US20160340649A1
IL13Rα2 CAR7950SEQ ID NO: 31 in US20160340649A1
IL13Rα2 CAR7951SEQ ID NO: 32 in US20160340649A1
IL13Rα2 CAR7952SEQ ID NO: 33 in US20160340649A1
IL13Rα2 CAR7953SEQ ID NO: 34 in US20160340649A1
IL13Rα2 CAR7954SEQ ID NO: 35 in US20160340649A1
IL13Rα2 CAR7955SEQ ID NO: 36 in US20160340649A1
IL13Rα2 CAR7956SEQ ID NO: 37 in US20160340649A1
IL13Rα2 CAR7957SEQ ID NO: 38 in US20160340649A1
IL13Rα2 CAR7958SEQ ID NO: 39 in US20160340649A1
IL13Rα2 CAR7959SEQ ID NO: 40 in US20160340649A1
IL13Rα2 CAR7960SEQ ID NO: 41 in US20160340649A1
IL13Rα2 CAR7961SEQ ID NO: 42 in US20160340649A1
IL13Rα2 CAR7962SEQ ID NO: 43 in US20160340649A1
IL13Rα2 CAR7963SEQ ID NO: 44 in US20160340649A1
IL13Rα2 CAR7964SEQ ID NO: 45 in US20160340649A1
KMA CAR7965SEQ ID NO: 46 in US20160340649A1
MESOTHELIN CAR7966SEQ ID NO: 47 in US20160340649A1
MESOTHELIN CAR7967SEQ ID NO: 48 in US20160340649A1
MESOTHELIN CAR7968SEQ ID NO: 27 in WO2016172703A2
MESOTHELIN CAR7969SEQ ID NO: 18 in WO2013142034
MESOTHELIN CAR7970SEQ ID NO: 19 in WO2013142034
MESOTHELIN CAR7971SEQ ID NO: 20 in WO2013142034
MESOTHELIN CAR7972SEQ ID NO: 21 in WO2013142034
MESOTHELIN CAR7973SEQ ID NO: 22 in WO2013142034
MESOTHELIN CAR7974SEQ ID NO: 23 in WO2013142034
Mesothelin CAR7975SEQ ID NO. 3 in WO2013067492
MUC1 CAR7976SEQ ID NO. 5 in WO2013063419
MUC1 CAR7977SEQ ID NO. 7 in WO2013063419
MUC1 CAR7978SEQ ID NO. 51 in US20160340406A1
MUC1 CAR7979SEQ ID NO. 30 in US20160130357
MUC1 CAR7980SEQ ID NO. 32 in US20160130357
MUC1 CAR7981SEQ ID NO. 34 in US20160130357
MUC1 CAR7982SEQ ID NO. 295 in WO2016130726
MUC1 CAR7983SEQ ID NO. 298 in WO2016130726
MUC1 CAR7984SEQ ID NO. 301 in WO2016130726
MUC1 CAR7985SEQ ID NO. 304 in WO2016130726
MUC1 CAR7986SEQ ID NO. 307 in WO2016130726
MUC1 CAR7987SEQ ID NO. 607 in WO2016130726
MUC1 CAR7988SEQ ID NO. 609 in WO2016130726
MUC1 CAR7989SEQ ID NO. 611 in WO2016130726
MUC1 CAR7990SEQ ID NO. 613 in WO2016130726
NCAR with RQR82ACD19CAR7991SEQ ID NO. 615 in WO2016130726
NYBR1 CAR7992SEQ ID NO. 617 in WO2016130726
NYBR1 CAR7993SEQ ID NO. 619 in WO2016130726
NYBR1 CAR7994SEQ ID NO: 218 in WO2016097231
NYBR1 CAR7995SEQ ID NO. 26 in WO2015112830
NYBR1 CAR7996SEQ ID NO. 29 in WO2015112830
NYBR1 CAR7997SEQ ID NO. 60 in WO2015112830
NYBR1 CAR7998SEQ ID NO: 1 in US20160333422A1
P5A CAR7999SEQ ID NO: 26 in US20160333422A1
P5A CAR8000SEQ ID NO: 29 in US20160333422A1
P5A CAR8001SEQ ID NO: 60 in US20160333422A1
P5AC1 CAR8002SEQ ID NO: 343 in US20160297884A1
P5AC1 CAR8003SEQ ID NO: 344 in US20160297884A1
P5AC1 CAR8004SEQ ID NO: 345 in US20160297884A1
P5AC1 CAR8005SEQ ID NO: 346 in US20160297884A1
P5AC16 CAR8006SEQ ID NO: 347 in US20160297884A1
P5AC16 CAR8007SEQ ID NO: 396 in US20160297884A1
P5AC16 CAR8008SEQ ID NO: 348 in US20160297884A1
P6AP CAR8009SEQ ID NO: 349 in US20160297884A1
P6AP CAR8010SEQ ID NO: 350 in US20160297884A1
P6AP CAR8011SEQ ID NO: 351 in US20160297884A1
P6DY CAR8012SEQ ID NO: 364 in US20160297884A1
P6DY CAR8013SEQ ID NO: 365 in US20160297884A1
P6DY CAR8014SEQ ID NO: 366 in US20160297884A1
PC1 CAR8015SEQ ID NO: 361 in US20160297884A1
PC1 CAR8016SEQ ID NO: 362 in US20160297884A1
PC1 CAR8017SEQ ID NO: 363 in US20160297884A1
PC1C12 CAR8018SEQ ID NO: 352 in US20160297884A1
PC1C12 CAR8019SEQ ID NO: 353 in US20160297884A1
PC1C12 CAR8020SEQ ID NO: 354 in US20160297884A1
PD1 CAR8021SEQ ID NO: 355 in US20160297884A1
PD1 CAR8022SEQ ID NO: 356 in US20160297884A1
PD1 CAR8023SEQ ID NO: 357 in US20160297884A1
PD1 CAR8024SEQ ID NO. 119 in WO2014153270
PD1 CAR8025SEQ ID NO. 121 in WO2014153270
PD1 CAR8026SEQ ID NO: 22 in US20160311917A1
PD1 CAR8027SEQ ID NO: 24 in US20160311917A1
PD1 CAR8028SEQ ID NO: 63 in US20160311917A1
PD1 CAR8029SEQ ID NO: 64 in US20160311917A1
PD1 CAR8030SEQ ID NO: 65 in US20160311917A1
PD1 CAR8031SEQ ID NO: 66 in US20160311917A1
PD1 CAR8032SEQ ID NO: 67 in US20160311917A1
PD1 CAR8033SEQ ID NO: 68 in US20160311917A1
PD1 CAR8034SEQ ID NO: 69 in US20160311917A1
PD1 CAR8035SEQ ID NO: 70 in US20160311917A1
PD1 CAR8036SEQ ID NO: 71 in US20160311917A1
PD1 CAR8037SEQ ID NO: 72 in US20160311917A1
PD1 CAR8038SEQ ID NO: 73 in US20160311917A1
PD1 CAR8039SEQ ID NO: 74 in US20160311917A1
PD1 CAR8040SEQ ID NO: 75 in US20160311917A1
PD1 CAR8041SEQ ID NO: 76 in US20160311917A1
PD1 CAR8042SEQ ID NO: 77 in US20160311917A1
PD1 CAR8043SEQ ID NO: 78 in US20160311917A1
PD1 CAR8044SEQ ID NO: 79 in US20160311917A1
PD1 CAR8045SEQ ID NO: 80 in US20160311917A1
PD1 CAR8046SEQ ID NO: 81 in US20160311917A1
PD1 CAR8047SEQ ID NO: 82 in US20160311917A1
PD1 CAR8048SEQ ID NO: 83 in US20160311917A1
PD1 CAR8049SEQ ID NO: 84 in US20160311917A1
PD1 CAR8050SEQ ID NO: 85 in US20160311917A1
PD1 CAR8051SEQ ID NO: 86 in US20160311917A1
PD1 CAR8052SEQ ID NO: 26 in WO2016172537A1
PD1 CAR8053SEQ ID NO: 39 in WO2016172537A1
PD1 CAR8054SEQ ID NO: 40 in US20160311907A1
PD1 CAR8055SEQ ID. NO. 121 in WO2015157252
PD1 CAR8056SEQ ID. NO. 119 in WO2015157252
PD1 CAR8057SEQ ID NO. 24 (WO2016014565)
PD1 CAR8058SEQ ID NO. 22 (WO2016014565)
PD1 FKBP RCAR8059SEQ ID NO. 23 (WO2016014565)
PD1 FKBP RCAR8060SEQ ID NO. 26 in WO2015142675
PSMA NCAR8061SEQ ID NO. 39 in WO2015142675
PSMA NCAR8062SEQ ID NO: 28 in US20160311907A1
PSMA NCAR8063SEQ ID NO: 29 in US20160311907A1
PSMA NCAR8064SEQ ID NO: 140 in WO2016097231
PSMA NCAR8065SEQ ID NO: 144 in WO2016097231
PSMA NCAR8066SEQ ID NO: 145 in WO2016097231
PSMA NCAR8067SEQ ID NO: 146 in WO2016097231
PSMA NCAR8068SEQ ID NO: 147 in WO2016097231
PSMA NCAR8069SEQ ID NO: 148 in WO2016097231
PSMA NCAR8070SEQ ID NO: 149 in WO2016097231
PSMA NCAR8071SEQ ID NO: 150 in WO2016097231
PSMA NCAR8072SEQ ID NO: 167 in WO2016097231
PSMA NCAR8073SEQ ID NO: 168 in WO2016097231
PSMA NCAR8074SEQ ID NO. 169 in WO2016097231
PSMA NCAR8075SEQ ID NO: 170 in WO2016097231
PSMA NCAR8076SEQ ID NO: 171 in WO2016097231
PSMA NCAR8077SEQ ID NO: 172 in WO2016097231
PSMA NCAR8078SEQ ID NO: 173 in WO2016097231
PSMA NCAR8079SEQ ID NO: 174 in WO2016097231
PSMA NCAR8080SEQ ID NO: 151 in WO201609723I
PSMA NCAR8081SEQ ID NO: 152 in WO2016097231
PSMA NCAR8082SEQ ID NO: 153 in WO2016097231
PSMA NCAR8083SEQ ID NO: 154 in WO2016097231
PSMA NCAR8084SEQ ID NO: 155 in WO2016097231
PSMA NCAR8085SEQ ID NO: 156 in WO2016097231
PSMA NCAR8086SEQ ID NO: 139 in WO2016097231
PSMA NCAR8087SEQ ID NO: 138 in WO2016097231
PSMA NCAR8088SEQ ID NO: 175 in WO2016097231
PSMA NCAR8089SEQ ID NO: 157 in WO2016097231
PSMA NCAR8090SEQ ID NO: 158 in WO2016097231
PSMA NCAR8091SEQ ID NO: 159 in WO2016097231
PSMA NCAR8092SEQ ID NO: 160 in WO2016097231
PSMA NCAR8093SEQ ID NO: 161 in WO2016097231
PSMA NCAR8094SEQ ID NO: 162 in WO2016097231
PSMA NCAR8095SEQ ID NO: 163 in WO2016097231
PSMA NCAR8096SEQ ID NO: 164 in WO2016097231
PSMA NCAR8097SEQ ID NO: 165 in WO2016097231
PSMA NCAR8098SEQ ID NO: 166 in WO2016097231
PSMA NCAR8099SEQ ID NO: 141 in WO2016097231
PSMA NCAR8100SEQ ID NO: 142 in WO2016097231
PSMA NCAR8101SEQ ID NO: 143 in WO2016097231
PSMA NCAR8102SEQ ID NO: 214 in WO2016097231
ROR1 CAR8103SEQ ID NO: 216 in WO2016097231
ROR1 CAR8104SEQ ID NO: 217 in WO2016097231
ROR1 CAR8105SEQ ID NO: 215 in WO2016097231
ROR1 CAR8106SEQ ID N0. 79 in WO2016016344A1
ROR1 CAR8107SEQ ID N0. 80 in WO2016016344A1
ROR1 CAR8108SEQ ID N0. 81 in WO2016016344A1
ROR1 CAR8109SEQ ID N0. 82 in WO2016016344A1
ROR1 CAR8110SEQ ID N0. 83 in WO2016016344A1
ROR1 CAR8111SEQ ID N0. 84 in WO2016016344A1
ROR1 CAR8112SEQ ID N0. 85 in WO2016016344A1
ROR1 CAR8113SEQ ID N0. 86 in WO2016016344A1
ROR1 CAR8114SEQ ID N0. 87 in WO2016016344A1
ROR1 CAR8115SEQ ID N0. 88 in WO2016016344A1
ROR1 CAR8116SEQ ID N0. 89 in WO2016016344A1
ROR1 CAR8117SEQ ID N0. 90 in WO2016016344A1
ROR1 CAR8118SEQ ID N0. 91 in WO2016016344A1
ROR1 CAR8119SEQ ID N0. 92 in WO2016016344A1
ROR1 CAR8120SEQ ID N0. 93 in WO2016016344A1
ROR1 CAR8121SEQ ID N0. 94 in WO2016016344A1
ROR1 CAR8122SEQ ID N0. 95 in WO2016016344A1
ROR1 CAR8123SEQ ID N0. 96 in WO2016016344A1
ROR1 CAR8124SEQ ID N0. 103 in WO2016016344A1
ROR1 CAR8125SEQ ID N0. 104 in WO2016016344A1
ROR1 CAR8126SEQ ID N0. 105 in WO2016016344A1
ROR1 CAR8127SEQ ID N0. 106 in WO2016016344A1
ROR1 CAR8128SEQ ID N0. 107 in WO2016016344A1
ROR1 CAR8129SEQ ID N0. 108 in WO2016016344A1
ROR1 CAR8130SEQ ID N0. 109 in WO2016016344A1
ROR1 CAR8131SEQ ID N0. 110 in WO2016016344A1
ROR1 CAR8132SEQ ID N0. 111 in WO2016016344A1
ROR1 CAR8133SEQ ID N0. 112 in WO2016016344A1
ROR1 CAR8134SEQ ID N0. 113 in WO2016016344A1
ROR1 CAR8135SEQ ID N0. 114 in WO2016016344A1
ROR1 CAR8136SEQ ID N0. 115 in WO2016016344A1
ROR1 CAR8137SEQ ID N0. 116 in WO2016016344A1
ROR1 CAR8138SEQ ID N0. 117 in WO2016016344A1
ROR1 CAR8139SEQ ID N0. 118 in WO2016016344A1
ROR1 CAR8140SEQ ID N0. 119 in WO2016016344A1
ROR1 CAR8141SEQ ID N0. 120 in WO2016016344A1
ROR1 CAR8142SEQ ID N0. 127 in WO2016016344A1
ROR1 CAR8143SEQ ID N0. 128 in WO2016016344A1
ROR1 CAR8144SEQ ID N0. 129 in WO2016016344A1
ROR1 CAR8145SEQ ID N0. 130 in WO2016016344A1
ROR1 CAR8146SEQ ID N0. 131 in WO2016016344A1
ROR1 CAR8147SEQ ID N0. 132 in WO2016016344A1
ROR1 CAR8148SEQ ID N0. 133 in WO2016016344A1
ROR1 CAR8149SEQ ID N0. 134 in WO2016016344A1
ROR1 CAR8150SEQ ID N0. 135 in WO2016016344A1
ROR1 CAR8151SEQ ID N0. 136 in WO2016016344A1
ROR1 CAR8152SEQ ID N0. 137 in WO2016016344A1
ROR1 CAR8153SEQ ID N0. 138 in WO2016016344A1
ROR1 CAR8154SEQ ID N0. 97 in WO2016016344A1
ROR1 CAR8155SEQ ID N0. 98 in WO2016016344A1
ROR1 CAR8156SEQ ID N0. 99 in WO2016016344A1
ROR1 CAR8157SEQ ID N0. 100 in WO2016016344A1
ROR1 CAR8158SEQ ID N0. 101 in WO2016016344A1
ROR1 CAR8159SEQ ID N0. 102 in WO2016016344A1
ROR1 CAR8160SEQ ID N0. 121 in WO2016016344A1
ROR1 CAR8161SEQ ID N0. 122 in WO2016016344A1
ROR1 CAR8162SEQ ID N0. 123 in WO2016016344A1
ROR1 CAR8163SEQ ID N0. 124 in WO2016016344A1
ROR1 CAR8164SEQ ID N0. 125 in WO2016016344A1
ROR1 CAR8165SEQ ID N0. 126 in WO2016016344A1
ROR1 CAR8166SEQ ID NO: 386 in WO2016187216A1
ROR1 CAR8167SEQ ID NO: 387 in WO2016187216A1
ROR1 CAR8168SEQ ID NO: 388 in WO2016187216A1
ROR1 CAR8169SEQ ID NO: 389 in WO2016187216A1
ROR1 CAR8170SEQ ID NO: 390 in WO2016187216A1
ROR1 CAR8171SEQ ID NO: 391 in WO2016187216A1
ROR1 CAR8172SEQ ID NO: 392 in WO2016187216A1
ROR1 CAR8173SEQ ID NO: 393 in WO2016187216A1
ROR1 CAR8174SEQ ID NO: 394 in WO2016187216A1
SNAP CAR8175SEQ ID NO: 395 in WO2016187216A1
SSEA4CAR8176SEQ ID NO: 396 in WO2016187216A1
SSEA4CAR8177SEQ ID NO: 397 in WO2016187216A1
Tan CAR (a CAR AND GATE which8178SEQ ID NO: 19 in US20160311907A1
recognizes CD19 AND CD33 using a
CD45 phosphatase)
Tan CAR (a CAR AND gate which8179SEQ ID NO. 5 in WO2016026742A1
recognizes CD19 AND CD33 using a
CD148 phosphatase)
Tan CAR (a CAR AND NOT gate8180SEQ ID NO. 6 in WO2016026742A1
which recognizes CD19 AND NOT
CD33 and is based on an ITIM
containing endodomain from LAIR1)
Tan CAR (a CAR AND NOT GATE8181SEQ ID NO. 3 in WO2015075468
which recognizes CD19 AND NOT
CD33 based on PTPN6 phosphatase)
Tan CAR (a CAR AND NOT gate8182SEQ ID NO. 2 in WO2015075468
which recognizes CD19 AND NOT
CD33 and recruits a PTPN6CD148
fusion protein to an ITIM containing
endodomain)
TOSO CAR8183SEQ ID NO. 5 in WO2015075468
TOSO CAR8184SEQ ID NO. 4 in WO2015075468
Trophoblast Glycoprotein 5T4 CAR8185SEQ ID NO. 6 in WO2015075468
Trophoblast Glycoprotein 5T4 CAR8186SEQ ID No. 4 in US20160347854A1
Trophoblast Glycoprotein 5T4 CAR8187SEQ ID No. 4 in EP3098237A1
Trophoblast Glycoprotein 5T4 CAR8188SEQ ID N0. 19 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8189SEQ ID N0. 20 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8190SEQ ID N0. 21 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8191SEQ ID N0. 22 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8192SEQ ID N0. 23 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8193SEQ ID N0. 24 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8194SEQ ID N0. 25 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8195SEQ ID N0. 26 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8196SEQ ID N0. 27 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8197SEQ ID N0. 28 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8198SEQ ID N0. 29 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8199SEQ ID N0. 30 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8200SEQ ID N0. 31 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8201SEQ ID N0. 32 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8202SEQ ID N0. 33 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8203SEQ ID N0. 34 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8204SEQ ID N0. 35 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8205SEQ ID N0. 36 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8206SEQ ID N0. 37 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8207SEQ ID N0. 38 in WO2016034666A1
Trophoblast Glycoprotein 5T4 CAR8208SEQ ID N0. 39 in WO2016034666A1
TSLPR CAR8209SEQ ID N0. 40 in WO2016034666A1
TSLPR CAR8210SEQ ID N0. 41 in WO2016034666A1
TSLPR CAR8211SEQ ID N0. 42 in WO2016034666A1
TSLPR CAR8212SEQ ID NO. 39 in WO2015084513
TSLPR CAR8213SEQ ID NO. 40 in WO2015084513
TSLPR CAR8214SEQ ID NO. 41 in WO2015084513
TSLPR CAR8215SEQ ID NO. 42 in WO2015084513
TSLPR CAR8216SEQ ID NO. 43 in WO2015084513
TSLPR CAR8217SEQ ID NO. 44 in WO2015084513
TSLPR CAR8218SEQ ID NO. 45 in WO2015084513
TSLPR CAR8219SEQ ID NO. 46 in WO2015084513
TSLPR CAR8220SEQ ID NO: 39 in US20160311910A1
TSLPR CAR8221SEQ ID NO: 40 in US20160311910A1
TSLPR CAR8222SEQ ID NO: 41 in US20160311910A1
TSLPR CAR8223SEQ ID NO: 42 in US20160311910A1
TSLPR CAR8224SEQ ID NO: 43 in US20160311910A1
VEGFR2 CAR8225SEQ ID NO: 44 in US20160311910A1
VEGFR2 CAR8226SEQ ID NO: 45 in US20160311910A1
VEGFR2 CAR8227SEQ ID NO: 46 in US20160311910A1
VEGFR2 CAR8228SEQ ID NO. 10 in US20120213783
VEGFR2 CAR8229SEQ ID NO. 11 in US20120213783
VEGFR2 CAR8230SEQ ID NO. 12 in US20120213783
αfolate receptor (FRα) CAR8231SEQ ID NO. 13 in US20120213783
αfolate receptor (FRα) CAR8232SEQ ID NO. 14 in US20120213783

In one embodiment of the present invention, the payload of the invention is a CD19 specific CAR targeting different B cell malignancies and HER2-specific CAR targeting sarcoma, glioblastoma, and advanced Her2-positive lung malignancy.

In some embodiments, the CAR is a CD19 CAR. The amino acid sequences of CD19 CAR components and CD19 CAR constructs are presented in Table 17A and Table 17B. Table 17B also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.

TABLE 17A
CD19 CAR construct components
AANA
SEQSEQ
DescriptionAmino Acid SequenceID NOID NO
CD19 scFvDIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQ82338241-
KPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISN8246
LEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGG
GGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSL
PDYGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSR
LTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGG
SYAMDYWGQGTSVTVSS
CD8α hingeTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR82348247-
GLDFACD8251
CD8α hinge-TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR82358252-
TM (hinge andGLDFACDIYIWAPLAGTCGVLLLSLVITLYC8254
transmembrane)
CD3 zetaRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLD82368255-
signalingKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAY8261
domainSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ
ALPPR
4-1BBKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE82378262-
intracellularGGCEL8267
signaling
domain; CD28
co-stimulatory
domain;
CD8α leaderMALPVTALLLPLALLLHAARP 278279-
283
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL   3 339
(Amino acidCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535-860 ofVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
WT)LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA
TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAML
MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV
SEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL  12 359
(Amino acidCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535-860 ofVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
WT, R732L)LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA
TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML
MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV
SEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL 505 520
(Amino acidCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535-860 ofVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
WT, R732L,LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH
D764N)HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA
TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML
MTACNLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV
SEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL 227 233
(Amino acidCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535-860 ofVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
WT, R732L,LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH
F736A)HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA
TDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAML
MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV
SEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL 348 361
(Amino acidCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535-860 ofVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
WT, H653A)LLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEH
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA
TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAML
MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV
SEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL 509 524
(Amino acidCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535-860 ofVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
WT, R732L,LLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEH
H653A)HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA
TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML
MTACDLSAITKPWPIQQRIAELVAIEFFDQGDRERKEL
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV
SEDCFPLLDGCRKNRQKWQALAEQQ
hPDE5EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL 510 525
(Amino acidCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKN
535-860 ofVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
WT, R732L,LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH
D764A)HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA
TDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAML
MTACALSAITKPWPIQQRIAELVATEFFDQGDRERKEL
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHV
SEDCFPLLDGCRKNRQKWQALAEQQ
HA TagYPYDVPDYA82388268
P2A CleavableGATNFSLLKQAGDVEENPGP82398270
peptide
mCherryLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEG82408269
(M1L)EGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSK
AYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVT
VTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMG
WEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVK
TTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYE
RAEGRHSTGGMDELYK
SG LINKERSGAGTG
GT
Linker (GSG)GSGGGAT
(BamH1-Gly)CCGG
A
Flexible G/SGSGGAT
rich linker;CC
BamH1 Site
Lys-Asp AcidLDCTAG
LinkerAT
TABLE 17B
CD19 CARs constructs
AANA
SEQ IDSEQ ID
DescriptionAmino Acid SequenceNONO
OT-CD19-063MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82718285
(OT-001407)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFv; CD8aNTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
Hinge andESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
TransmembraneKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
Domain; 4-1BBLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
intracellularTSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
domain; CD3 zetaGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
signaling domain;KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
stopGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPR*
OT-CD19-037MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82728286
(OT-001258)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
Linker (GSG),GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, R732L,EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
D764N), stopKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPRGSGEETRELQSLAAAVVPSAQTLK
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS
YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI
LSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIR
KNQFNLEDPHQKELFLAMLMTACNLSAITKPWPIQQ
RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI
PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ*
OT-CD19-045MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82738287
(OT-001298)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
Linker (GSG);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, R732L,EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
F736A); stopKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPRGSGEETRELQSLAAAVVPSAQTLK
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS
YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI
LSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELI
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ
QRIAELVAIEFFDQGDRERKELNIEPTDLMNREKKN
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK
NRQKWQALAEQQ*
OT-CD19-051MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82748288
(OT-001299)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
Linker (GSG);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT); stopEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPRGSGEETRELQSLAAAVVPSAQTLK
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS
YIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI
LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQ
QRIAELVAIEFFDQGDRERKELNIEPTDLMNREKKN
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK
NRQKWQALAEQQ*
OT-CD19-052MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ82758289
(OT-001300)TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT
CD8a leader; HAVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE
Tag; CD19 scFV;DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS
CD8a-Tm; (4-GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY
1BB intracellularGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI
domain); CD3zetaIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY
signaling domain;AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL
Linker (SG);RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV
hPDE5 (AminoLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED
acid 535-860 ofGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL
WT); stopYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ
EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY
QGLSTATKDTYDALHMQALPPRSGEETRELQSLAAA
VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL
VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA
FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL
DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM
ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR
RGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI
TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM
NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL
LDGCRKNRQKWQALAEQQ*
OT-CD19-053MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ82768290
(OT-001301)TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT
CD8a leader; HAVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE
Tag; CD19 scFV;DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS
CD8a-Tm; (4-GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY
1BB intracellularGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI
domain); CD3zetaIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY
signaling domain;AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL
linker (SG);RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV
hPDE5 (AminoLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED
acid 535-860 ofGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL
WT, R732L); stopYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ
EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY
QGLSTATKDTYDALHMQALPPRSGEETRELQSLAAA
VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL
VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA
FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL
DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM
ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR
LGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI
TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM
NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL
LDGCRKNRQKWQALAEQQ*
OT-CD19-067MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82778291
(OT-001302)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
linker (GS);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, R732L,EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
F736A); linkerKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
(GS); mCherryYDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI
(M1L); stopTDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRK
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI
AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQGSLSKGEEDNMAIIKEFMRFKVHMEG
SVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFA
WDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKW
ERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNF
PSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQR
LKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKL
DITSHNEDYTIVEQYERAEGRHSTGGMDELYK*
OT-CD19-078MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82788292
(OT-001303)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
linker (GS);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, R732L,EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
F736A); linkerKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
(GSG); P2AYDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI
linker; mCherryTDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE
(M1L); stopVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRK
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI
AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQGSGGATNFSLLKQAGDVEENPGPLSK
GEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEG
RPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKA
YVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTV
TQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMG
WEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEV
KTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQ
YERAEGRHSTGGMDELYK*
OT-CD19-100MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ82798293
(OT-001304)TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT
CD8a leader; HAVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE
Tag; CD19 scFV;DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS
CD8a-Tm, (4-GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY
1BB intracellularGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI
domain); CD3zetaIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY
signaling domain;AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL
linker (GS);RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV
hPDE5 (AminoLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED
acid 535-860 ofGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL
WT); linker (GS),YNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ
Spacer (LD); P2AEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY
linker; mCherryQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAA
(M1L); stopVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL
VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA
FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL
DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM
ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR
RGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI
TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM
NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL
LDGCRKNRQKWQALAEQQGSLDGATNFSLLKQAGD
VEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGH
EFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILS
PQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVM
NFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDG
PVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLK
DGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSH
NEDYTIVEQYERAEGRHSTGGMDELYK*
OT-CD19-101MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQ82808294
(OT-001305)TTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGT
CD8a leader; HAVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQE
Tag; CD19 scFV;DIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGS
CD8a-Tm; (4-GGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY
1BB intracellularGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTI
domain); CD3zetaIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSY
signaling domain;AMDYWGQGTSVTVSSTTTPAPRPPTPAPTIASQPLSL
Linker (GS);RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGV
hPDE5 (AminoLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED
acid 535-860 ofGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL
WT, R732L);YNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ
Linker (GS),EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY
Spacer (LD); P2AQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAA
linker; mCherryVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL
(M1L); stopVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHA
FNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL
DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM
ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR
LGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI
TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM
NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL
LDGCRKNRQKWQALAEQQGSLDGATNFSLLKQAGD
VEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGH
EFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILS
PQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVM
NFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDG
PVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLK
DGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSH
NEDYTIVEQYERAEGRHSTGGMDELYK*
OT-CD19-111MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82818295
(OT-001454)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
Linker (GS);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, R732L); stopEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
KMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRK
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI
AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQ*
OT-CD19-130MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82828296
(OT-001455)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
Linker (GS);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, H653A);EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
stopKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
ALKAGKIQNKLTDLEILALLIAALSADLDHRGVNNSY
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
GLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRK
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI
AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQ*
OT-CD19-131MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82838297
(OT-001456)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
Linker (GS);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, H653A,EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
R732L); stopKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
ALKAGKIQNKLTDLEILALLIAALSADLDHRGVNNSY
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRK
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI
AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQ*
OT-CD19-132MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLG82848298
(OT-001457)DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSR
CD8a leader;LHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQG
CD19 scFV;NTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQ
CD8a-Tm; (4-ESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR
1BB intracellularKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF
domain); CD3zetaLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQG
signaling domain;TSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG
Linker (GS);GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
hPDE5 (AminoKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE
acid 535-860 ofGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE
WT, R732L,EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKD
D764A); stopKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT
YDALHMQALPPRGSEETRELQSLAAAVVPSAQTLKI
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA
ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSY
IQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRK
NQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQRI
AELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPS
MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ
KWQALAEQQ*

Tandem CAR (TanCAR)

In some embodiments, the CAR of the present invention may be a tandem chimeric antigen receptor (TanCAR) which is able to target two, three, four, or more tumor specific antigens. In some aspects, the CAR is a bispecific TanCAR including two targeting domains which recognize two different TSAs on tumor cells. The bispecific CAR may be further defined as comprising an extracellular region comprising a targeting domain (e.g., an antigen recognition domain) specific for a first tumor antigen and a targeting domain (e.g., an antigen recognition domain) specific for a second tumor antigen. In other aspects, the CAR is a multi specific TanCAR that includes three or more targeting domains configured in a tandem arrangement. The space between the targeting domains in the TanCAR may be between about 5 and about 30 amino acids in length, for example, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 amino acids.

Split CAR

In some embodiments, the components including the targeting moiety, transmembrane domain and intracellular signaling domains of the present invention may be split into two or more parts such that it is dependent on multiple inputs that promote assembly of the intact functional receptor. In one embodiment, the split synthetic CAR system can be constructed in which the assembly of an activated CAR receptor is dependent on the binding of a ligand to the SRE (e.g. a small molecule) and a specific antigen to the targeting moiety. As a non-limiting example, the split CAR consists of two parts that assemble in a small molecule-dependent manner; one part of the receptor features an extracellular antigen binding domain (e.g. scFv) and the other part has the intracellular signaling domains, such as the CD3 intracellular domain.

In other aspects, the split parts of the CAR system can be further modified to increase signal. In one example, the second part of cytoplasmic fragment may be anchored to the plasma membrane by incorporating a transmembrane domain (e.g., CD8α transmembrane domain) to the construct. An additional extracellular domain may also be added to the second part of the CAR system, for instance an extracellular domain that mediates hom*o-dimerization. These modifications may increase receptor output activity, i.e., T cell activation.

In some aspects, the two parts of the split CAR system contain heterodimerization domains that conditionally interact upon binding of a heterodimerizing small molecule. As such, the receptor components are assembled in the presence of the small molecule, to form an intact system which can then be activated by antigen engagement. Any known heterodimerizing components can be incorporated into a split CAR system. Other small molecule dependent heterodimerization domains may also be used, including, but not limited to, gibberellin-induced dimerization system (GID1-GAI), trimethoprim-SLF induced ecDHFR and FKBP dimerization (Czlapinski et al., J Am Chem Soc., 2008, 130(40): 13186-13187) and ABA (abscisic acid) induced dimerization of PP2C and PYL domains (Cutler et al., Annu Rev Plant Biol. 2010, 61: 651-679). The dual regulation using inducible assembly (e.g., ligand dependent dimerization) and degradation (e.g., destabilizing domain induced CAR degradation) of the split CAR system may provide more flexibility to control the activity of the CAR modified T cells.

Switchable CAR

In some embodiments, the CAR of the invention may be a switchable CAR. Juilerat et al (Juilerat et al., Sci. Rep., 2016, 6: 18950; the contents of which are incorporated herein by reference in their entirety) recently reported controllable CARs that can be transiently switched on in response to a stimulus (e.g. a small molecule). In this CAR design, a system is directly integrated in the hinge domain that separate the scFv domain from the cell membrane domain in the CAR. Such system is possible to split or combine different key functions of a CAR such as activation and co-stimulation within different chains of a receptor complex, mimicking the complexity of the TCR native architecture. This integrated system can switch the scFv and antigen interaction between on/off states controlled by the absence/presence of the stimulus.

Reversible CAR

In other embodiments, the CAR of the invention may be a reversible CAR system. In this CAR architecture, a LID domain (ligand-induced degradation) is incorporated into the CAR system. The CAR can be temporarily down-regulated by adding a ligand of the LID domain. The combination of LID and DD mediated regulation provides tunable control of continuingly activated CAR T cells, thereby reducing CAR mediated tissue toxicity.

Inhibitory CAR (iCAR)

In some embodiments, payloads of the present invention may be inhibitory CARs. Inhibitory CAR (iCAR) refers to a bispecific CAR design wherein a negative signal is used to enhance the tumor specificity and limit normal tissue toxicity. This design incorporates a second CAR having a surface antigen recognition domain combined with an inhibitory signal domain to limit T cell responsiveness even with concurrent engagement of an activating receptor. This antigen recognition domain is directed towards a normal tissue specific antigen such that the T cell can be activated in the presence of first target protein, but if the second protein that binds to the iCAR is present, the T cell activation is inhibited.

As a non-limiting example, iCARs against Prostate specific membrane antigen (PMSA) based on CTLA4 and PD1 inhibitory domains demonstrated the ability to selectively limit cytokine secretion, cytotoxicity and proliferation induced by T cell activation (Fedorov V. D, et al., 2013, Sci Transl Med, 11; 5(215):215ra172; the contents of which are incorporated herein in their entirety).

Chimeric Switch Receptor

In some embodiments, payloads of the invention may be chimeric switch receptors which can switch a negative signal to a positive signal. As used herein, the term “chimeric switch receptor” refers to a fusion protein comprising a first extracellular domain and a second transmembrane and intracellular domain, wherein the first domain includes a negative signal region and the second domain includes a positive intracellular signaling region. In some aspects, the fusion protein is a chimeric switch receptor that contains the extracellular domain of an inhibitory receptor on T cell fused to the transmembrane and cytoplasmic domain of a co-stimulatory receptor. This chimeric switch receptor may convert a T cell inhibitory signal into a T cell stimulatory signal.

As a non-limiting example, the chimeric switch receptor may comprise the extracellular domain of PD-1 fused to the transmembrane and cytoplasmic domain of CD28 as taught by Liu et al. (Liu et al., Cancer Res., 2016, 76(6): 1578-1590; the contents of which are incorporated by reference in their entirety). In some aspects, extracellular domains of other inhibitory receptors such as CTLA-4, LAG-3, TIM-3, KIRs and BTLA may also be fused to the transmembrane and cytoplasmic domain derived from costimulatory receptors such as CD28, 4-1BB, CD27, OX40, CD40, GTIR and ICOS. In the context of the present invention, the SRE domain (e.g., DD) may be inserted at the N- or C-terminus of the chimeric switch receptor.

In some embodiments, chimeric switch receptors of the present invention may include recombinant receptors comprising the extracellular cytokine-binding domain of an inhibitory cytokine receptor (e.g., IL13 receptor α (IL13Rα1), IL10R, and IL4Rα) fused to an intracellular signaling domain of a stimulatory cytokine receptor such as IL2R (IL2Rα, IL2Rβ and IL2 Rgamma) and IL7Rα. One example of such chimeric cytokine receptor is a recombinant receptor containing the cytokine-binding extracellular domain of IL4Ra linked to the intracellular signaling domain of IL7Rα (see, U.S. patent publication NO: 2014/0050709; the contents of which are incorporated herein by reference in their entirety).

In one embodiment, the chimeric switch receptor of the present invention may be a chimeric TGFβ receptor. The chimeric TGFβ receptor may comprise an extracellular domain derived from a TGFβ receptor such as TGFβ receptor 1, TGFβ receptor 2, TGFβ receptor 3, or any other TGFβ receptor or variant thereof; and a non-TGFβ receptor intracellular domain. The non-TGFβ receptor intracellular domain may be the intracellular domain or fragment thereof derived from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, CD28, 4-1BB (CD137), OX40 (CD134), CD3 zeta, CD40, CD27, or a combination thereof. One example of such chimeric TGFβ receptor is discussed in U.S. patent publication NO.: US2016/0075755; the contents of which are incorporated herein by reference in their entirety.

In some embodiments, payloads of the present invention may be bipartite fusion receptors. In one aspect, the bipartite fusion receptor may comprise an antigen-binding domain that binds to a tumor antigen and an activation domain that binds to one or more cell surface molecules. In some aspects, the antigen binding domain of a bipartite receptor is a scFv antibody. In other aspects, the activation domain that binds to a T cell surface stimulatory molecule may be selected from CD3, CD27, CD 28, CD40, OX40 (CD134) and 4-1BB (CD137), or a NK cell surface stimulatory molecule selected from CD16, NKG2D and NKp30. The activation domain may also be a scFv specific to a stimulatory molecule on the surface of immune cells (e.g., T cells and NK cells). Immune cells can be genetically modified to express a bipartite molecule comprising at least one antigen binding domain and an activation domain. The antigen binding domain binds to one or more molecules present on target cells such as cancer cells. Immune cells that express the molecule recognized by the activation domain will be activated and attack the recognized cancer cells. As a non-limiting example, a bipartite molecule may be an engager molecule comprising an antigen recognition scFv specific to CD19 or EphA2, as described in US patent publication NO: US2016/0015749; the contents of which are incorporated by reference herein in their entirety.

Activation-Conditional CAR

In some embodiments, payloads of the invention may be an activation-conditional chimeric antigen receptor, which is only expressed in an activated immune cell. The expression of the CAR may be coupled to activation conditional control region which refers to one or more nucleic acid sequences that induce the transcription and/or expression of a sequence e.g. a CAR under its control. Such activation conditional control regions may be promoters of genes that are upregulated during the activation of the immune effector cell e.g. IL2 promoter or NFAT binding sites. In some embodiments, activation of the immune cell may be achieved by a constitutively expressed CAR (International Publication No: WO 2016126608; the contents of which are incorporated herein by reference in their entirety).

CAR Targeting to Tumor Cells with Specific Proteoglycan Markers

In some embodiments, payloads of the present invention may be a CAR that targets specific types of cancer cells. Human cancer cells and metastasis may express unique and otherwise abnormal proteoglycans, such as polysaccharide chains (e.g., chondroitin sulfate (CS), dermatan sulfate (DS or CSB), heparan sulfate (HS) and heparin). Accordingly, the CAR may be fused with a binding moiety that recognizes cancer associated proteoglycans. In one example, a CAR may be fused with VAR2 CSA polypeptide (VAR2-CAR) that binds with high affinity to a specific type of chondroitin sulfate A (CSA) attached to proteoglycans. The extracellular ScFv portion of the CAR may be substituted with VAR2 CSA variants comprising at least the minimal CSA binding domain, generating CARs specific to chondroitin sulfate A (CSA) modifications. Alternatively, the CAR may be fused with a split-protein binding system to generate a spy-CAR, in which the scFv portion of the CAR is substituted with one portion of a split-protein binding system such as SpyTag and Spy-catcher and the cancer-recognition molecules (e.g. scFv and or VAR2-CSA) are attached to the CAR through the split-protein binding system (See, e.g., PCT publication No.: WO2016/135291; the contents of which are incorporated by reference in their entirety.)

SUPRA CAR

In some embodiments, the payload of the present invention may be a Split Universal Programmable (SUPRA) CAR. A SUPRA CAR may be a two-component receptor system comprising of a universal receptor (zip CAR) expressed on T cells and a tumor-targeting scFv adaptor. The zip CAR universal receptor may be generated by the fusion of intracellular signaling domains and a leucine zipper as the extracellular domain. The tumor-targeting scFv adaptor molecule or zipFv, may be generated by the fusion of a cognate leucine zipper and an scFv. The scFv of the zipFv may bind to a tumor antigen, and the leucine zipper may bind and activate the zip CAR on the T cells. Unlike the conventional fixed CAR design, the SUPRA CAR modular design allows targeting of multiple antigens without further genetic manipulations of the immune cells. Any of the CAR designs disclosed by Cho et al., 2018, Cell 173, 1-13, may be useful in the present invention (the contents of which are incorporated by reference in their entirety).

6. Cytokines, Chemokines and Other Soluble Factors

In accordance with the present invention, payloads of the present invention may be cytokines, chemokines, growth factors, and soluble proteins produced by immune cells, cancer cells and other cell types, which act as chemical communicators between cells and tissues within the body. These proteins mediate a wide range of physiological functions, from effects on cell growth, differentiation, migration and survival, to a number of effector activities. For example, activated T cells produce a variety of cytokines for cytotoxic function to eliminate tumor cells.

In some embodiments, payloads of the present invention may be cytokines, and fragments, variants, analogs and derivatives thereof, including but not limited to interleukins, tumor necrosis factors (TNFs), interferons (IFNs), TGF beta and chemokines. In some embodiments, payloads of the present invention may be cytokines that stimulate immune responses. In other embodiments, payloads of the invention may be antagonists of cytokines that negatively impact anti-cancer immune responses.

In some embodiments, payloads of the present invention may be cytokine receptors, recombinant receptors, variants, analogs and derivatives thereof; or signal components of cytokines.

In some embodiments, cytokines of the present invention may be utilized to improve expansion, survival, persistence, and potency of immune cells such as CD8+ TEM, natural killer cells and tumor infiltrating lymphocytes (TIL) cells used for immunotherapy. In other embodiments, T cells engineered with two or more DD regulated cytokines are utilized to provide kinetic control of T cell activation and tumor microenvironment remodeling. In one aspect, the present invention provides biocircuits and compositions to minimize toxicity related to cytokine therapy. Despite its success in mitigating tumor burden, systemic cytokine therapy often results in the development of severe dose limiting side effects. Two factors contribute to the observed toxicity (a) Pleiotropism, wherein cytokines affect different cells types and sometimes produce opposing effects on the same cells depending on the context (b) Cytokines have short serum half-life and thus need to be administered at high doses to achieve therapeutic effects, which exacerbates the pleiotropic effects. In one aspect, cytokines of the present invention may be utilized to modulate cytokine expression in the event of adverse effects. In some embodiments, cytokines of the present invention may be designed to have prolonged life span or enhanced specificity to minimize toxicity.

In some embodiments, the payload of the present invention may be an interleukin (IL) cytokine. Interleukins (ILs) are a class of glycoproteins produced by leukocytes for regulating immune responses. As used herein, the term “interleukin (IL)” refers to an interleukin polypeptide from any species or source and includes the full-length protein as well as fragments or portions of the protein. In some aspects, the interleukin payload is selected from IL1, IL1 alpha (also called hematopoietin-1), IL1 beta (catabolin), IL1 delta, IL1 epsilon, IL1 eta, IL1 zeta, interleukin-1 family member 1 to 11 (IL1F1 to IL1F11), interleukin-1 hom*olog 1 to 4 (IL1H1 to IL1H4), IL1 related protein 1 to 3 (IL1RP1 to IL1RP3), IL2, IL3, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL10C, IL10D, IL11, IL11a, IL11b, IL12, IL13, IL14, IL15, IL16, IL17, IL17A, Il17B, IL17C, IL17E, IL17F, IL18, IL19, IL20, IL20 like (IL20L), Il21, IL22, IL23, IL23A, IL23-p19, IL23-p40, IL24, IL25, IL26, IL27, IL28A, IL28B, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36 alpha, IL36 beta, IL36 gamma, IL36RN, IL37, IL37a, IL37b, IL37c, IL37d, IL37e and IL38. In other aspects, the payload of the present invention may be an interleukin receptor selected from CD121a, CDw121b, IL2Rα/CD25, IL2Rβ/CD122, IL2Rγ/CD132, CDw131, CD124, CD131, CDw125, CD126, CD130, CD127, CDw210, IL8RA, IL11Rα, CD212, CD213α1, CD213α2, IL14R, IL15Rα, CDw217, IL18Rα, IL18Rβ, IL20Rα, and IL20Rβ.

In certain embodiments, a cytokine may be a type I interferons (IFN) including IFN alpha subtypes (IFN α1, IFN α1b, IFN α1c), IFN beta, IFN delta subtypes (IFN delta 1, IFN delta 2, IFN delta 8), IFN gamma, IFN kappa, and IFN epsilon, IFN lambda, IFN omega, IFN tau and IFN zeta. In certain embodiments, a cytokine may be a member of tumor necrosis factor (TNF) superfamily, including TNF-alpha, TNF-beta (also known as lymphotoxin-alpha (LT-α)), lymphotoxin-beta (LT-β), CD40L (CD154), CD27L (CD70), CD30L (CD153), FASL (CD178), 4-1 BBL (CD137L), OX40L, TRAIL (TNF-related apoptosis inducing ligand), APRIL (a proliferation-inducing ligand), TWEAK, TRANCE, TALL-1, GITRL, LIGHT and TNFSF1 to TNFSF20 (TNF ligand superfamily member 1 to 20).

In one embodiment, the payload of the invention may comprise IL2 (SEQ ID NO. 8299, encoded by SEQ ID NO. 8300 and 8301). In one aspect, the effector module of the invention may be a DD-IL2 fusion polypeptide.

In some aspects of the invention, an IL2 mutein may be used as a payload. As used herein, the term “mutein” is a construct, molecule or sequence of a mutation, change or alteration in a protein and hence is also known as a mutant, e.g., a protein mutant, mutein. Consequently, an “IL2 mutein” is an IL2 mutant. In some embodiments an IL2 mutein is a variant of wild type IL2 protein, where the wildtype IL2 consists of the amino acid sequence of SEQ ID NO. 8299. In some aspects, it refers to an IL2 variant which binds to and activates only cells expressing IL2Rαβγ, but does not significantly bind to or activate cell expressing only IL2Rβγ. In some examples, an IL2 mutein may be an IL2 protein in which residues of IL2 responsible for binding to either IL2Rβ or IL2Rγ are substituted and abolish their interaction. In other examples, an IL2 mutein may be an IL2 protein comprising mutations conferring high affinity for IL2Rα. An IL2 mutein may be an IL2 selective agonist (IL2SA) which can preferentially activate the high affinity IL2 receptor (i.e., IL2αβγ) which is necessary to selectively activate T cells with respect to NK cells. In some embodiments, the IL2 mutein may be IL2 protein which preferentially binds to the lower affinity IL2Rβγ but with reduced affinity to CD25.

In some embodiments, IL2 muteins may be used to preferentially expand or stimulate Treg cells. As used herein “preferentially expand or stimulate Treg cells” means the IL2 muteins promote the proliferation, survival, activation and/or function of T regulatory cells.

Exemplary IL2 muteins may include, but are not limited to, N88R substitution (Shanafelt et al., Nature Biotech., 2000, 18:1197-1202), an IL2 with a V91K substitution (e.g., U.S. Patent publication NO. US20140286898); V91K substitution, C125A substitution, an IL2 with three mutations: V69A, N71R, Q74P; an IL2 mutein with high affinity for IL2Rα (N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P); an IL2 mutein with high affinity for IL2Rα and reduced signaling activity (N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P, N88D), and D20H, D201, N88G, N88I, N88R, and Q126L substitutions as described in PCT application NO. 1999060128; the contents of each of which are incorporated herein by reference in their entirety. In other aspects, IL2 muteins may include those described in U.S. Pat. Nos. 4,518,584; 5,116,943; 5,206,344; 6,955,807; 7,105,653; 7,371,371; 7,803,361; 8,124,066; 8,349,311; 8,759,486; and 9,206,243; PCT patent publication NOs: WO2005086751 and WO2012088446; EP Pat. NOs: EP0234599 and EP0200280 and Sim, G. C. et al. (2016) Cancer Immunol Res; 4(11):983-994; the contents of each of which are incorporated herein by reference in their entirety.

In some aspects, the IL2 mutein may be fused to a polypeptide that extends the serum half-life of the IL2 mutein, such as an IgG Fc fragment. Preferred Fc regions are derived from human IgG, which includes IgG1, IgG2, IgG3, and IgG4. In other aspects, the payload of the invention may be an IL2 fusion protein comparing a second functional polypeptide. In a non-limiting example, an IL2 fusion protein may comprise an IL2 or IL2 mutein polypeptide fused with a pro-apoptotic Bcl-2 family polypeptide (such as Bad, Bik/Nbk, Bid, Bim/Bod, Hrk, Bak or Bax); such fusion protein may be capable of inhibiting cell survival, inhibiting cell proliferation, or enhancing cell death or apoptosis of a target cell expressing an IL2 receptor. Alternatively, an IL2 or IL2 mutein polypeptide may be fused with an anti-apoptotic Bcl-2 family polypeptide (such as Bcl-XL, Bcl-w or Bcl-2). The fusion protein may be capable of enhancing cell survival, enhancing cell proliferation, or inhibiting cell death or apoptosis of a target cell expressing an IL2 receptor. See, e.g., U.S. patent publication NO.: US2016/0229901.

In addition, the IL2 fusion protein may be a IL2-GMCSF fusion protein which can promote cell-cell interaction; therefore, enhances anti-cancer immune responses (Wen et al., J. Translational Med., 2016, 14: 41).

In one embodiment, the payload of the invention may comprise IL12. IL12 is a heterodimeric protein of two subunits (p35, p40) that is secreted by antigen presenting cells, such as macrophages and dendritic cells. IL12 is type 1 cytokine that acts on natural killer (NK) cells, macrophages, CD8+ Cytotoxic T cells, and CD4+ T helper cells through STAT4 pathway to induce IFNγ production in these effector immune cells (reviewed by Trinchieri G, Nat Rev Immunol. 2003; 3(2): 133-146). IL12 can promote the cytotoxic activity of NK cells and CD8+ T cells, therefore has anti-tumor function. Intravenous injection of recombinant IL12 exhibited modest clinical efficacy in a handful of patients with advanced melanoma and renal cell carcinoma (Gollob et al., Clin. Cancer Res. 2000; 6(5):1678-1692). IL12 has been used as an adjuvant to enhance cytotoxic immunity using a melanoma antigen vaccine, or using peptide pulsed peripheral blood mononuclear cells; and to promote NK cell activity in breast cancer with trastuzumab treatment. Local delivery of IL12 to the tumor microenvironment promotes tumor regression in several tumor models. These studies all indicate that locally increased IL12 level can promote anti-tumor immunity. One major obstacle of systemic or local administration of recombinant IL12 protein, or through oncolytic viral vectors is the severe side effects when IL12 is presented at high level. Developing a system that tightly controls IL12 level may provide a safe use of IL12 in cancer treatment.

In one aspect, the effector module of the invention may be a DD-IL12 fusion polypeptide. This regulatable DD-IL12 fusion polypeptide may be directly used as an immunotherapeutic agent or be transduced into an immune effector cell (T cells and TIL cells) to generate modified T cells with greater in vivo expansion and survival capabilities for adoptive cell transfer. The need for harsh preconditioning regimens in current adoptive cell therapies may be minimized using regulated IL12; DD-IL12 may be utilized to modify tumor microenvironment and increase persistence in solid tumors that are currently refractory to tumor antigen targeted therapy. In some embodiments, CAR expressing T cells may be armored with DD regulated IL12 to relieve immunosuppression without systemic toxicity.

In some embodiments, the IL12 may be a Flexi IL12, wherein both p35 and p40 subunits, are encoded by a single cDNA that produces a single chain polypeptide. In one embodiment, the IL12 may comprise p40 subunit, which includes amino acids 23-328 of wildtype IL12B and comprise the amino acid sequence of SEQ ID NO. 8302 (encoded by SEQ ID NO. 8303-8312) and a p35 subunit, which includes amino acids 57-253 of wildtype IL12A and comprise the amino acid sequence of SEQ ID NO. 8313 (encoded by SEQ ID NO. 8314-8323). Any portion of IL12 that retains one or more functions of full length or mature IL12 may be useful in the present invention.

In some embodiments, DD regulated IL12 compositions of the invention may be utilized to minimize the cytotoxicity associated with systemic IL12 administration. Treatment with IL12 has been associated with systemic flu-like symptoms (fever, chills, fatigue, arthromyalgia, headache), toxic effects on the bone marrow, and liver. Hematologic toxicity observed most commonly included neutropenia and thrombocytopenia; hepatic dysfunction manifested in transient (dose dependent) increase in transaminases, hyperbilirubinemia and hypoalbuminemia. In some instances, toxicity is also associated with inflammation of the mucus membranes (oral mucositis, stomatitis or colitis). These toxic effects of IL12 were related to the secondary production of IFNγ, TNF alpha, and chemokines such as IP10, and MIG. In certain aspects of the invention, DD regulated IL12 may be utilized to prevent the toxic effects associated with elevated production of secondary messengers. In some embodiments, DD regulated Flexi-IL12 constructs may be used to improve the efficacy of the CARs, especially in solid tumor settings, by providing a controlled local signal for tumor microenvironment remodeling and epitope spreading. DD regulation also provides rapid, dose dependent, and local production of Flexi IL12.

The format of the IL12 constructs utilized as payload of the present invention may be optimized. In one embodiment, the payload of the invention may be a bicistronic IL12 containing p40 and p35 subunits separated by an internal ribosome entry site or a cleavage site such as P2A or Furin to allow independent expression of both subunits from a single vector. This results in a configuration of secreted IL12 that is more akin to the naturally occurring IL12 than the flexi IL12 construct, the payload of the invention may be the p40 subunit of the IL12. DD regulated p40 may be co-expressed with constitutive p35 construct to generate “regulatable IL12” expression. Alternatively, the DD regulated p40 may heterodimerize with the endogenous p35. p40 has been shown to stabilize p35 expression and stimulate the export of p35 (Jalah R, et al. (2013). Journal of Biol. Chem. 288, 6763-6776 (the contents of which are incorporated by reference in its entirety).

In some embodiments, modified forms of IL12 may be utilized as the payload. These modified forms of IL12 may be engineered to have shortened half-life in vivo compared to the non-modified form of especially when used in combination with tunable systems described herein.

Human flexi IL12 has a reported half-life of 5-19 hours which, when administered as a therapeutic compound, can result in systemic cytotoxicity (Car et al. (1999) The Toxicology of Interleukin-12: A Review” Toxicologic Path. 27 A, 58-63; Robertson et al. (1999) “Immunological Effects of Interleukin 12 Administered by Bolus Intravenous Injection to Patients with Cancer” Clin. Cancer Res. 5:9-16; Atkins et al. (1997)“Phase I Evaluation of Intravenous Recombinant Human Interleukin 12 in Patients with Advance Malignancies” Clin. Cancer Res. 3:409-417). The ligand inducible control of IL12 can regulate production in a dose dependent fashion, the time from cessation of ligand dosing to cessation of protein synthesis and IL12 clearance may be insufficient to prevent toxic accumulation of IL12 in plasma.

In one embodiment, the modified form of IL12 utilized as the payload may be a Topo-sc IL12 which have the configuration as follows from N to C terminus (i) a first IL12 p40 domain (p40N), (ii) an optional first peptide linker, (iii) an IL12 p35 domain, (iv) an optional second peptide linker, and (v) a second IL12 p40 domain (p40C). In one embodiment, modified topo sc IL12 polypeptides exhibit increased susceptibility to proteolysis. Topo-sc IL12 is described in International Patent Publication No. WO2016048903; the contents of which are incorporated herein by reference in its entirety.

IL12 polypeptide may also be modified (e.g. genetically, synthetically, or recombinantly engineered) to increase susceptibility to proteinases to reduce the biologically active half-life of the IL12 complex, compared to a corresponding IL12 lacking proteinases susceptibility. Proteinase susceptible forms of IL12 are described in International Patent Publication No. WO2017062953; the contents of which are incorporated by reference in its entirety.

IL12 systemic toxicity may also be limited or tightly controlled via mechanisms involving tethering IL12 to the cell surface to limit its therapeutic efficacy to the tumor site. Membrane tethered IL12 forms have been described previously using Glycosyl phosphatidylinositol (GPI) signal peptide or using CD80 transmembrane domain (Nagarajan S, et al. (2011) J Biomed Mater Res A. 99(3):410-7; Bozeman E N, et al. (2013) Vaccine. 7; 31(20):2449-56; Wen-Yu Pan et al. (2012), Mol. Ther. 20:5, 927-937; the contents of each of which are incorporated by reference in their entirety). In some embodiments, transmembrane domains may be selected from any of those described in Table 13, Table 14, and Table 15.

In some embodiments, the IL12 levels secreted by the immune cells of the invention may approximately be comparable to the IL12 levels secreted by human myeloid dendritic cells (mDC1), when activated with TLR agonists. In one embodiment, the TLR agonist may be the combination of lipopolysaccharide administered with R848.

In some embodiments, the IFN gamma secreted by IL12 induced activation of the immune cells is at least 5-fold greater in the presence of ligand, compared to the levels in the absence of ligand.

In some embodiments, regulation of IL12 provides the necessary safety switch. In some embodiments, IL-12 secretion recruit and/or activates effector cells in the tumor microenvironment. In some embodiments, the IL12 regulation provides a benefit to CAR T function without causing toxicity.

In one embodiment, the payload of the invention may comprise IL15. Interleukin 15 is a potent immune stimulatory cytokine and an essential survival factor for T cells, and Natural Killer cells. Preclinical studies comparing IL2 and IL15, have shown than IL15 is associated with less toxicity than IL2. In some embodiments, the effector module of the invention may be a DD-IL15 fusion polypeptide. IL15 polypeptide may also be modified to increase its binding affinity for the IL15 receptor. For example, the asparagine may be replaced by aspartic acid at position 72 of IL15 (SEQ ID NO. 2 of U.S. patent publication US20140134128A1; the contents of which are incorporated by reference in their entirety). In some aspects, the IL15 comprises amino acid sequence of SEQ ID NO. 8234 (encoded by SEQ ID NO. 8236), which include amino acids 49-162 of wildtype IL15. In some embodiments the IL15 sequence may include a stop codon and may be encoded by the nucleotide sequence of SEQ ID NO. 8235, and 8237-8238.

A unique feature of IL15 mediated activation is the mechanism of trans-presentation in which IL15 is presented as a complex with the alpha subunit of IL15 receptor (IL15Ra) that binds to and activates membrane bound IL15 beta/gamma receptor, either on the same cell or a different cell. The IL15/IL15Ra complex is more effective in activating IL15 signaling, than IL15 by itself. Thus, in some embodiments, the effector module of the invention may include a DD-IL15/IL15Ra fusion polypeptide. In one embodiment, the payload may be IL15/IL15Ra fusion polypeptide described in U.S. Patent Publication NO.: US20160158285A1 (the contents of which are incorporated herein by reference in their entirety). The IL15 receptor alpha comprises an extracellular domain called the sushi domain which contains most of the structural elements necessary for binding to IL15. Thus, in some embodiments, payload may be the IL15/IL15Ra sushi domain fusion polypeptide described in U.S. Patent Publication NO.: US20090238791A1 (the contents of which are incorporated herein by reference in their entirety).

Regulated IL15/IL15Ra may be used to promote expansion, survival and potency of CD8TEM cell populations without impacting regulatory T cells, NK cells and TIL cells. In one embodiment, DD-IL15/IL15Ra may be utilized to enhance CD19 directed T cell therapies in B cell leukemia and lymphomas. In one aspect, IL15/IL15Ra may be used as payload of the invention to reduce the need for pre-conditioning regimens in current CAR-T treatment paradigms.

The effector modules containing DD-IL15, DD-IL15/IL15Ra and/or DD-IL15/IL15Ra sushi domain may be designed to be secreted (using e.g. IL2 signal sequence) or membrane bound (using e.g. IgE or CD8α signal sequence).

In some embodiments, the IFN gamma secreted by IL15 induced activation of the immune cells is at least 10-fold greater in the presence of ligand, compared to the levels in the absence of ligand.

In some embodiments, regulation of IL15-IL15Ra fusion proteins provides a safety switch as compared to constitutively expressed IL15-IL15Ra. In some embodiments, IL15-IL15Ra leads to better expansion, and/or persistence of CAR T cells.

In some aspects, the DD-IL115/IL15Ra comprises the amino acid sequences provided in Table 18. In some embodiments, the linker utilized in Table 18 may be SG linker. In Table 18, asterisk indicates the translation of the stop codon. In some embodiments, the DDs described in Table 18 may contain an additional stop codon. As used herein the wildtype (WT) of IL15 refers to Uniprot ID: P40933 and wildtype (WT) of IL15Ra refers to UniProt ID: Q13261. Table 18 also provides alternate aliases for a given construct ID. These aliases are identified by the prefix OT.

TABLE 18
DD-IL15-IL15Ra construct sequences
AANA
Description/SEQSEQ
Construct IDAmino Acid SequenceID NOID NO
IL15 (49-162 ofNWVNVISDLKKIEDLIQSMHIDATLYIESDVHPSCKVTA83248326;
WT)MKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNV8344
TESGCKECEELEEKNIKEFLQSFVHIVQMFINTS
IL15Ra (31-267ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTS83298345;
of WT)SLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPST8346
VTTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGS
QLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASAS
HQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKS
RQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHL
IgE leaderMDWTWILFLVAAATRVHS 276 277
SG3-(SG4)3-SGGGSGGGGSGGGGSGGGGSGGGSLQ 323 324
SG3-SLQ
linker
SG LinkerSGAGTG
GT
GSGSGS linkerGSGSGS83308347
GSGSGSGSGSGSGSGS83318348
linker
GSGSGGGSGSGSGSGGGSGS83328349
linker
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT   3 339
acid 535-860 ofIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
WT)NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT  12 359
acid 535-860 ofIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
WT, R732L)NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ
hPDE5 (AminoEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCT 227 233
acid 535-860 ofIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
WT, R732L,NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
F736A)HDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL
GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ
AcGFP (AminoVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYG  79 372
acid 2-239 ofKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
WT)QHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDT
LVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDK
AKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP
DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDE
LYK
FLAG-tagDYKDDDDK83338350
HA TagYPYDVPDYA82388351
Modified FurinESRRVRRNKRSK 288 291
OT-IL15-031MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI83348352
(OT-001254,DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD
OT-IL15-045)TVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS
IgE signalFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI
sequence; IL15TCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
(Amino acidLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV
49-162 of WT);TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ
linker (SG3-LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH
(SG4)3-SG3-QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR
SLQ); IL15RaQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE
(Amino acidETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
31-267 of WT);RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
linker (SG);NWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
hPDE5 (AminoHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
acid 535-860 ofMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL
WT, R732L,GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
F736A); stopWPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK
TGANKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ*
OT-IL15-032MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI83358353
(OT-001469)DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD
IgE signalTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS
sequence; IL15FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI
(Amino acidTCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
49-162 of WT);LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV
linker (SG3-TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ
(SG4)3-SG3-LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH
SLQ); IL15RaQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR
(Amino acidQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSG
31-267 of WT);VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYG
linker (SG);KLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMK
AcGFP (AminoQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDT
acid 2-239 ofLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDK
WT); linkerAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP
(SG); hPDE5DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDE
(Amino acidLYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL
535-860 of WT,ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR
R732L,KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA
F736A); stopLLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH
HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDL
ALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTACD
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL
MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD
GCRKNRQKWQALAEQQ*
OT-IL15-033MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI83368354
(OT-001470)DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD
IgE signalTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS
sequence; IL15FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI
(Amino acidTCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
49-162 of WT);LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV
linker (SG3-TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ
(SG4)3-SG3-LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH
SLQ); IL15RaQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR
(Amino acidQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE
31-267 of WT);ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
linker (SG);RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
hPDE5 (AminoNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
acid 535-860 ofHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, R732L,MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL
F736A); linkerGEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
(SG); AcGFPWPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK
(Amino acid 2-NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
239 of WT);QKWQALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKF
stopSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSY
GVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN
YKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYN
YNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHY
QQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYF
GFVTAAAITHGMDELYK*
OT-IL15-043MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI83378355
(OT-001315)DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD
IgE signalTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS
sequence; IL15FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI
(Amino acidTCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
49-162 of WT);LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV
Linker (SG3-TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ
(SG4)3-SG3-LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH
SLQ); IL15RaQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR
(Amino acidQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE
31-267 of WT);SRRVRRNKRSKEETRELQSLAAAVVPSAQTLKITDFSFSD
Linker (SG);FELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSV
Furin cleavageKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT
siteDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHS
(ESRRVRRNKRSK);IMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL
hPDE5ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLM
(Amino acidTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEP
535-860 of WT,TDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFP
R732L); stopLLDGCRKNRQKWQALAEQQ*
OT-IL15-044MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI83388356
(OT-001316)DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD
IgE signalTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS
sequence; IL15FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI
(Amino acidTCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
49-162 of WT);LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV
Linker (SG3-TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ
(SG4)3-SG3-LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH
SLQ); IL15RaQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR
(Amino acidQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE
31-267 of WT);ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
Linker (SG);RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
hPDE5 (AminoNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
acid 535-860 ofHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT, R732L);MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL
stopGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ*
OT-IL15-048MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI83398357
(OT-001317)DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD
IgE signalTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS
sequence; IL15FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI
(Amino acidTCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
49-162 of WT);LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV
Linker (SG3-TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ
(SG4)3-SG3-LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH
SLQ); IL15Ra QPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR
(Amino acidQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE
31-267 of WT);ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
linker (SG);RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
hPDE5 (AminoNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
acid 535-860 ofHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT); stopMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
WPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ*
OT-IL15-194MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHI83408358
(OT-001499)DATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHD
IgE signalTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQS
sequence; IL15FVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGSLQI
(Amino acidTCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS
49-162 of WT);LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTV
Linker (SG3-TTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQ
(SG4)3-SG3-LMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASH
SLQ); IL15RaQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR
(Amino acidQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGE
31-267 of WT);ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTI
linker (SG);RMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYH
hPDE5 (AminoNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALS
acid 535-860 ofHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL
WT); stopMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR
GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKP
WPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR
QKWQALAEQQ*
OT-IL15-111MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKK83418359
(OT-001344)IEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVIS
IgE signalLESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE
sequence; FlagEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGG
tag; IL15GGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSL
(Amino acidYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPS
49-162 of WT);LKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPA
Linker (SG3-ASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESS
(SG4)3-SG3-HGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAIST
SLQ); HA tag;STVLLCGLSAVSLLACYLKSRQTPPLASVEMEAMEALPV
IL15Ra (AminoTWGTSSRDEDLENCSHHLGSGSGSEETRELQSLAAAVVP
acid 31-267 ofSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
WT); linkerMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF
(GSGSGS);AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQ
hPDE5 (AminoRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIE
acid 535-860 ofEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLED
WT, R732L);PHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFD
stop TGAQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQL
YEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*
OT-IL15-112MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKK83428360
(OT-001345)IEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVIS
IgE signalLESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE
sequence; FlagEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGG
tag; IL15GGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSL
(Amino acidYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPS
49-162 of WT);LKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPA
Linker (SG3-ASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESS
(SG4)3-SG3-HGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAIST
SLQ); HA tag;STVLLCGLSAVSLLACYLKSRQTPPLASVEMEAMEALPV
IL15Ra (AminoTWGTSSRDEDLENCSHHLGSGSGSGSEETRELQSLAAAV
acid 31-267 ofVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNF
WT); linkerQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQC
(GSGSGSGS);MFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNS
hPDE5 (AminoYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSG
acid 535-860 ofLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFN
WT, R732L);LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATE
stopFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAIC
LQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*
OT-IL15-113MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKK83438361
(OT-001346)IEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVIS
IgE signalLESGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELE
sequence; FlagEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGG
tag; IL15GGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSL
(Amino acidYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWTTPS
49-162 of WT);LKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPA
Linker (SG3-ASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESS
(SG4)3-SG3-HGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAIST
SLQ); HA tag;STVLLCGLSAVSLLACYLKSRQTPPLASVEMEAMEALPV
IL15Ra (AminoTWGTSSRDEDLENCSHHLGSGSGGGSGSEETRELQSLAA
acid 31-267 ofAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
WT); linkerQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA
(GSGSGGGSGS);QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVN
hPDE5NSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQIL
(Amino acidSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQ
535-860 of WT,FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV
R732L); stopATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFID
AICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*

In some embodiments, the sequences described in Table 18, may contain an additional stop codon. For example, the construct “hPDE5 (Amino acid 535-860 of WT, R732L); stop” may be encoded by the nucleotide sequence of SEQ ID NO. 8362, and the construct “hPDE5 (Amino acid 535-860 of WT, R732L, F736A); stop” may be encoded by the nucleotide sequence of SEQ ID NO. 8363.

In one embodiment, the payload of the present invention may comprise IL18. IL18 is a proinflammatory and immune regulatory cytokine that promotes IFNγ production by T and NK cells. IL18 belongs to the IL1 family. Secreted IL18 binds to a heterodimer receptor complex, consisting of IL18Rα and β-chains and initiates signal transduction. IL18 acts in concert with other cytokines to modulate immune system functions, including induction of IFNγ production, Th1 responses, and NK cell activation in response to pathogen products. IL18 showed anti-cancer effects in several tumors. Administration of recombinant IL18 protein or IL18 transgene induces melanoma or sarcoma regression through the activation of CD4+ T and/or NK cell-mediated responses (reviewed by Srivastava et al., Curr. Med. Chem., 2010,17: 3353-3357). The combination of IL18 with other cytokines, such as IL12 or co-stimulatory molecules (e.g., CD80) increases IL18 anti-tumor effects. For example, IL18 and IL12A/B or CD80 genes have been integrated successfully in the genome of oncolytic viruses, with the aim to trigger synergistically T cell-mediated anti-tumor immune responses (Choi et al., Gene Ther., 2011, 18: 898-909). IL2/IL18 fusion proteins also display enhanced anti-tumor properties relative to either cytokine alone and low toxicity in preclinical models (Acres et al., Cancer Res., 2005, 65:9536-9546).

IL18 alone, or in combination of IL12 and IL15, activates NK cells. Preclinical studies have demonstrated that adoptively transferred IL12, IL15 and IL18 pre-activated NK cells display enhanced effector function against established tumors in vivo (Ni et al., J Exp Med. 2012, 209: 2351-2365; and Romee et al., Blood. 2012,120:4751-4760). Human IL12/IL15/IL18 activated NK cells also display memory-like features and secrete more IFNγ in response to cytokines (e.g., low concentration of IL2). In one embodiment, the effector module of the present invention may be a DD-IL18 fusion polypeptide.

In one embodiment, the payload of the present invention may comprise IL21. IL21 is another pleiotropic type I cytokine that is produced mainly by T cells and natural killer T (NKT) cells. IL21 has diverse effects on a variety of cell types including but not limited to CD4+ and CD8+ T cells, B cells, macrophages, monocytes, and dendritic cells (DCs). The functional receptor for IL21 is composed of IL21 receptor (IL21R) and the common cytokine receptor gamma chain, which is also a subunit of the receptors for IL2, IL4, IL7, IL9 and IL15. Studies provide compelling evidence that IL21 is a promising immunotherapeutic agent for cancer immunotherapy. IL21 promotes maturation, enhances cytotoxicity, and induces production of IFNγ and perforin by NK cells. These effector functions inhibit the growth of B16 melanoma (Kasaian et al., Immunity. 2002, 16(4):559-569; and Brady et al., J Immunol. 2004, 172(4):2048-2058). IL21 together with IL15 expands antigen-specific CD8+ T-cell numbers and their effector function, resulting in tumor regression (Zeng et al., J Exp Med. 2005, 201(1):139-148). IL21 may also be used to rejuvenate multiple immune effector cells in the tumor microenvironment. IL21 may also directly induce apoptosis in certain types of lymphoma such as diffuse large B-cell lymphoma, mantle cell lymphoma, and chronic lymphocytic leukemia cells, via activation of STAT3 or STAT1 signal pathway. IL21, alone or in combination with anti-CD20 mAb (rituximab) can activate NK cell-dependent cytotoxic effects. Interestingly, discovery of the immunosuppressive actions of IL21 suggests that this cytokine is a “double-edged sword”—IL21 stimulation may lead to either the induction or suppression of immune responses. Both stimulatory and suppressive effects of IL21 must be considered when using IL21-related immunotherapeutic agents. The level of IL21 needs to be tightly controlled by regulatory elements. In one aspect, the effector module of the present invention may be a DD-IL21 fusion polypeptide.

In some embodiments, payloads of the present invention may comprise type I interferons. Type I interferons (IFNs-I) are soluble proteins important for fighting viral infection in humans. IFNs-I include IFN alpha subtypes (IFN α1, IFN α1b, IFN α1c), IFN beta, IFN delta subtypes (IFN delta 1, IFN delta 2, IFN delta 8), IFN gamma, IFN kappa, and IFN epsilon, IFN lambda, IFN omega, IFN tau and IFN zeta. IFNα and IFNβ are the main IFN I subtypes in immune responses. All subtypes of IFN I signal through a unique heterodimeric receptor, interferon alpha receptor (IFNAR), composed of 2 subunits, IFNAR1 and IFNAR2. IFNR activation regulates the host response to viral infections and in adaptive immunity. Several signaling cascades can be activated by IFNR, including the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) pathway, the mitogen activated protein kinase (MAPK) pathway, the phosphoinositide 3-kinase (PI3K) pathway, the v-crk sarcoma virus CT10 oncogene hom*olog (avian)-like (CRKL) pathway, and NF-κB cascade. It has long been established that type I IFNs directly inhibit the proliferation of tumor cells and virus-infected cells, and increase MHC class I expression, enhancing antigen recognition. IFNs-I have also proven to be involved in immune system regulation. IFNs can either directly, through interferon receptor (IFNR), or indirectly by the induction of chemokines and cytokines, regulate the immune system. Type I IFNs enhance NK cell functions and promote survival of NK cells. Type I IFNs also affect monocytes, supporting the differentiation of monocytes into DC with high capacity for antigen presentation, and stimulate macrophage function and differentiation. Several studies also demonstrate that IFNs-I promote CD8+ T cell survival and functions. In some instances, it may be desirable to tune the expression of Type I IFNs using biocircuits of the present invention to avoid immunosuppression caused by long-term treatment with IFNs.

New anticancer immunotherapies are being developed that use recombinant type I IFN proteins, type I IFN transgene, type I IFN encoding vectors and type I IFN expressing cells. For example, IFNα has received approval for treatment of several neoplastic diseases, such as melanoma, RCC and multiple myeloma. Though type I IFNs are powerful tools to directly and indirectly modulate the functions of the immune system, side effects of systemic long-term treatments and lack of sufficiently high efficacy have dampened the interest of IFNα for clinical use in oncology. It is believed that if IFN levels are tightly regulated at the malignant tissues, type I IFNs are likely more efficacious. Approaches for intermittent delivery are proposed according to the observation that intermittency at an optimized pace may help to avoid signaling desensitizing mechanisms (negative feedback mechanisms) induced by IFNs-I (i.e., because of SOCS1 induction) in the responding immune cells. In accordance with the present invention, the effector module may comprise a DD-IFN fusion polypeptide. The DD and its ligand control the expression of IFN to induce an antiviral and antitumor immune responses and in the meantime, to minimize the side effects caused by long-term exposure of IFN.

In some embodiments, payloads of the present invention may comprise members of tumor necrosis factor (TNF) superfamily. The term “TNF superfamily” as used herein refers to a group of cytokines that can induce apoptosis. Members of TNF family include TNF-alpha, TNF-beta (also known as lymphotoxin-alpha (LT-α)), lymphotoxin-beta (LT-β), CD40L (CD154), CD27L (CD70), CD30L (CD153), FASL (CD178), 4-1 BBL (CD137L), OX40L, TRAIL (TNF-related apoptosis inducing ligand), APRIL (a proliferation-inducing ligand), TWEAK, TRANCE, TALL-1, GITRL, LIGHT and TNFSF1 to TNFSF20 (TNF ligand superfamily member 1 to 20). In one embodiment, the payload of the invention may be TNF-alpha. TNF-alpha can cause cytolysis of tumor cells, and induce cell proliferation differentiation as well. In one aspect, the effector module of the present invention may comprise a DD-TNF alpha fusion polypeptide.

In one embodiment, the payloads of the present invention may be cytokines fused to TNF alpha ectodomain. Such payloads are produced as membrane associated cytokines fused to the TNF ectodomain. In one embodiment, the cytokine may be shed from the cell surface by the action of membrane associated proteases, and/or proteases in the extracellular space e.g. MMP9. Any of the cytokines described herein may be useful in the present invention. Such cytokine-TNF scaffold constructs may be used to preserve the native sequence of the processed cytokine while preserving regulation.

In some embodiments, payloads of the present invention may comprise inhibitory molecules that block inhibitory cytokines. The inhibitors may be blocking antibodies specific to an inhibitory cytokine, and antagonists against an inhibitory cytokine, or the like.

In some aspects, payloads of the present invention may comprise an inhibitor of a secondary cytokine IL35. IL35 belongs to the interleukin-12 (IL12) cytokine family, and is a heterodimer composed of the IL27β chain Ebi3 and the IL12α chain p35. Secretion of bioactive IL35 has been described only in forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs) (resting and activated Tregs). Unlike other membranes in the family, IL35 appears to function solely in an anti-inflammatory fashion by inhibiting effector T cell proliferation and perhaps other parameters (Collison et al., Nature, 2007, 450(7169): 566-569).

In some embodiments, payloads of the present invention may comprise inhibitors that block the transforming growth factor beta (TGF-β) subtypes (TGF-β1, TGF-β2 and TGF-β3). TGF-β is secreted by many cell types, including macrophages and is often complexed with two proteins LTBP and LAP. Serum proteinases such as plasmin catalyze the release of active TGF-β from the complex from the activated macrophages. It has been shown that an increase in expression of TGF-β correlates with the malignancy of many cancers. The immunosuppressive activity of TGF-β in the tumor microenvironment contributes to oncogenesis.

In some embodiments, payloads of the present invention may comprise inhibitors of IDO enzyme. In some embodiments, payloads fused to the DDs of the invention may be an inhibitor of an immunosuppressive molecule such as TGF-beta and IDO.

In some embodiments, payloads of the present invention may comprise chemokines and chemokine receptors. Chemokines are a family of secreted small cytokines, or signaling proteins that can induce directed chemotaxis in nearby responsive cells. The chemokine may be a SCY (small cytokine) selected from the group consisting of SCYA1-28 (CCL1-28), SCYB1-16 (CXCL1-16), SCYC1-2 (XCL1-2), SCYD-1 and SCYE-1; or a C chemokine selected from XCL1 and XCL2; or a CC chemokine selected from CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL10, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27 and CCL28; or a CXC chemokine selected from CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16 and CXCL17; or a CX3C chemokine CX3CL1. In some aspects, the chemokine receptor may be a receptor for the C chemokines including XCR1; or a receptor for the CC chemokines including CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9 and CCR10; or a receptor for the CXC chemokines including CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5; or a CX3C chemokine receptor CX3CR1.

In some embodiments, payloads of the present invention may comprise other immunomodulators that play a critical role in immunotherapy, such as GM-CSF (Granulocyte-macrophage colony stimulating factor), erythropoietin (EPO), MIP3a, monocyte chemotactic protein (MCP)-1, intracellular adhesion molecule (ICAM), macrophage colony stimulating factor (M-CSF), Interleukin-1 receptor activating kinase (iRAK-1), lactotransferrin, and granulocyte colony stimulating factor (G-CSF).

In some embodiments, the payload of the present invention may comprise Amphiregulin. Amphiregulin (AREG) is an EGF-like growth factor which binds to the EGFR receptor and enhances CD4+ regulatory T cells (Tregs) function. AREG promotes immune suppression in the tumor environment. Thus, in some embodiment, the payloads of the present invention may comprise Amphiregulin to dampen immune response during immunotherapy.

In some embodiments, payloads of the present invention may comprise fusion proteins wherein a cytokine, chemokine and/or other soluble factor may be fused to other biological molecules such as antibodies and or ligands for a receptor. Such fusion molecules may increase the half-life of the cytokines, reduce systemic toxicity, and increase local concentration of the cytokines at the tumor site. Fusion proteins containing two or more cytokines, chemokines and or other soluble factors may be utilized to obtain synergistic therapeutic benefits. In one embodiment, payload may be a GM-CSF/IL2 fusion protein.

In some embodiments, any of the hinge and transmembrane domains described herein may be used as a scaffold for soluble cytokine presentation. The cytokine may be operably linked to the CD8 hinge and transmembrane domain by a protease cleavage site. Cleavage at the cleavage site releases the cytokine from the cell surface membrane. In some aspects, the cytokine may be in a precursor form. Generation of the active form of the cytokine from the precursor form occurs via cleavage at the cleavage site. Any of the cytokines described herein may be engineered using the any of the hinge and transmembrane domains described herein as a scaffold.

7. Immune Regulators

In some embodiments, payloads of the present invention may comprise inhibitors (antagonists) of co-inhibitory molecules (e.g., immune checkpoint), including without limitation, PD-1, PD-L1, PD-L2, CTLA-4, TIM-3, VISTA, BTLA, TIGIT, LAIRA, CD160, 2B4 and TGFR. In some aspects, the inhibitor may be a blocking/antagonistic antibody or fragment thereof, as discussed previously, or a ligand of the co-inhibitory receptor.

In some embodiments, payloads of the present invention may comprise agonists of co-stimulatory molecules, including without limitation, CD27, CD28, CD30, CD40, OX40 (CD134), 4-1BB (CD137), CDS, ICAM-1, LFA-1 (CD11a/CD18), ICOS (CD278), GITR, BAFFR, HVEM, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7-H3 and CD83. As a non-limiting example, agonists of co-stimulatory molecule ICOS (CD278) may be an ICOS binding protein comprising an amino acid sequence of SEQ ID NOs: 1, 2, 3, 4, 5 and 6 disclosed in International Patent Publication NO: WO2016120789; the contents of which are incorporated by reference herein in their entirety.

In some aspects, the agonist of a co-stimulatory molecule may be an agonistic antibody or fragment thereof, as discussed previously; or a ligand of the co-stimulatory receptor; or any binding molecules that can enhance the biological activity of its target. For example, an agonistic ligand of OX40 may be OX40L (CD252). The OX40 ligand as used herein, includes the intact OX40 ligand, soluble OX40 ligand, fusion proteins including a functionally active portion of OX40 ligand covalently linked to a second moiety, e.g., a protein domain, and variants may be which vary in amino acid sequence from naturally occurring OX4L but which retain the ability to specifically bind to the OX40 receptor or even enhance the biological activity of OX40L.

In general, an agonist of a co-stimulatory molecule substantially enhances the biological activity of its target molecule, such as T cell activation. Desirably, the biological activity is enhanced by 10, 20, 30, 50, 70, 80, 90, 95, or even 100.

In some embodiments, payloads of the present invention may comprise immunomodulators including stress proteins and heat shock proteins (HSPs) that can integrate both innate and adaptive immune responses. They may also be other chaperones and adaptors that stimulate immune responses. As a non-limiting example, the payload of the present invention may be a fusion protein comprising an NF-KB-activating domain of Flagellin fused with an ATP-binding domain truncated glucose regulated protein 170 (Grp 170) (See. U.S. patent publication NO.: US2015/0315255; the contents of which are incorporated herein by reference in their entirety). The fusion construct forms a secretable Grp 170-Flagellin hybrid chaperone (Flagrp 170) which can be used to stimulate anti-cancer immune responses.

In other embodiments, the payload of the present invention may comprise a STING (stimulator of interferon gene) protein, an adaptor molecule in the cytoplasm which, as a component of the host cytosolic surveillance pathway, activates the TANK binding kinase (TBK1)-IRF3 signaling axis, resulting in the induction of IFNβ and other IRF-3 dependent gene products that strongly activate innate immunity, leading to the development of an adaptive immune response consisting of both antigen-specific CD4+ and CD8+ T cells as well as pathogen-specific antibodies.

Demaria et al. reported that enforced activation of a STING protein by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), an agonist of STING, can enhance antitumor CD8+ T cell responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The STING-dependent antitumor immunity was dependent on type I IFNs produced by endothelial cells in the tumor microenvironment (Demaria et al., Proc. Natl. Acad. Sci. USA, 2015, 112(5): 15408-15413). These studies demonstrate that STING contributes to anti-tumor immune responses via enhancement of type I IFN signaling in the tumor microenvironment. Biocircuits, effector modules comprising STING may be applied to the tumor microenvironment to enhance anti-tumor responses either alone or in combination with other immunotherapeutic agents of the invention.

In addition to STING proteins, payloads of the present invention may comprise PRRs (pattern recognition receptors) that are involved in sensing the infection of cells by viruses and microorganisms to activate innate immune inflammatory responses. Such PRRs include Toll like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLRs). The RLR family is a RNA sensing system that is comprised of retinoic acid inducible gene-like-I (RIG-1), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2). RIG-1 recognizes relatively short dsRNA (up to 1 kb) whereas MDA5 detects long dsRNA (more than 2 kb) to activate synthesis of type I IFNs, including IFNα and IFNβ (Wilkins et al., Curr Opin Immunol., 2010, 22: 41-47). RLRs activate downstream signaling proteins evoking type I IFN production. TLRs recognize distinct structures in microbes; often referred to as “PAMPs” (pathogen associated molecular patterns). Ligand binding to TLRs invokes a cascade of intra-cellular signaling pathways that induce the production of factors involved in inflammation and immunity such as pro-inflammatory cytokines, and chemokines, as well as CD4+ and CD8+ T cell activation. Among ten TLRs identified in human, TLRs-1, 2, 4, 5 and 6 are expressed in the cell surface, while TLR-3, -7/8, and -9 are expressed with the ER compartment. In some embodiments, payloads of the invention may be one of the PRRs, or agonists of PRRs.

8. Metabolic Factors/Metabolic Checkpoint

In some embodiments, immune cells such as T cells used for immunotherapy may be metabolically reprogrammed to enhance anti-tumor T cell responses. Metabolic activities are necessary to support immune cells, specifically T cells growth, expansion, differentiation and effector functions, upon activation through T cell receptor or CAR and co-stimulatory signals. Metabolic competition between cancer cells and infiltrating immune effector cells leads to T cell energy and dysfunction.

In some embodiments, payloads of the present invention may be modulators of glycolysis. The Warburg effect in cancer cells leads to the massive generation of lactic acid that can suppress T cell cytotoxic and effector functions. As a non-limiting example, immune cells for adoptive transfer may be modified to overexpress phosphoenolpyruvate carboxykinase 1 (PCK1), which increases PEP production in T cells. Increased production of the glycolytic metabolite phosphoenolpyruvate (PEP) can repress sarco/ER Ca (2+)-ATPase (SERCA) activity, therefore sustaining T cell receptor-mediated Ca (2+)-NFAT signaling and effector functions (Ho et al, Cell, 2015, 162(6): 1217-1228).

In some embodiments, the payloads of the present invention may comprise of proteins involved in the OXPHOS pathway. For example, LEM (lymphocyte expansion molecule), a protein that can promote cytotoxic CD8+ T cell proliferation and effector function, and memory T cell generation in response to infection with lymphocyte choriomeningitis (CMV). LEM is part of a complex of CRIF1 (CR6 interacting factor 1) that mediates the translation and insertion of OXPHOS (Oxidative phosphorylation) proteins into mitochondrial inner membrane, thereby regulates OXPHOS activity. Thus, LEM is a positive modulator of T cell metabolism (mitochondria respiratory levels) and expansion (Okoye et al., Science, 2015, 348(6238): 995-1001).

In some embodiments, the payloads of the present invention may be inhibitors of metabolic enzymes involved in amino acid regulation. Metabolic competition for between immune cells and tumor cells can lead to establishing and maintaining an immunosuppressive tumor microenvironment due to T cell energy. Non-limiting examples include inhibitors of nitric oxide synthase and arginase I that can degrade extracellular arginine, or Indoleamine 2,3-dioxygenase (IDO) that degrades tryptophan. Abrogation of these enzymes secreted by tumor cells and immune suppressive cells can promote antitumor immunity.

In other embodiments, payloads of the present invention may comprise proteins critical for de novo fatty acid and cholesterol biosynthesis. This may include proteins such as SREBP1 (also known as SREBF1), SREBP2 (SREBF2), HMGCR, HMGCS, FASN, ACACA and SQLE, and transport pathways, such as LDLR. Modulating cholesterol metabolism of cytotoxic CD8+ T cells may potentiate their anti-tumor effector function and proliferation. Cholesterol is a key component of membrane lipids, and has been shown that the increase in the plasma membrane cholesterol level of CD8+ T cells, enhances T-cell receptor clustering and signaling as well as more efficient formation of the immunological synapse (Molnar et al., J Biol Chem. 2012, 287:42664-42674). T cells used for adoptive transfer (e.g., anti-tumor CAR T cells) may be further engineered to express a protein that enhances cholesterol biosynthesis and/or transportation.

9. Safety Switch

In some embodiments, payloads of the present invention may comprise SRE regulated safety switches that can eliminate adoptively transferred cells in the case of severe toxicity, thereby mitigating the adverse effects of T cell therapy. Adoptively transferred T cells in immunotherapy may attack normal cells in response to normal tissue expression of TAA. Even on-tumor target activity of adoptively transferred T cells can result in toxicities such as tumor lysis syndrome, cytokine release syndrome and the related macrophage activation syndrome.

In one embodiment, the payloads of the present invention may eliminate the inappropriately activated cells by induction of apoptosis or by immunosurveillance have been developed in the art.

In some embodiments, payloads of the present invention may comprise inducible killer/suicide genes that acts as a safety switch. The killer/suicide gene when introduced into adoptively transferred immune cells, could control their alloreactivity. The killer/suicide gene may be an apoptotic gene (e.g., a caspase) which allows conditional apoptosis of the transduced cells by administration of a non-therapeutic ligand of the SRE (e.g., DD).

In some embodiments, the payload of the present invention may include Caspase 9. In some instances, Caspase 9 may be modified to have low basal expression and lacking the caspase recruitment domain (CARD) (SEQ ID NO.: 26 and SEQ ID NO.: 28 of U.S. Patent No. U.S. Pat. No. 9,434,935B2; the contents of which are incorporated by reference in their entirety).

In one embodiment, the payload of the present invention is a suicide gene system, iCasp9/Chemical induced dimerization (CID) system which consists of a polypeptide derived from the Caspase9 gene fused to a drug binding domain derived from the human FK506 protein. Administration of bioinert, small molecule AP1903 (rimiducid), induces cross linking of the drug binding domains and dimerization of the fusion protein and in turn the dimerization of Caspase 9. This results in the activation of downstream effector Caspase 3 and subsequent induction of cellular apoptosis (Straathof et al., Blood, 2005, 105: 4247-4254; incorporated herein by reference in its entirety). Preclinical trials using CART including an iCasp9 gene have shown effective elimination of CAR T cells invivo in mouse models and demonstrate the potential efficacy of this approach. (Budde et al, Plos One, 2013, 8: e82742.10.1371; Hoyos et al., Leukemia, 2010; 24(6):1160-1170). In one embodiment, the payload of the invention may comprise Caspase9. In one aspect, the effector module of the invention may be a DD-Caspase9 fusion polypeptide. In some embodiments, the payload of the invention may be full length Caspase 9 (SEQ ID NO. 8364, encoded by SEQ ID No. 8365, 8366) or caspase 9 delta CD (SEQ ID NO. 8367, encoded by SEQ ID No. 8368). The Caspases 9 sequences described herein may optionally include a stop codon at the C terminal of the sequence.

In some instances, the iCasp9/CID system has been shown to have a basal rate of dimerization even in the absence of rimiducid, resulting in unintended cell death. Regulating the expression levels of iCasp9/CID is critical for maximizing the efficacy of iCasp9/CID system. Biocircuits of the present invention and/or any of their components may be utilized in regulating or tuning the iCasp9/CID system in order to optimize its utility. Other examples of proteins used in dimerization-induced apoptosis paradigm may include, but are not limited to Fas receptor, the death effector domain of Fas-associated protein, FADD, Caspase 1, Caspase 3, Caspase 7 and Caspase 8. (Belshaw P. J. et al, Chem Biol., 996,3:731-738; MacCorkle R. A. et al, Proc Natl Acad Sci, 1998, 95:3655-3660; Spencer, D. M. et al., Curr Biol. 1996; 6:839-847; the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the safety switch of the present invention may comprise a metabolic enzyme, such as herpes simplex virus thymidine kinase (HSV-TK) and cytosine deaminase (CD). HSV-TK phosphorylates nucleoside analogs, including acyclovir and ganciclovir (GCV) to generate triphosphate form of nucleosides. When incorporated into DNA, it leads to chain termination and cell death. Unlike the mammalian thymidine kinase, HSV-TK is characterized by 1000-fold higher affinity to nucleoside analogs such as GCV, making it suitable for use as a suicide gene in mammalian cells. Cytosine deaminase (CD) can converts 5-fluorocytosine (5-FC) into the cytotoxic 5-fluorouracil (5-FU) (Tiraby et al., FEMS Lett., 1998, 167: 41-49).

In some embodiments, the safety switch of the present invention may comprise a CYP4B1 mutant (as suicide gene), which may be co-expressed in a CAR engineered T cells (Roellecker et al., Gen Ther., 2016, May 19, doi: 10.1038/gt.2016.38).

In some embodiments, the payload of the present invention may comprise a fusion construct that can induce cell death, for example, a polypeptide with the formula of St-R1-S1-Q-52-R2, wherein the St is a stalk sequence, R1/2 and Q are different epitopes; and S1/2 are optional spacer sequences (See, International patent publication NO.: WO2013/153391; the content of which are incorporated herein by reference in their entirety).

In some embodiments, safety switch may be mediated by therapeutic antibodies which specifically bind to an antigen that is expressed in the plasma membrane of adoptively transferred cells. The antigen-antibody interaction allows cell removal after administration of a specific monoclonal antibody against the antigen. As non-limiting examples, payloads of the present invention may comprise the antigen and antibody pair used to mediate safety switch such as CD20 and anti-CD20 antibody (Griffioen et al., Haematologica, 2009, 94:1316-1320), a protein tag and anti-tag antibody (Kieback et al., Natl. Acad. Sci. U.S.A., 2008, 105: 623-628), a compact suicide gene (RQR8) combining epitopes from CD34 (as a marker moiety) and CD20 (as a suicide moiety) which enables CD34 selection, cell tracking, as well as cell deletion after anti-CD20 monoclonal antibody administration (Philip et al., Blood, 2014, 124: 1277-1287); truncated human EGFR polypeptide and anti-EGFR monoclonal antibody (Wang et al., Blood, 2011, 118:1255-1263); and a compact polypeptide safety switch having a structural formula as discussed in U.S. Patent Application Publication NO: 2015/0093401; the contents of each of which are incorporated herein by reference in their entirety.

10. Regulatory Switch

The utility of adoptive cell therapy (ACT) has been limited by the high incidence of graft versus host disease (GVHD). GVHD occurs when adoptively transferred T cells elicit an immune response resulting in host tissue damage. Recognition of host antigens by the graft cells triggers a proinflammatory cytokine storm cascade that signifies acute GVHD. GVHD is characterized as an imbalance between the effector and the regulatory arms of the immune system. In some embodiments, the payloads of the present invention may be used as regulatory switches. As used herein “regulatory switch” refers proteins, which when expressed in target cells increase tolerance to the graft by enhancing the regulatory arm of the immune system.

In one embodiment, regulatory switches may include payloads that preferentially promote the expansion of regulatory T (Treg cells). Tregs are a distinct population of cells that are positively selected on high affinity ligands in the thymus and play an important role in the tolerance to self-antigens. In addition, T regs have also been shown to play a role in peripheral tolerance to foreign antigens. Since Tregs promote immune tolerance, expansion of Tregs with the compositions of the invention may be desirable to limit GVHD.

In some embodiments, the regulatory switch may include, but is not limited to T regs activation factors such NFκB, FOXO, nuclear receptor Nr4a, Retinoic acid receptor alpha, NFAT, AP-1 and SMAD. Such factors can result in the expression of Fork headbox P3 (FOXP3) in T cells resulting in the activation of the regulatory T cell program and the expansion of T cells.

In one embodiment, the regulatory switch may be FOXP3, a transcriptional regulator in T cells. A function of FOXP3 is to suppress the function of NFAT, which leads to the suppression of expression of many genes including IL2 and effector T-cell cytokines. FOXP3 acts also as a transcription activator for genes such as CD2S, Cytotoxic T-Lymphocyte Antigen Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), glucocorticoid-induced TNF receptor family gene (GITR) and folate receptor 4. FOXP3 also inhibits the differentiation of IL17 producing helper T-cells (Th17) by antagonizing RORC (RAR related orphan receptor C). Isoforms of FOXP3 lacking exon2 (FOXP3 delta 2), or exon 7 (FOXP3 delta 7) may also be used as regulatory switches. In one aspect, the effector module of the invention may be a DD-FOXP3 fusion polypeptide. FOXP3 may be a full length FOXP3 (SEQ ID NO. 8369, encoded by SEQ ID NO. 8370); or FOXP3 (amino acid 2-431 of WT) (SEQ ID NO. 8371, encoded by SEQ ID NO. 8372), delta 2 FOXP3 (SEQ ID NO. 8373, encoded by SEQ ID NO. 8374); or FOXP3 delta (amino acid 2-396 of WT) (SEQ ID NO. 8375, encoded by SEQ ID NO. 8376).

11. Homing Receptors

In some embodiments, payloads of the present invention may comprise homing receptors that guide immunotherapeutic cells to different anatomical compartments, such as designated tumor sites. For example, T cells expressing a chimeric antigen receptor may be further modified to express a homing receptor that is not normally expressed by the T cell. As used herein, the term “homing receptor” is a receptor that guides a cell expressing the receptor to a designated organ, a particular tissue, or a particular type of cell. Such trafficking receptors favor T cell accumulation in certain target organs. In some embodiments, the homing receptors of the present invention may be adhesion molecules. In other embodiments, the homing receptors of the invention may be chemokine receptors which mediate chemotaxis to chemokines. As non-limiting examples, a homing receptor may be a B cell zone homing receptor such as CXCR5; T cell zone homing receptor such as CXCR7; a gastrointestinal homing receptor such as CCR9 and integrin α4β7 (also known as lymphocyte Peyer patch adhesion molecule); a skin homing receptor such as CLA (cutaneous lymphocyte-associated antigen receptor), CCR4, CCR8 and CCR10 (See, e.g., International Patent Publication NO.: WO2016025454; the contents of which are incorporated herein by reference in their entirety). Other homing receptors include, without limitation, CXCR2 and CXCR1 which redirect chemokine receptor modified tumor-infiltrating lymphocytes to melanoma tumor (Idorn et al., Methods Mol. Biol., 2016, 1428: 261-276; and Sapoznik et al., Cancer Immunol Immunother., 2012, 61(10): 1833-1847); CCR2 which, when expressed by CD8+ T cells, can home modified CD8+ T cells to the site of prostate cancer in which the CCL2 (a CCR2 ligand) expression is increased (Garetto et al., Oncotarget, 2016, May 10. doi: 10.18632/oncotarget.9280); and CD103 as an intestinal homing receptor.

12. Immune Signaling

Treatment with immunotherapeutic agents may induce immune cell signaling, leading to the activation of cell-type specific immune activities, ultimately resulting in an immune response. In some embodiments, payloads of the present invention may be immune signaling biomolecules used to achieve exogenous control of signaling pathways. Exemplary immune signaling biomolecules include transcription factors such as Nuclear factor of activated T-cells (NFAT) (e.g., NFAT, NFAT2, NFAT3 and NFAT 4), Nuclear Factor Kappa B (NFκB), Signal transducer and activator of transcription (STAT), Activator protein-1 (AP-1), Rel, Fos, and Jun; kinases such as Janus Kinase (JAK), Extracellular signal-regulated kinases (ERK), Mitogen-Activated Protein Kinases (MAPK), Mammalian target of rapamycin (mTOR), Phosphoinositide-dependent kinase (PDK), Protein kinase B (PKB), IkB kinase (IKK), Calcium/Calmodulin dependent kinase (CaMK); and other signaling molecules such as Ras, Cbl, Calmodulin (CaM), Calpain, and IkkB kinase.

In one embodiment, the payloads of the present invention may be administered in conjunction with inhibitors of SHP-1 and/or SHP-2. The tyrosine-protein phosphatase SHP1 (also known as PTPN6) and SHP2 (also known as PTPN11) are involved in the Programmed Cell Death (PD1) inhibitory signaling pathway. The intracellular domain of PD1 contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). ITSM has been shown to recruit SHP-1 and 2. This generates negative costimulatory micro clusters that induce the dephosphorylation of the proximal TCR signaling molecules, thereby resulting in suppression of T cell activation, which can lead to T cell exhaustion. In one embodiment, inhibitors of SHP-1 and 2 may include expressing dominant negative versions of the proteins in T cells, TILs or other cell types to relieve exhaustion. Such mutants can bind to the endogenous, catalytically active proteins, and inhibit their function. In one embodiment, the dominant negative mutant of SHP-1 and/or SHP-2 lack the phosphatase domain required for catalytic activity. In some embodiments, any of the dominant negative SHP-1 mutants taught Bergeron S et al. (2011). Endocrinology. 2011 December; 152(12):4581-8; Dustin J B et al. (1999) J Immunol. March 1; 162(5):2717-24; Berchtold S (1998) Mol Endocrinol. April; 12(4):556-67 and Schram et al. (2012) Am J Physiol Heart Circ Physiol. 1; 302 (1):H231-43; may be useful in the invention (the contents of each of which are incorporated by reference in their entirety).

13. Oncolytic Viruses

In some embodiments, payloads of the present invention may comprise oncolytic viruses or any components of oncolytic viruses. In some embodiments, the payload may be oncolytic viruses or components that have been genetically modified oncolytic viruses for use in oncolytic virotherapy. As used herein, the term “virotherapy” refers to a therapeutic use of oncolytic viruses (replication competent viruses) to attack and destroy cancer cells. Oncolytic viruses refer to those viruses that are able to eliminate malignancies by direct targeting and killing of cancer cells within the tumor, without causing harm to normal tissues. Exemplary oncolytic viruses and genetically engineered oncolytic viruses with cancer specific tropism may include Arvoviruses, Adenoviruses, Coxsackie viruses, Herpes Simplex Viruses (HSVs), Measles, Mumps viruses, Moloney leukemia viruses, Myxovirus, Newcastle Disease Viruses, Reoviruses, Rhabdovirus, Vesticular Stomatic Viruses, and Vaccinia Viruses (VV). It may also be chimeric viruses with increased oncolytic potential such as an adeno-parvovirus chimera in U.S. Pat. No. 9,441,246. The oncolytic viruses may be modified to be less susceptible to immune suppression while more specifically targeting particular classes of cancer cells, or be modified to insert and express cancer-suppressing transgenes. Modifications to the oncolytic virus may also be made to improve replicative potential of the virus, increase viral titers, and/or enhance the range cancer cells that can be infected by the virus. Examples of modified oncolytic viruses that may be used as payload include U.S. Patent NO.: U.S. Pat. No. 8,282,917B2, International Patent Publication NO.: WO2011070440, WO2004078206A1, WO2016144564, WO2016119052, WO2009111892; the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, payloads of the present invention may be one or more coat proteins of the viruses, inserted transgenes, other factors that can increase intratumoral virus replication and the combinations.

In some instance, two or more oncolytic viruses may also be used as payload within the same SRE or in two or more SREs to achieve synergistic killing of target cancer cells as described in International Patent Publication NO.: WO2010020056 (the contents of which are incorporated herein by reference in their entirety).

14. Genomic Editing Systems

In some embodiments, payloads of the present invention may be components of gene editing systems including a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), CRISPR enzyme (Cas9), CRISPR-Cas9 or CRISPR system and CRISPR-CAS9 complex. It may also be other genomic editing systems, such as Zinc finger nucleases, TALEN (Transcription activator-like effector-based nucleases) and meganucleases.

Additional Features

The effector module of the present invention may further comprise a signal sequence which regulates the distribution of the payload, a cleavage and/or processing feature which facilitate cleavage of the payload from the effector module construct, a targeting and/or penetrating signal which can regulate the cellular localization of the effector module, and/or one or more linker sequences which link different components (e.g. a DD and a payload) of the effector module. In some embodiments, the effector module may further comprise of one or more additional features such as linker sequences (with specific sequences and lengths), cleavage sites, regulatory elements (that regulate expression of the protein of interest such as microRNA targeting sites), signal sequences that lead the effector module to a specific cellular or subcellular location, penetrating sequences, or tags and biomarkers for tracking the effector module.

1. Signal Sequences

In addition to the SRE (e.g., DD) and payload region, effector modules of the invention may further comprise one or more signal sequences. Signal sequences (sometimes referred to as signal peptides, targeting signals, target peptides, localization sequences, transit peptides, leader sequences or leader peptides) direct proteins (e.g., the effector module of the present invention) to their designated cellular and/or extracellular locations. Protein signal sequences play a central role in the targeting and translocation of nearly all secreted proteins and many integral membrane proteins.

A signal sequence is a short (5-30 amino acids long) peptide present at the N-terminus of the majority of newly synthesized proteins that are destined towards a particular location. Signal sequences can be recognized by signal recognition particles (SRPs) and cleaved using type I and type II signal peptide peptidases. Signal sequences derived from human proteins can be incorporated as a regulatory module of the effector module to direct the effector module to a particular cellular and/or extracellular location. These signal sequences are experimentally verified and can be cleaved (Zhang et al., Protein Sci. 2004, 13:2819-2824).

In some embodiments, a signal sequence may be, although not necessarily, located at the N-terminus or C-terminus of the effector module, and may be, although not necessarily, cleaved off the desired effector module to yield a “mature” payload, i.e., an immunotherapeutic agent as discussed herein.

In some examples, a signal sequence may be a secreted signal sequence derived from a naturally secreted protein, and its variant thereof. In some instances, the secreted signal sequences may be cytokine signal sequences such as, but not limited to, IL2 signal sequence comprising amino acid of SEQ ID NO. 261 (encoded by the nucleotide sequence of SEQ ID NO. 262-265), and/or p40 signal sequence comprising the amino acid sequence of SEQ ID NO. 266 (encoded by the nucleotide sequence of SEQ ID NO. 267-275).

In some instances, signal sequences directing the payload to the surface membrane of the target cell may be used. Expression of the payload on the surface of the target cell may be useful to limit the diffusion of the payload to non-target in vivo environments, thereby potentially improving the safety profile of the payloads. Additionally, the membrane presentation of the payload may allow for physiologically and qualitative signaling as well as stabilization and recycling of the payload for a longer half-life. Membrane sequences may be the endogenous signal sequence of the N terminal component of the payload. Optionally, it may be desirable to exchange this sequence for a different signal sequence. Signal sequences may be selected based on their compatibility with the secretory pathway of the cell type of interest so that the payload is presented on the surface of the T cell. In some embodiments, the signal sequence may be IgE signal sequence comprising amino acid of SEQ ID NO. 276 (encoded by the nucleotide sequence of SEQ ID NO. 277) or CD8a signal sequence comprising amino acid SEQ ID NO. 278 (encoded by the nucleotide sequence of SEQ ID NO. 279-283).

Other examples of signal sequences include, a variant may be a modified signal sequence discussed in U.S. Pat. Nos. 8,148,494, 8,258,102, 9,133,265, 9,279,007, and U.S. patent application publication NO. 2007/0141666; and International patent application publication NO. WO1993/018181; the contents of each of which are incorporated herein by reference in their entirety. In other examples, a signal sequence may be a heterogeneous signal sequence from other organisms such as virus, yeast and bacteria, which can direct an effector module to a particular cellular site, such as a nucleus (e.g., EP 1209450). Other examples may include Aspartic Protease (NSP24) signal sequences from Trichoderma that can increase secretion of fused protein such as enzymes (e.g., U.S. Pat. No. 8,093,016 to Cervin and Kim), bacterial lipoprotein signal sequences (e.g., PCT application publication NO. 1991/09952 to Lau and Rioux), E. coli enterotoxin II signal peptides (e.g., U.S. Pat. No. 6,605,697 to Kwon et al.), E. coli secretion signal sequence (e.g., U.S. patent publication NO. 2016/090404 to Malley et al.), a lipase signal sequence from a methylotrophic yeast (e.g., U.S. Pat. No. 8,975,041), and signal peptides for DNases derived from Coryneform bacteria (e.g., U.S. Pat. No. 4,965,197); the contents of each of which are incorporated herein by reference in their entirety.

Signal sequences may also include nuclear localization signals (NLSs), nuclear export signals (NESs), polarized cell tubulo-vesicular structure localization signals (See, e.g., U.S. Pat. No. 8,993,742; Cour et al., Nucleic Acids Res. 2003, 31(1): 393-396; the contents of each of which are incorporated herein by reference in their entirety), extracellular localization signals, signals to subcellular locations (e.g. lysosome, endoplasmic reticulum, golgi, mitochondria, plasma membrane and peroxisomes, etc.) (See, e.g., U.S. Pat. No. 7,396,811; and Negi et al., Database, 2015, 1-7; the contents of each of which are incorporated herein by reference in their entirety).

2. Cleavage Sites

In some embodiments, the effector module comprises a cleavage and/or processing feature. The effector module of the present invention may include at least one protein cleavage signal/site. The protein cleavage signal/site may be located at the N-terminus, the C-terminus, at any space between the N- and the C-termini such as, but not limited to, half-way between the N- and C-termini, between the N-terminus and the half-way point, between the half-way point and the C-terminus, and combinations thereof.

The effector module may include one or more cleavage signal(s)/site(s) of any proteinases. The proteinases may be a serine proteinase, a cysteine proteinase, an endopeptidase, a dipeptidase, a metalloproteinase, a glutamic proteinase, a threonine proteinase and an aspartic proteinase. In some aspects, the cleavage site may be a signal sequence of furin, actinidin, calpain-1, carboxypeptidase A, carboxypeptidase P, carboxypeptidase Y, caspase-1, caspase-2, caspase-3, caspase-4, caspase-5, caspase-6, caspase-7, caspase-8, caspase-9, caspase-10, cathepsin B, cathepsin C, cathepsin G, cathepsin H, cathepsin K, cathepsin L, cathepsin S, cathepsin V, clostripain, chymase, chymotrypsin, elastase, endoproteinase, enterokinase, factor Xa, formic acid, granzyme B, Matrix metallopeptidase-2, Matrix metallopeptidase-3, pepsin, proteinase K, SUMO protease, subtilisin, TEV protease, thermolysin, thrombin, trypsin and TAGZyme.

In one embodiment, the cleavage site is a furin cleavage site comprising the amino acid sequence SARNRQKRS (SEQ ID NO. 284, encoded by the nucleotide sequence of SEQ ID NO. 285), or a revised furin cleavage site comprising the amino acid sequence ARNRQKRS (SEQ ID NO. 286, encoded by the nucleotide sequence of SEQ ID NO. 287), or a modified furin site comprising the amino acid sequence ESRRVRRNKRSK (SEQ ID NO. 288, encoded by the nucleotide sequence of SEQ ID NO. 289-291).

3. Protein Tags

In some embodiments, the effector module of the invention may comprise a protein tag. The protein tag may be used for detecting and monitoring the process of the effector module. The effector module may include one or more tags such as an epitope tag (e.g., a FLAG or hemagglutinin (HA) tag). A large number of protein tags may be used for the present effector modules. They include, but are not limited to, self-labeling polypeptide tags (e.g., haloalkane dehalogenase (halotag2 or halotag7), ACP tag, clip tag, MCP tag, snap tag), epitope tags (e.g., FLAG, HA, His, and Myc), fluorescent tags (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), and its variants), bioluminescent tags (e.g. luciferase and its variants), affinity tags (e.g., maltose-binding protein (MBP) tag, glutathione-S-transferase (GST) tag), immunogenic affinity tags (e.g., protein A/G, IRS, AU1, AU5, glu-glu, KT3, S-tag, HSV, VSV-G, Xpress and V5), and other tags (e.g., biotin (small molecule), StrepTag (StrepII), SBP, biotin carboxyl carrier protein (BCCP), eXact, CBP, CYD, HPC, CBD intein-chitin binding domain, Trx, NorpA, and NusA.

In other embodiments, a tag may also be selected from those disclosed in U.S. Pat. Nos. 8,999,897; 8,357,511; 7,094,568; 5,011,912; 4,851,341; and 4,703,004; U.S. patent application publication NOs.: 2013/115635 and 2013/012687; and International application publication NO.: WO2013/091661; the contents of each of which are incorporated herein by reference in their entirety.

In some aspects, a multiplicity of protein tags, either the same or different tags, may be used; each of the tags may be located at the same N- or C-terminus, whereas in other cases these tags may be located at each terminus.

4. Targeting Peptides

In some embodiments, the effector module of the invention may further comprise a targeting and/or penetrating peptide. Small targeting and/or penetrating peptides that selectively recognize cell surface markers (e.g. receptors, trans-membrane proteins, and extra-cellular matrix molecules) can be employed to target the effector module to the desired organs, tissues or cells. Short peptides (5-50 amino acid residues) synthesized in vitro and naturally occurring peptides, or analogs, variants, derivatives thereof, may be incorporated into the effector module for homing the effector module to the desired organs, tissues and cells, and/or subcellular locations inside the cells.

In some embodiments, a targeting sequence and/or penetrating peptide may be included in the effector module to drive the effector module to a target organ, or a tissue, or a cell (e.g., a cancer cell). In other embodiments, a targeting and/or penetrating peptide may direct the effector module to a specific subcellular location inside a cell.

A targeting peptide has any number of amino acids from about 6 to about 30 inclusive. The peptide may have 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids. Generally, a targeting peptide may have 25 or fewer amino acids, for example, 20 or fewer, for example 15 or fewer.

Exemplary targeting peptides may include, but are not limited to, those disclosed in the art, e.g., U.S. Pat. Nos. 9,206,231, 9,110,059, 8,706,219; and 8,772,449, and U.S. application publication NOs. 2016/089447. 2016/060296. 2016/060314. 2016/060312. 2016/060311. 2016/009772. 2016/002613. 2015/314011 and 2015/166621. and International application publication NOs. WO2015/179691 and WO2015/183044; the contents of each of which are incorporated herein by reference in their entirety.

5. Linkers

In some embodiments, the effector module of the invention may further comprise a linker sequence. The linker region serves primarily as a spacer between two or more polypeptides within the effector module. A “linker” or “spacer”, as used herein, refers to a molecule or group of molecules that connects two molecules, or two parts of a molecule such as two domains of a recombinant protein.

In some embodiments, “Linker” (L) or “linker domain” or “linker region” or “linker module” or “peptide linker” as used herein refers to an oligo- or polypeptide region of from about 1 to 100 amino acids in length, which links together any of the domains/regions of the effector module (also called peptide linker). The peptide linker may be 1-40 amino acids in length, or 2-30 amino acids in length, or 20-80 amino acids in length, or 50-100 amino acids in length. Linker length may also be optimized depending on the type of payload utilized and based on the crystal structure of the payload. In some instances, a shorter linker length may be preferably selected. In some aspects, the peptide linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids: Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I), Serine (S), Cysteine (C), Threonine (T), Methionine (M), Proline (P), Phenylalanine (F), Tyrosine (Y), Tryptophan (W), Histidine (H), Lysine (K), Arginine (R), Aspartate (D), Glutamic acid (E), Asparagine (N), and Glutamine (Q). One or more of these amino acids may be glycosylated, as is understood by those in the art. In some aspects, amino acids of a peptide linker may be selected from Alanine (A), Glycine (G), Proline (P), Asparagine (R), Serine (S), Glutamine (Q) and Lysine (K).

In one example, an artificially designed peptide linker may preferably be composed of a polymer of flexible residues like Glycine (G) and Serine (S) so that the adjacent protein domains are free to move relative to one another. Longer linkers may be used when it is desirable to ensure that two adjacent domains do not interfere with one another. The choice of a particular linker sequence may concern if it affects biological activity, stability, folding, targeting and/or pharmaco*kinetic features of the fusion construct. Examples of peptide linkers include, but are not limited to: SG, MH, GGSG (SEQ ID NO. 292, encoded by the nucleotide sequence of SEQ ID NO. 293; GGSGG (SEQ ID NO. 294), encoded by the nucleotide sequence of SEQ ID NOs. 295-299; GGSGGG (SEQ ID NO. 78), encoded by the nucleotide sequence of SEQ ID NO. 93 and 300; SGGGS (SEQ ID NO. 301), encoded by the nucleotide sequence of SEQ ID NO. 302-303; GGSGGGSGG (SEQ ID NO. 77), encoded by the nucleotide sequence of SEQ ID NO. 92; GGGGG (SEQ ID NO. 304), GGGGS (SEQ ID NO. 305) or (GGGGS)n (n=2 (SEQ ID NO. 306), 3 (SEQ ID NO. 307; encoded by SEQ ID NO. 308-313), 4 (SEQ ID NO. 314), 5 (SEQ ID NO. 315), or 6 (SEQ ID NO. 316)), SSSSG (SEQ ID NO. 317) or (SSSSG)n (n=2 (SEQ ID NO. 318), 3 (SEQ ID NO. 319), 4 (SEQ ID NO. 320), 5 (SEQ ID NO. 321), or 6 (SEQ ID NO. 322)), SGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO. 323), encoded by the nucleotide sequence of SEQ ID NO. 324; EFSTEF (SEQ ID NO. 325), encoded by the nucleotide sequence of SEQ ID NOs. 326-327; GKSSGSGSESKS (SEQ ID NO. 328), GGSTSGSGKSSEGKG (SEQ ID NO. 329), GSTSGSGKSSSEGSGSTKG (SEQ ID NO. 330), GSTSGSGKPGSGEGSTKG (SEQ ID NO. 331), VDYPYDVPDYALD (SEQ ID NO. 332), encoded by the nucleotide sequence of SEQ ID NO. 333; or EGKSSGSGSESKEF (SEQ ID NO. 334); or GSGSGS (SEQ ID NO. 8330), encoded by the nucleotide sequence of SEQ ID NO. 8347; or GSGSGSGS (SEQ ID NO. 8331), encoded by the nucleotide sequence of SEQ ID NO. 8348; or GSGSGGGSGS (SEQ ID NO. 8332), encoded by the nucleotide sequence of SEQ ID NO. 8349; SGSGSGS linker (SEQ ID NO: 8382), or SG linker, encoded by AGTGGT; or an LD Linker comprising Lysine Aspartic acid, encoded by CTAGAT. Linkers may also be DNA restriction enzyme recognition sites or modifications thereof such as flexible GS or G/S rich linker; BamH1 Site encoded by GGATCC; flexible G/S rich linker or BamH1 Site; SR/Xba I site, encoded by TCTAGA; or a GSG linker (BamH1-Gly) linker, encoded by GGATCCGGA.

In other examples, a peptide linker may be made up of a majority of amino acids that are sterically unhindered, such as Glycine (G) and Alanine (A). Exemplary linkers are polyglycines (such as (G)4 (SEQ ID NO: 8378), (G)5 (SEQ ID NO: 8379), (G)8 (SEQ ID NO: 8380)), poly(GA), and polyalanines. The linkers described herein are exemplary, and linkers that are much longer and which include other residues are contemplated by the present invention.

A linker sequence may be a natural linker derived from a multi-domain protein. A natural linker is a short peptide sequence that separates two different domains or motifs within a protein.

In some aspects, linkers may be flexible or rigid. In other aspects, linkers may be cleavable or non-cleavable. As used herein, the terms “cleavable linker domain or region” or “cleavable peptide linker” are used interchangeably. In some embodiments, the linker sequence may be cleaved enzymatically and/or chemically. Examples of enzymes (e.g., proteinase/peptidase) useful for cleaving the peptide linker include, but are not limited, to Arg-C proteinase, Asp-N endopeptidase, chymotrypsin, clostripain, enterokinase, Factor Xa, glutamyl endopeptidase, Granzyme B, Achromobacter proteinase I, pepsin, proline endopeptidase, proteinase K, Staphylococcal peptidase I, thermolysin, thrombin, trypsin, and members of the Caspase family of proteolytic enzymes (e.g. Caspases 1-10). Chemical sensitive cleavage sites may also be included in a linker sequence. Examples of chemical cleavage reagents include, but are not limited to, cyanogen bromide, which cleaves methionine residues; N-chloro succinimide, iodobenzoic acid or BNPS-skatole [2-(2-nitrophenylsulfenyl)-3-methylindole], which cleaves tryptophan residues; dilute acids, which cleave at aspartyl-prolyl bonds; and e aspartic acid-proline acid cleavable recognition sites (i.e., a cleavable peptide linker comprising one or more D-P dipeptide moieties). The fusion module may include multiple regions encoding peptides of interest separated by one or more cleavable peptide linkers.

In other embodiments, a cleavable linker may be a “self-cleaving” linker peptide, such as 2A linkers (for example T2A), 2A-like linkers or functional equivalents thereof and combinations thereof. In some embodiments, the linkers include the picornaviral 2A-like linker, CHYSEL sequences of porcine teschovirus (P2A), Thosea asigna virus (T2A) or combinations, variants and functional equivalents thereof. In some embodiments, the biocircuits of the present invention may include 2A peptides. The 2A peptide is a sequence of about 20 amino acid residues from a virus that is recognized by a protease (2A peptidases) endogenous to the cell. The 2A peptide was identified among picornaviruses, a typical example of which is the Foot- and Mouth disease virus (Robertson B H, et. al., J Virol 1985, 54:651-660). 2A-like sequences have also been found in Picornaviridae like equine rhinitis A virus, as well as unrelated viruses such as porcine teschovirus-1 and the insect Thosea asigna virus (TaV). In such viruses, multiple proteins are derived from a large polyprotein encoded by an open reading frame. The 2A peptide mediates the co-translational cleavage of this polyprotein at a single site that forms the junction between the virus capsid and replication polyprotein domains. The 2A sequences contain the consensus motif D-V/I-E-X-N-P-G-P (SEQ ID NO: 8381). These sequences are thought to act co-translationally, preventing the formation of a normal peptide bond between the glycine and last proline, resulting in the ribosome skipping of the next codon (Donnelly M L et al. (2001). J Gen Virol, 82:1013-1025). After cleavage, the short peptide remains fused to the C-terminus of the protein upstream of the cleavage site, while the proline is added to the N-terminus of the protein downstream of the cleavage site. Of the 2A peptides identified, four have been widely used namely FMDV 2A (abbreviated herein as F2A); equine rhinitis A virus (ERAV) 2A (E2A); porcine teschovirus-12A (P2A) and Thoseaasigna virus 2A (T2A). In some embodiments, the 2A peptide sequences useful in the present invention are selected from SEQ ID NO. 8-11 of International Patent Publication WO2010042490, the contents of which are incorporated by reference in its entirety. In some embodiments, the cleavage site may be a P2A cleavable peptide (SEQ ID NO. 8239), encoded by the nucleotide sequence of SEQ ID NO. 8269.

Other linkers will be apparent to those skilled in the art and may be used in connection with alternate embodiments of the invention.

The linkers of the present invention may also be non-peptide linkers. For example, alkyl linkers such as —NH—(CH2) α-C(O)—, wherein a=2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C1-C6) lower acyl, halogen (e.g., Cl, Br), CN, NH2, phenyl, etc.

In some aspects, the linker may be an artificial linker from U.S. Pat. Nos. 4,946,778, 5,525,491, 5,856,456, and International patent publication NO. WO2012/083424; the contents of each of which are incorporated herein by reference in their entirety.

6. Embedded Stimulus, Signals and Other Regulatory Features

microRNAs (or miRNA) are 19-25 nucleotide long noncoding RNAs that bind to the 3′UTR of nucleic acid molecules and down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation. The polynucleotides of the invention may comprise one or more microRNA target sequences, microRNA sequences, or microRNA seeds. Such sequences may correspond to any known microRNA such as those taught in U.S. Publication No. US2005/0261218 and U.S. Publication No. US2005/0059005, the contents of which are incorporated herein by reference in their entirety. As a non-limiting embodiment, known microRNAs, their sequences and their binding site sequences in the human genome are listed Table 14 of the co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).

A microRNA sequence comprises a “seed” region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson-Crick complementarity to the miRNA target sequence. A microRNA seed may comprise positions 2-8 or 2-7 of the mature microRNA. In some embodiments, a microRNA seed may comprise 7 nucleotides (e.g., nucleotides 2-8 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1. In some embodiments, a microRNA seed may comprise 6 nucleotides (e.g., nucleotides 2-7 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1. See for example, Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P; Mol Cell. 2007 Jul. 6; 27(1):91-105. The bases of the microRNA seed have complete complementarity with the target sequence. By engineering microRNA target sequences into the polynucleotides encoding the biocircuit components, effector modules, SREs or payloads of the invention one can target the molecule for degradation or reduced translation, provided the microRNA in question is available. This process will reduce the hazard of off target effects upon nucleic acid molecule delivery.

Identification of microRNA, microRNA target regions, and their expression patterns and role in biology have been reported (Bonauer et al., Curr Drug Targets 2010 11:943-949; Anand and Cheresh Curr Opin Hematol 2011 18:171-176; Contreras and Rao Leukemia 2012 26:404-413 (2011 Dec. 20. doi: 10.1038/leu2011.356); Bartel Cell 2009 136:215-233; Landgraf et al, Cell, 2007 129:1401-1414; Gentner and Naldini, Tissue Antigens. 2012 80:393-403 and all references therein; each of which is herein incorporated by reference in its entirety).

For example, if the polynucleotide is not intended to be delivered to the liver but ends up there, then miR-122, a microRNA abundant in liver, can inhibit the expression of the polynucleotide if one or multiple target sites of miR-122 are engineered into the polynucleotide. Introduction of one or multiple binding sites for different microRNA can be engineered to further decrease the longevity, stability, and protein translation of a polynucleotide hence providing an additional layer of tenability beyond the stimulus selection, SRE design and payload variation.

As used herein, the term “microRNA site” refers to a microRNA target site or a microRNA recognition site, or any nucleotide sequence to which a microRNA binds or associates. It should be understood that “binding” may follow traditional Watson-Crick hybridization rules or may reflect any stable association of the microRNA with the target sequence at or adjacent to the microRNA site.

Conversely, for the purposes of the polynucleotides of the present invention, microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues. For example, miR-122 binding sites may be removed to improve protein expression in the liver.

Regulation of expression in multiple tissues can be accomplished through introduction or removal or one or several microRNA binding sites.

Specifically, microRNAs are known to be differentially expressed in immune cells (also called hematopoietic cells), such as antigen presenting cells (APCs) (e.g. dendritic cells and macrophages), macrophages, monocytes, B lymphocytes, T lymphocytes, granulocytes, natural killer cells, etc. Immune cell specific microRNAs are involved in immunogenicity, autoimmunity, the immune-response to infection, inflammation, as well as unwanted immune response after gene therapy and tissue/organ transplantation. Immune cells specific microRNAs also regulate many aspects of development, proliferation, differentiation and apoptosis of hematopoietic cells (immune cells). For example, miR-142 and miR-146 are exclusively expressed in the immune cells, particularly abundant in myeloid dendritic cells. Introducing the miR-142 binding site into the 3′-UTR of a polypeptide of the present invention can selectively suppress the gene expression in the antigen presenting cells through miR-142 mediated mRNA degradation, limiting antigen presentation in professional APCs (e.g. dendritic cells) and thereby preventing antigen-mediated immune response after gene delivery (see, Annoni A et al., blood, 2009, 114, 5152-5161, the content of which is herein incorporated by reference in its entirety.)

In one embodiment, microRNAs binding sites that are known to be expressed in immune cells, in particular, the antigen presenting cells, can be engineered into the polynucleotides to suppress the expression of the polynucleotide in APCs through microRNA mediated RNA degradation, subduing the antigen-mediated immune response, while the expression of the polynucleotide is maintained in non-immune cells where the immune cell specific microRNAs are not expressed.

Many microRNA expression studies have been conducted, and are described in the art, to profile the differential expression of microRNAs in various cancer cells/tissues and other diseases. Some microRNAs are abnormally over-expressed in certain cancer cells and others are under-expressed. For example, microRNAs are differentially expressed in cancer cells (WO2008/154098, US2013/0059015, US2013/0042333, WO2011/157294); cancer stem cells (US2012/0053224); pancreatic cancers and diseases (US2009/0131348, US2011/0171646, US2010/0286232, U.S. Pat. No. 8,389,210); asthma and inflammation (U.S. Pat. No. 8,415,096); prostate cancer (US2013/0053264); hepatocellular carcinoma (WO2012/151212, US2012/0329672, WO2008/054828, U.S. Pat. No. 8,252,538); lung cancer cells (WO2011/076143, WO2013/033640, WO2009/070653, US2010/0323357); cutaneous T cell lymphoma (WO2013/011378); colorectal cancer cells (WO2011/0281756, WO2011/076142); cancer positive lymph nodes (WO2009/100430, US2009/0263803); nasopharyngeal carcinoma (EP2112235); chronic obstructive pulmonary disease (US2012/0264626, US2013/0053263); thyroid cancer (WO2013/066678); ovarian cancer cells (US2012/0309645, WO2011/095623); breast cancer cells (WO2008/154098, WO2007/081740, US2012/0214699), leukemia and lymphoma (WO2008/073915, US2009/0092974, US2012/0316081, US2012/0283310, WO2010/018563, the content of each of which is incorporated herein by reference in their entirety).

In one embodiment, microRNA may be used as described herein in support of the creation of tunable biocircuits.

In some embodiments, effector modules may be designed to encode (as a DNA or RNA or mRNA) one or more payloads, SREs and/or regulatory sequence such as a microRNA or microRNA binding site. In some embodiments, any of the encoded payloads or SREs may be stabilized or de-stabilized by mutation and then combined with one or more regulatory sequences to generate a dual or multi-tuned effector module or biocircuit system.

Each aspect or tuned modality may bring to the effector module or biocircuit a differentially tuned feature. For example, an SRE may represent a destabilizing domain, while mutations in the protein payload may alter its cleavage sites or dimerization properties or half-life and the inclusion of one or more microRNA or microRNA binding site may impart cellular detargeting or trafficking features. Consequently, the present invention embraces biocircuits which are multifactorial in their tenability.

In some embodiments, compositions of the invention may include optional proteasome adaptors. As used herein, the term “proteasome adaptor” refers to any nucleotide/amino acid sequence that targets the appended payload for degradation. In some aspects, the adaptors target the payload for degradation directly thereby circumventing the need for ubiquitination reactions. Proteasome adaptors may be used in conjunction with destabilizing domains to reduce the basal expression of the payload. Exemplary proteasome adaptors include the UbL domain of Rad23 or hHR23b, HPV E7 which binds to both the target protein Rb and the S4 subunit of the proteasome with high affinity, which allows direct proteasome targeting, bypassing the ubiquitination machinery; the protein gankyrin which binds to Rb and the proteasome subunit S6.

Such biocircuits may be engineered to contain one, two, three, four or more tuned features.

Polynucleotides

The present invention provides polynucleotides encoding novel hPDE5 DDs, effector modules comprising payloads and associated DDs, biocircuit systems comprising DDs and effector modules, and other components of the present invention.

The invention provides isolated biocircuit polypeptides, effector modules, stimulus response elements (SREs) and payloads, as well as polynucleotides encoding any of the foregoing; vectors comprising polynucleotides of the invention; and cells expressing polypeptides, polynucleotides and vectors of the invention. The polypeptides, polynucleotides, viral vectors and cells are useful for inducing anti-tumor immune responses in a subject.

The term “polynucleotide” or “nucleic acid molecule” in its broadest sense, includes any compound and/or substance that comprise a polymer of nucleotides, e.g., linked nucleosides. These polymers are often referred to as polynucleotides. Exemplary nucleic acids or polynucleotides of the invention include, but are not limited to, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino-α-LNA having a 2′-amino functionalization) or hybrids thereof.

In some embodiments, polynucleotides of the invention may be a messenger RNA (mRNA) or any nucleic acid molecule and may or may not be chemically modified. In one aspect, the nucleic acid molecule is a mRNA. As used herein, the term “messenger RNA (mRNA)” refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo.

Traditionally, the basic components of an mRNA molecule include at least a coding region, a 5′UTR, a 3′UTR, a 5′ cap and a poly-A tail. Building on this wild type modular structure, the present invention expands the scope of functionality of traditional mRNA molecules by providing payload constructs which maintain a modular organization, but which comprise one or more structural and/or chemical modifications or alterations which impart useful properties to the polynucleotide, for example tenability of function. As used herein, a “structural” feature or modification is one in which two or more linked nucleosides are inserted, deleted, duplicated, inverted or randomized in a polynucleotide without significant chemical modification to the nucleosides themselves. Because chemical bonds will necessarily be broken and reformed to effect a structural modification, structural modifications are of a chemical nature and hence are chemical modifications. However, structural modifications will result in a different sequence of nucleotides. For example, the polynucleotide “ATCG” may be chemically modified to “AT-5 meC-G”. The same polynucleotide may be structurally modified from “ATCG” to “ATCCCG”. Here, the dinucleotide “CC” has been inserted, resulting in a structural modification to the polynucleotide.

In some embodiments, polynucleotides of the present invention may harbor 5′UTR sequences which play a role in translation initiation. 5′UTR sequences may include features such as Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of genes, Kozak sequences have the consensus XCCR (A/G) CCAUG, where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG) and X is any nucleotide. In one embodiment, the Kozak sequence is ACCGCC. By engineering the features that are typically found in abundantly expressed genes of target cells or tissues, the stability and protein production of the polynucleotides of the invention can be enhanced.

Further provided are polynucleotides, which may contain an internal ribosome entry site (IRES) which play an important role in initiating protein synthesis in the absence of 5′ cap structure in the polynucleotide. An IRES may act as the sole ribosome binding site, or may serve as one of the multiple binding sites. Polynucleotides of the invention containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes giving rise to bicistronic and/or multicistronic nucleic acid molecules.

In some embodiments, polynucleotides encoding biocircuits, effector modules, DDs and payloads may include from about 30 to about 100,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 1,000, from 30 to 1,500, from 30 to 3,000, from 30 to 5,000, from 30 to 7,000, from 30 to 10,000, from 30 to 25,000, from 30 to 50,000, from 30 to 70,000, from 100 to 250, from 100 to 500, from 100 to 1,000, from 100 to 1,500, from 100 to 3,000, from 100 to 5,000, from 100 to 7,000, from 100 to 10,000, from 100 to 25,000, from 100 to 50,000, from 100 to 70,000, from 100 to 100,000, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 3,000, from 500 to 5,000, from 500 to 7,000, from 500 to 10,000, from 500 to 25,000, from 500 to 50,000, from 500 to 70,000, from 500 to 100,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 3,000, from 1,000 to 5,000, from 1,000 to 7,000, from 1,000 to 10,000, from 1,000 to 25,000, from 1,000 to 50,000, from 1,000 to 70,000, from 1,000 to 100,000, from 1,500 to 3,000, from 1,500 to 5,000, from 1,500 to 7,000, from 1,500 to 10,000, from 1,500 to 25,000, from 1,500 to 50,000, from 1,500 to 70,000, from 1,500 to 100,000, from 2,000 to 3,000, from 2,000 to 5,000, from 2,000 to 7,000, from 2,000 to 10,000, from 2,000 to 25,000, from 2,000 to 50,000, from 2,000 to 70,000, and from 2,000 to 100,000 nucleotides). In some aspects, polynucleotides of the invention may include more than 10,000 nucleotides.

Regions of the polynucleotides which encode certain features such as cleavage sites, linkers, trafficking signals, tags or other features may range independently from 10-1,000 nucleotides in length (e.g., greater than 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 900 nucleotides or at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides).

In some embodiments, polynucleotides of the present invention may further comprise embedded regulatory moieties such as microRNA binding sites within the 3′UTR of nucleic acid molecules which when bind to microRNA molecules, down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation. Conversely, for the purposes of the polynucleotides of the present invention, microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues. For example, miR-142 and miR-146 binding sites may be removed to improve protein expression in the immune cells. In some embodiments, any of the encoded payloads may be may be regulated by an SRE and then combined with one or more regulatory sequences to generate a dual or multi-tuned effector module or biocircuit system.

In some embodiments, polynucleotides of the present invention may encode fragments, variants, derivatives of polypeptides of the inventions. In some aspects, the variant sequence may keep the same or a similar activity. Alternatively, the variant may have an altered activity (e.g., increased or decreased) relative to the start sequence. Generally, variants of a particular polynucleotide or polypeptide of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, 25:3389-3402.)

In some embodiments, polynucleotides of the present invention may be modified. As used herein, the terms “modified”, or as appropriate, “modification” refers to chemical modification with respect to A, G, U (T in DNA) or C nucleotides. Modifications may be on the nucleoside base and/or sugar portion of the nucleosides which comprise the polynucleotide. In some embodiments, multiple modifications are included in the modified nucleic acid or in one or more individual nucleoside or nucleotide. For example, modifications to a nucleoside may include one or more modifications to the nucleobase and the sugar. Modifications to the polynucleotides of the present invention may include any of those taught in, for example, International Publication NO. WO2013/052523, the contents of which are incorporated herein by reference in its entirety.

As described herein “nucleoside” is defined as a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as “nucleobase”). As described herein, “nucleotide” is defined as a nucleoside including a phosphate group.

In some embodiments, the modification may be on the internucleoside linkage (e.g., phosphate backbone). Herein, in the context of the polynucleotide backbone, the phrases “phosphate” and “phosphodiester” are used interchangeably. Backbone phosphate groups can be modified by replacing one or more of the oxygen atoms with a different substituent. Further, the modified nucleosides and nucleotides can include the wholesale replacement of an unmodified phosphate moiety with another internucleoside linkage. Examples of modified phosphate groups include, but are not limited to, phosphorothioate, phosphoroselenates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphoramidates, phosphorodiamidates, alkyl or aryl phosphonates, and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. The phosphate linker can also be modified by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates), sulfur (bridged phosphorothioates), and carbon (bridged methylene-phosphonates). Other modifications which may be used are taught in, for example, International Application NO.: WO2013/052523, the contents of which are incorporated herein by reference in their entirety.

Chemical modifications and/or substitution of the nucleotides or nucleobases of the polynucleotides of the invention which are useful in the present invention include any modified substitutes known in the art, for example, (±)1-(2-Hydroxypropyl)pseudouridine TP, (2R)-1-(2-Hydroxypropyl)pseudouridine TP, 1-(4-Methoxy-phenyl)pseudo-UTP, 2′-O-dimethyladenosine, 1,2′-O-dimethylguanosine, 1,2′-O-dimethylinosine, 1-Hexyl-pseudo-UTP, 1-hom*oallylpseudouridine TP, 1-Hydroxymethylpseudouridine TP, 1-iso-propyl-pseudo-UTP, 1-Me-2-thio-pseudo-UTP, 1-Me-4-thio-pseudo-UTP, 1-Me-alpha-thio-pseudo-UTP, 1-Me-GTP, 2′-Amino-2′-deoxy-ATP, 2′-Amino-2′-deoxy-CTP, 2′-Amino-2′-deoxy-GTP, 2′-Amino-2′-deoxy-UTP, 2′-Azido-2′-deoxy-ATP, tubercidine, undermodified hydroxywybutosine, uridine 5-oxyacetic acid, uridine 5-oxyacetic acid methyl ester, wybutosine, wyosine, xanthine, Xanthosine-5′-TP, xylo-adenosine, zebularine, α-thio-adenosine, α-thio-cytidine, α-thio-guanosine, and/or α-thio-uridine.

Polynucleotides of the present invention may comprise one or more of the modifications taught herein. Different sugar modifications, base modifications, nucleotide modifications, and/or internucleoside linkages (e.g., backbone structures) may exist at various positions in the polynucleotide of the invention. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of a polynucleotide such that the function of the polynucleotide is not substantially decreased. A modification may also be a 5′ or 3′ terminal modification. The polynucleotide may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e. any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%).

In some embodiments, one or more codons of the polynucleotides of the present invention may be replaced with other codons encoding the native amino acid sequence to tune the expression of the SREs, through a process referred to as codon selection. Since mRNA codon, and tRNA anticodon pools tend to vary among organisms, cell types, sub cellular locations and over time, the codon selection described herein is a spatiotemporal (ST) codon selection.

In some embodiments of the invention, certain polynucleotide features may be codon optimized. Codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cell by replacing at least 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 or more codons of the native sequence with codons that are most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Codon usage may be measured using the Codon Adaptation Index (CAI) which measures the deviation of a coding polynucleotide sequence from a reference gene set. Codon usage tables are available at the Codon Usage Database (www.kazusa.or.jp/codon/) and the CAI can be calculated by EMBOSS CAI program (emboss.sourceforge.net/). Codon optimization methods are known in the art and may be useful in efforts to achieve one or more of several goals. These goals include to match codon frequencies in target and host organisms to ensure proper folding, bias nucleotide content to alter stability or reduce secondary structures, minimize tandem repeat codons or base runs that may impair gene construction or expression, customize transcriptional and translational control regions, insert or remove protein signaling sequences, remove/add post translation modification sites in encoded protein (e.g. glycosylation sites), add, remove or shuffle protein domains, insert or delete restriction sites, modify ribosome binding sites and degradation sites, to adjust translational rates to allow the various domains of the protein to fold properly, or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art, and non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.), OptimumGene (GenScript, Piscataway, N.J.), algorithms such as but not limited to, DNAWorks v3.2.3, and/or proprietary methods. In one embodiment, a polynucleotide sequence or portion thereof is codon optimized using optimization algorithms. Codon options for each amino acid are well-known in the art as are various species table for optimizing for expression in that particular species.

In some embodiments of the invention, certain polynucleotide features may be codon optimized. For example, a preferred region for codon optimization may be upstream (5′) or downstream (3′) to a region which encodes a polypeptide. These regions may be incorporated into the polynucleotide before and/or after codon optimization of the payload encoding region or open reading frame (ORF).

After optimization (if desired), the polynucleotide components are reconstituted and transformed into a vector such as, but not limited to, plasmids, viruses, cosmids, and artificial chromosomes.

Spatiotemporal codon selection may impact the expression of the polynucleotides of the invention, since codon composition determines the rate of translation of the mRNA species and its stability. For example, tRNA anticodons to optimized codons are abundant, and thus translation may be enhanced. In contrast, tRNA anticodons to less common codons are fewer and thus translation may proceed at a slower rate. Presnyak et al. have shown that the stability of an mRNA species is dependent on the codon content, and higher stability and thus higher protein expression may be achieved by utilizing optimized codons (Presnyak et al. (2015) Cell 160, 1111-1124; the contents of which are incorporated herein by reference in their entirety). Thus, in some embodiments, ST codon selection may include the selection of optimized codons to enhance the expression of the SRES, effector modules and biocircuits of the invention. In other embodiments, spatiotemporal codon selection may involve the selection of codons that are less commonly used in the genes of the host cell to decrease the expression of the compositions of the invention. The ratio of optimized codons to codons less commonly used in the genes of the host cell may also be varied to tune expression.

In some embodiments, certain regions of the polynucleotide may be modified using codon selection methods. For example, a preferred region for codon selection may be upstream (5′) or downstream (3′) to a region which encodes a polypeptide. These regions may be incorporated into the polynucleotide before and/or after codon selection of the payload encoding region or open reading frame (ORF).

The stop codon of the polynucleotides of the present invention may be modified to include sequences and motifs to alter the expression levels of the SREs, payloads and effector modules of the present invention. Such sequences may be incorporated to induce stop codon readthrough, wherein the stop codon may specify amino acids e.g. selenocysteine or pyrrolysine. In other instances, stop codons may be skipped altogether to resume translation through an alternate open reading frame. Stop codon read through may be utilized to tune the expression of components of the effector modules at a specific ratio (e.g. as dictated by the stop codon context). Examples of preferred stop codon motifs include UGAN, UAAN, and UAGN, where N is either C or U.

Polynucleotide modifications and manipulations can be accomplished by methods known in the art such as, but not limited to, site directed mutagenesis and recombinant technology. The resulting modified molecules may then be tested for activity using in vitro or in vivo assays such as those described herein or any other suitable screening assay known in the art.

In some embodiments, polynucleotides of the invention may comprise two or more effector module sequences, or two or more payload sequences, which are in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times. In these patterns, each letter, A, B, or C represent a different effector module component.

In yet another embodiment, polynucleotides of the invention may comprise two or more effector module component sequences with each component having one or more SRE sequences (DD sequences), or two or more payload sequences. As a non-limiting example, the sequences may be in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times in each of the regions. As another non-limiting example, the sequences may be in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times across the entire polynucleotide. In these patterns, each letter, A, B, or C represent a different sequence or component.

According to the present invention, polynucleotides encoding distinct biocircuits, effector modules, SREs and payload constructs may be linked together through the 3′-end using nucleotides which are modified at the 3′-terminus. Chemical conjugation may be used to control the stoichiometry of delivery into cells. Polynucleotides can be designed to be conjugated to other polynucleotides, dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases, proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell, hormones and hormone receptors, non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, or a drug. As non-limiting examples, they may be conjugates with other immune conjugates.

In some embodiments, the compositions of the polynucleotides of the invention may generated by combining the various components of the effector modules using the Gibson assembly method. The Gibson assembly reaction consists of three isothermal reactions, each relying on a different enzymatic activity including a 5′ exonuclease which generates long overhangs, a polymerase which fills in the gaps of the annealed single strand regions and a DNA ligase which seals the nicks of the annealed and filled-in gaps. Polymerase chain reactions are performed prior to Gibson assembly which may be used to generate PCR products with overlapping sequence. These methods can be repeated sequentially, to assemble larger and larger molecules. For example, the method can comprise repeating a method as above to join a second set of two or more DNA molecules of interest to one another, and then repeating the method again to join the first and second set DNA molecules of interest, and so on. At any stage during these multiple rounds of assembly, the assembled DNA can be amplified by transforming it into a suitable microorganism, or it can be amplified in vitro (e.g., with PCR).

In some embodiments, polynucleotides of the invention may encode effector modules comprising a destabilizing domain (DD) and at least one payload taught herein. The DD domain may be a hPDE5 mutant comprising one, two, three, four, five or more mutations

In some embodiments, the effector module may be a PDE5-GFP fusion encoded by SEQ ID NO. 95-106; 205-222; 234-236; 256-260; 378-379; 469-503; and 526-533. In some embodiments, the effector module may be hPDE5-CAR constructs, encoded by SEQ ID NO. 8285-8298 or a hPDE5-IL15-IL15Ra constructs, encoded by SEQ ID NO. 8352-8361.

Cells

In accordance with the present invention, cells genetically modified to express at least one biocircuit, SRE (e. g, DD), effector module and immunotherapeutic agent of the invention, are provided. Cells of the invention may include, without limitation, immune cells, stem cells and tumor cells. In some embodiments, immune cells are immune effector cells, including, but not limiting to, T cells such as CD8+ T cells and CD4+ T cells (e.g., Th1, Th2, Th17, Foxp3+ cells), memory T cells such as T memory stem cells, central T memory cells, and effector memory T cells, terminally differentiated effector T cells, natural killer (NK) cells, NK T cells, tumor infiltrating lymphocytes (TILs), cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs), and dendritic cells (DCs), other immune cells that can elicit an effector function, or the mixture thereof. T cells may be Tαβ cells and Tγδ cells. In some embodiments, stem cells may be from human embryonic stem cells, mesenchymal stem cells, and neural stem cells. In some embodiments, T cells may be depleted endogenous T cell receptors (See U.S. Pat. Nos. 9,273,283; 9,181,527; and 9,028,812; the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, cells of the invention may be autologous, allogeneic, syngeneic, or xenogeneic in relation to a particular individual subject.

In some embodiments, cells of the invention may be mammalian cells, particularly human cells. Cells of the invention may be primary cells or immortalized cell lines.

In some embodiments, cells of the invention may include expansion factors as payload to trigger proliferation and expansion of the cells. Exemplary payloads include RAS such as KRAS, NRAS, RRAS, RRAS2, MRAS, ERAS, and HRAS, DIRAS such as DIRAS1, DIRAS2, and DIRAS3, NKIRAS such as NKIRAS1, and NKIRAS2, RAL such as RALA, and RALB, RAP such as RAP1A, RAP1B, RAP2A, RAP2B, and RAP2C, RASD such as RASD1, and RASD2, RASL such as RASL10A, RASL10B, RASL11A, RASL11B, and RASL12, REM such as REM1, and REM2, GEM, RERG, RERGL, and RRAD.

Engineered immune cells can be accomplished by transducing a cell compositions with a polypeptide of a biocircuit, an effector module, a SRE and/or a payload of interest (i.e., immunotherapeutic agent), or a polynucleotide encoding said polypeptide, or a vector comprising said polynucleotide. The vector may be a viral vector such as a lentiviral vector, a gamma-retroviral vector, a recombinant AAV, an adenoviral vector and an oncolytic viral vector. In other aspects, non-viral vectors for example, nanoparticles and liposomes may also be used. In some embodiments, immune cells of the invention are genetically modified to express at least one immunotherapeutic agent of the invention which is tunable using a stimulus. In some examples, two, three or more immunotherapeutic agents constructed in the same biocircuit and effector module are introduced into a cell. In other examples, two, three, or more biocircuits, effector modules, each of which comprises an immunotherapeutic agent, may be introduced into a cell.

In some embodiments, immune cells of the invention may be T cells modified to express an antigen-specific T cell receptor (TCR), or an antigen specific chimeric antigen receptor (CAR) taught herein (known as CAR T cells). Accordingly, at least one polynucleotide encoding a CAR system (or a TCR) described herein, or a vector comprising the polynucleotide is introduced into a T cell. The T cell expressing the CAR or TCR binds to a specific antigen via the extracellular targeting moiety of the CAR or TCR, thereby a signal via the intracellular signaling domain (s) is transmitted into the T cell, and as a result, the T cell is activated. The activated CAR T cell changes its behavior including release of a cytotoxic cytokine (e.g., a tumor necrosis factor, and lymphotoxin, etc.), improvement of a cell proliferation rate, change in a cell surface molecule, or the like. Such changes cause destruction of a target cell expressing the antigen recognized by the CAR or TCR. In addition, release of a cytokine or change in a cell surface molecule stimulates other immune cells, for example, a B cell, a dendritic cell, a NK cell, and a macrophage.

The CAR introduced into a T cell may be a first-generation CAR including only the intracellular signaling domain from TCR CD3 zeta, or a second-generation CAR including the intracellular signaling domain from TCR CD3 zeta and a costimulatory signaling domain, or a third-generation CAR including the intracellular signaling domain from TCR CD3 zeta and two or more costimulatory signaling domains, or a split CAR system, or an on/off switch CAR system. In one example, the expression of the CAR or TCR is controlled by a destabilizing domain (DD) such as a hDHFR mutant, in the effector module of the invention. The presence or absence of hDHFR binding ligand such as TMP is used to tune the CAR or TCR expression in transduced T cells or NK cells.

In some embodiments, CAR T cells of the invention may be further modified to express another one, two, three or more immunotherapeutic agents. The immunotherapeutic agents may be another CAR or TCR specific to a different target molecule; a cytokine such as IL2, IL12, IL15 and IL18, or a cytokine receptor such as IL15Ra; a chimeric switch receptor that converts an inhibitory signal to a stimulatory signal; a homing receptor that guides adoptively transferred cells to a target site such as the tumor tissue; an agent that optimizes the metabolism of the immune cell; or a safety switch gene (e.g., a suicide gene) that kills activated T cells when a severe event is observed after adoptive cell transfer or when the transferred immune cells are no-longer needed. These molecules may be included in the same effector module or in separate effector modules.

In one embodiment, the CAR T cell (including TCR T cell) of the invention may be an “armed” CAR T cell which is transformed with an effector module comprising a CAR and an effector module comprising a cytokine. The inducible or constitutively secrete active cytokines further armor CAR T cells to improve efficacy and persistence. In this context, such CAR T cell is also referred to as “armored CAR T cell”. The “armor” molecule may be selected based on the tumor microenvironment and other elements of the innate and adaptive immune systems. In some embodiments, the molecule may be a stimulatory factor such as IL2, IL12, IL15, IL18, type I IFN, CD40L and 4-1 BBL which have been shown to further enhance CAR T cell efficacy and persistence in the face of a hostile tumor microenvironment via different mechanisms (Yeku et al., Biochem Soc Trans., 2016, 44(2): 412-418).

In some aspects, the armed CAR T cell of the invention is modified to express a CD19 CAR and IL12. Such T cells, after CAR mediated activation in the tumor, release inducible IL12 which augments T-cell activation and attracts and activates innate immune cells to eliminate CD19-negative cancer cells.

In one embodiment, T cells of the invention may be modified to express an effector module comprising a CAR and an effector module comprising a suicide gene.

In one embodiment, the CAR T cell (including TCR T cell) of the invention may be transformed with effector modules comprising a cytokine and a safety switch gene (e.g., suicide gene). The suicide gene may be an inducible caspase such as caspase 9 which induces apoptosis, when activated by an extracellular stimulus of a biocircuit system. Such induced apoptosis eliminates transferred cell as required to decrease the risk of direct toxicity and uncontrolled cell proliferation.

In some embodiments, immune cells of the invention may be NK cells modified to express an antigen-specific T cell receptor (TCR), or an antigen specific chimeric antigen receptor (CAR) taught herein.

Natural killer (NK) cells are members of the innate lymphoid cell family and characterized in humans by expression of the phenotypic marker CD56 (neural cell adhesion molecule) in the absence of CD3 (T-cell co-receptor). NK cells are potent effector cells of the innate immune system which mediate cytotoxic attack without the requirement of prior antigen priming, forming the first line of defense against diseases including cancer malignancies and viral infection.

Several pre-clinical and clinical trials have demonstrated that adoptive transfer of NK cells is a promising treatment approach against cancers such as acute myeloid leukemia (Ruggeri et al., Science; 2002, 295: 2097-2100; and Geller et al., Immunotherapy, 2011, 3: 1445-1459). Adoptive transfer of NK cells expressing CAR such as DAP12-Based Activating CAR revealed improved eradication of tumor cells (Topfer et al., J Immunol. 2015; 194:3201-3212). NK cell engineered to express a CS-1 specific CAR also displayed enhanced cytolysis and interferon-γ (IFNγ) production in multiple myeloma (Chu et al., Leukemia, 2014, 28(4): 917-927).

NK cell activation is characterized by an array of receptors with activating and inhibitory functions. The important activation receptors on NK cells include CD94/NKG2C and NKG2D (the C-type lectin-like receptors), and the natural cytotoxicity receptors (NCR) NKp30, NKp44 and NKp46, which recognize ligands on tumor cells or virally infected cells. NK cell inhibition is essentially mediated by interactions of the polymorphic inhibitory killer cell immunoglobulin-like receptors (KIRs) with their cognate human-leukocyte-antigen (HLA) ligands via the alpha-1 helix of the HLA molecule. The balance between signals that are generated from activating receptors and inhibitory receptors mainly determines the immediate cytotoxic activation.

NK cells may be isolated from peripheral blood mononuclear cells (PBMCs), or derived from human embryonic stem (ES) cells and induced pluripotent stem cells (iPSCs). The primary NK cells isolated from PBMCs may be further expanded for adoptive immunotherapy. Strategies and protocols useful for the expansion of NK cells may include interleukin 2 (IL2) stimulation and the use of autologous feeder cells, or the use of genetically modified allogeneic feeder cells. In some aspects, NK cells can be selectively expanded with a combination of stimulating ligands including IL15, IL21, IL2, 41 BBL, IL12, IL18, MICA, 2B4, LFA-1, and BCM1/SLAMF2 (e.g., U.S. patent publication NO: US20150190471).

Immune cells expressing effector modules comprising a CAR and/or other immunotherapeutic agents can be used as cancer immunotherapy. The immunotherapy comprises the cells expressing a CAR and/or other immunotherapeutic agents as an active ingredient, and may further comprise a suitable excipient. Examples of the excipient may include the pharmaceutically acceptable excipients, including various cell culture media, and isotonic sodium chloride.

In some embodiments, cells of the present invention may be dendritic cells that are genetically modified to express the compositions of the invention. Such cells may be used as cancer vaccines.

The present invention further provides pharmaceutical compositions comprising one or more biocircuits, effector modules, SREs (e.g., DDs), stimuli and payloads of interest (i.e., immunotherapeutic agents), vectors, cells and other components of the invention, and optionally at least one pharmaceutically acceptable excipient or inert ingredient.

As used herein the term “pharmaceutical composition” refers to a preparation of biocircuits, SREs, stimuli and payloads of interest (i.e., immunotherapeutic agents), other components, vectors, cells and described herein, or pharmaceutically acceptable salts thereof, optionally with other chemical components such as physiologically suitable carriers and excipients. The pharmaceutical compositions of the invention comprise an effective amount of one or more active compositions of the invention. The preparation of a pharmaceutical composition that contains at least one composition of the present invention and/or an additional active ingredient will be known to those skilled in the art considering the present disclosure, as exemplified by Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, incorporated herein by reference.

The term “excipient” or “inert ingredient” refers to an inactive substance added to a pharmaceutical composition and formulation to further facilitate administration of an active ingredient. For the purposes of the present disclosure, the phrase “active ingredient” generally refers to any one or more biocircuits, effector modules, SREs, stimuli and payloads of interest (i.e., immunotherapeutic agents), other components, vectors, and cells to be delivered as described herein. The phrases “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, such as, for example, a human, as appropriate.

In some embodiments, pharmaceutical compositions and formulations are administered to humans, human patients or subjects. Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other animal, e.g., to non-human animals, e.g. non-human mammals. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, non-human mammals, including agricultural animals such as cattle, horses, chickens and pigs, domestic animals such as cats, dogs, or research animals such as mice, rats, rabbits, dogs and non-human primates. It will be understood that, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biological Standards.

A pharmaceutical composition and formulation in accordance with the invention may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.

The compositions of the present invention may be formulated in any manner suitable for delivery. The formulation may be, but is not limited to, nanoparticles, poly (lactic-co-glycolic acid) (PLGA) microspheres, lipidoids, lipoplex, liposome, polymers, carbohydrates (including simple sugars), cationic lipids and combinations thereof.

In one embodiment, the formulation is a nanoparticle which may comprise at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG and PEGylated lipids. In another aspect, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA and DODMA.

For polynucleotides of the invention, the formulation may be selected from any of those taught, for example, in International Application PCT/US2012/069610, the contents of which are incorporated herein by reference in its entirety.

Relative amounts of the active ingredient, the pharmaceutically acceptable excipient or inert ingredient, and/or any additional ingredients in a pharmaceutical composition in accordance with the invention will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1 and 100, e.g., between 0.5 and 50, between 1-30, between 5-80, at least 80 (w/w) active ingredient.

Efficacy of treatment or amelioration of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of compositions of the present invention, “effective against” for example a cancer, indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as an improvement of symptoms, a cure, a reduction in disease load, reduction in tumor mass or cell numbers, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating the particular type of cancer.

A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10 in a measurable parameter of disease, and preferably at least 20, 30, 40, 50 or more can be indicative of effective treatment. Efficacy for a given composition or formulation of the present invention can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant change is observed.

Vectors

The present invention also provides vectors that package polynucleotides of the invention encoding biocircuits, effector modules, SREs (DDs) and payload constructs, and combinations thereof. In some embodiments, polynucleotides encoding destabilizing domains, effector modules and biocircuit systems, are provided. Vectors comprising polynucleotides of the invention are provided. In some aspects, the vector may be a non-viral vector, or a viral vector. In some embodiments, the vector of the invention is a viral vector. The viral vector may include, but is not limited to a retroviral vector, an adenoviral vector, an adeno-associated viral vector, or a lentiviral vector. In some embodiments, the vector of the invention may be a non-viral vector, such as a nanoparticles and liposomes.

Vectors of the present invention may also be used to deliver the packaged polynucleotides to a cell, a local tissue site or a subject. These vectors may be of any kind, including DNA vectors, RNA vectors, plasmids, viral vectors and particles. Viral vector technology is well known and described in Sambrook et al. (2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York). Viruses, which are useful as vectors include, but are not limited to lentiviral vectors, adenoviral vectors, adeno-associated viral (AAV) vectors, herpes simplex viral vectors, retroviral vectors, oncolytic viruses, and the like.

In general, vectors contain an origin of replication functional in at least one organism, a promoter sequence and convenient restriction endonuclease site, and one or more selectable markers e.g. a drug resistance gene.

As used herein a promoter is defined as a DNA sequence recognized by transcription machinery of the cell, required to initiate specific transcription of the polynucleotide sequence of the present invention. Vectors can comprise native or non-native promoters operably linked to the polynucleotides of the invention. The promoters selected may be strong, weak, constitutive, inducible, tissue specific, development stage-specific, and/or organism specific. One example of a suitable promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of polynucleotide sequence that is operatively linked to it. Another example of a preferred promoter is Elongation Growth Factor-1. Alpha (EF-1. alpha). Other constitutive promoters may also be used, including, but not limited to simian virus 40 (SV40), mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV), long terminal repeat (LTR), promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter as well as human gene promoters including, but not limited to the phosphoglycerate kinase (PGK) promoter, actin promoter, the myosin promoter, the hemoglobin promoter, the Ubiquitin C (Ubc) promoter, the human U6 small nuclear protein promoter and the creatine kinase promoter. In some instances, inducible promoters such as but not limited to metallothionine promoter, glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter may be used. In some embodiments, the promoter may be selected from the following a CMV promoter, comprising a nucleotide sequence of SEQ ID NO. 335, an EF1a promoter, comprising a nucleotide sequence of SEQ ID NOs. 336-337, and a PGK promoter, comprising a nucleotide sequence of SEQ ID NO. 338.

In some embodiments, the optimal promoter may be selected based on its ability to achieve minimal expression of the SREs and payloads of the invention in the absence of the ligand and detectable expression in the presence of the ligand.

Additional promoter elements e.g. enhancers may be used to regulate the frequency of transcriptional initiation. Such regions may be located 10-100 base pairs upstream or downstream of the start site. In some instances, two or more promoter elements may be used to cooperatively or independently activate transcription.

In some embodiments, the recombinant expression vector may comprise regulatory sequences, such as transcription and translation initiation and termination codons, which are specific to the type of host cell into which the vector is to be introduced.

1. Lentiviral Vectors

In some embodiments, lentiviral vectors/particles may be used as vehicles and delivery modalities. Lentiviruses are subgroup of the Retroviridae family of viruses, named because reverse transcription of viral RNA genomes to DNA is required before integration into the host genome. As such, the most important features of lentiviral vehicles/particles are the integration of their genetic material into the genome of a target/host cell. Some examples of lentivirus include the Human Immunodeficiency Viruses: HIV-1 and HIV-2, the Simian Immunodeficiency Virus (SIV), feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), Jembrana Disease Virus (JDV), equine infectious anemia virus (EIAV), equine infectious anemia virus, visna-maedi and caprine arthritis encephalitis virus (CAEV).

Typically, lentiviral particles making up the gene delivery vehicle are replication defective on their own (also referred to as “self-inactivating”). Lentiviruses can infect both dividing and non-dividing cells by virtue of the entry mechanism through the intact host nuclear envelope (Naldini L et al., Curr. Opin. Biotechnol, 1998, 9: 457-463). Recombinant lentiviral vehicles/particles have been generated by multiply attenuating the HIV virulence genes, for example, the genes Env, Vif, Vpr, Vpu, Nef and Tat are deleted making the vector biologically safe. Correspondingly, lentiviral vehicles, for example, derived from HIV-1/HIV-2 can mediate the efficient delivery, integration and long-term expression of transgenes into non-dividing cells. As used herein, the term “recombinant” refers to a vector or other nucleic acid containing both lentiviral sequences and non-lentiviral retroviral sequences.

Lentiviral particles may be generated by co-expressing the virus packaging elements and the vector genome itself in a producer cell such as human HEK293T cells. These elements are usually provided in three (in second generation lentiviral systems) or four separate plasmids (in third generation lentiviral systems). The producer cells are co-transfected with plasmids that encode lentiviral components including the core (i.e. structural proteins) and enzymatic components of the virus, and the envelope protein(s) (referred to as the packaging systems), and a plasmid that encodes the genome including a foreign transgene, to be transferred to the target cell, the vehicle itself (also referred to as the transfer vector). In general, the plasmids or vectors are included in a producer cell line. The plasmids/vectors are introduced via transfection, transduction or infection into the producer cell line. Methods for transfection, transduction or infection are well known by those of skill in the art. As non-limiting example, the packaging and transfer constructs can be introduced into producer cell lines by calcium phosphate transfection, lipofection or electroporation, generally together with a dominant selectable marker, such as neo, DHFR, Gln synthetase or ADA, followed by selection in the presence of the appropriate drug and isolation of clones.

The producer cell produces recombinant viral particles that contain the foreign gene, for example, the effector module of the present invention. The recombinant viral particles are recovered from the culture media and titrated by standard methods used by those of skill in the art. The recombinant lentiviral vehicles can be used to infect target cells.

Cells that can be used to produce high-titer lentiviral particles may include, but are not limited to, HEK293T cells, 293G cells, STAR cells (Relander et al., Mol. Ther., 2005, 11: 452-459), FreeStyle™ 293 Expression System (ThermoFisher, Waltham, Mass.), and other HEK293T-based producer cell lines (e.g., Stewart et al., Hum Gene Ther. 2011, 22(3):357-369; Lee et al., Biotechnol Bioeng, 2012, 10996): 1551-1560; Throm et al., Blood. 2009, 113(21): 5104-5110; the contents of each of which are incorporated herein by reference in their entirety).

In some aspects, the envelope proteins may be heterologous envelop proteins from other viruses, such as the G protein of vesicular stomatitis virus (VSV G) or baculoviral gp64 envelop proteins. The VSV-G glycoprotein may especially be chosen among species classified in the vesiculovirus genus: Carajas virus (CJSV), Chandipura virus (CHPV), Cocal virus (COCV), Isfahan virus (ISFV), Maraba virus (MARAV), Piry virus (PIRYV), Vesicular stomatitis Alagoas virus (VSAV), Vesicular stomatitis Indiana virus (VSIV) and Vesicular stomatitis New Jersey virus (VSNJV) and/or stains provisionally classified in the vesiculovirus genus as Grass carp rhabdovirus, BeAn 157575 virus (BeAn 157575), Boteke virus (BTKV), Calchaqui virus (CQIV), Eel virus American (EVA), Gray Lodge virus (GLOV), Jurona virus (JURY), Klamath virus (KLAV), Kwatta virus (KWAV), La Joya virus (LJV), Malpais Spring virus (MSPV), Mount Elgon bat virus (MEBV), Perinet virus (PERV), Pike fry rhabdovirus (PFRV), Porton virus (PORV), Radi virus (RADIV), Spring viremia of carp virus (SVCV), Tupaia virus (TUPV), Ulcerative disease rhabdovirus (UDRV) and Yug Bogdanovac virus (YBV). The gp64 or other baculoviral env protein can be derived from Autographa californica nucleopolyhedrovirus (AcMNPV), Anagrapha falcifera nuclear polyhedrosis virus, Bombyx mori nuclear polyhedrosis virus, Choristoneura fumiferana nucleopolyhedrovirus, Orgyia pseudotsugata single capsid nuclear polyhedrosis virus, Epiphyas postvittana nucleopolyhedrovirus, Hyphantria cunea nucleopolyhedrovirus, Galleria mellonella nuclear polyhedrosis virus, Dhori virus, Thogoto virus, Antheraea pemyi nucleopolyhedrovirus or Batken virus.

Additional elements provided in lentiviral particles may comprise retroviral LTR (long-terminal repeat) at either 5′ or 3′ terminus, a retroviral export element, optionally a lentiviral reverse response element (RRE), a promoter or active portion thereof, and a locus control region (LCR) or active portion thereof. Other elements include central polypurine tract (cPPT) sequence to improve transduction efficiency in non-dividing cells, Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element (WPRE) which enhances the expression of the transgene, and increases titer. The effector module is linked to the vector.

Methods for generating recombinant lentiviral particles are discussed in the art, for example, U.S. Pat. Nos. 8,846,385; 7,745,179; 7,629,153; 7,575,924; 7,179,903; and 6,808,905; the contents of each of which are incorporated herein by reference in their entirety.

Lentivirus vectors used may be selected from, but are not limited to pLVX, pLenti, pLenti6, pLJM1, FUGW, pWPXL, pWPI, pLenti CMV puro DEST, pLJM1-EGFP, pULTRA, pInducer20, pHIV-EGFP, pCW57.1, pTRPE, pELPS, pRRL, and pLionII.

Lentiviral vehicles known in the art may also be used (See, U.S. Pat. NOs. 9, 260, 725; 9,068,199; 9,023,646; 8,900,858; 8,748,169; 8,709,799; 8,420,104; 8,329,462; 8,076,106; 6,013,516; and 5,994,136; International Patent Publication NO.: WO2012079000; the contents of each of which are incorporated herein by reference in their entirety).

2. Retroviral Vectors (γ-Retroviral Vectors)

In some embodiments, retroviral vectors may be used to package and deliver the biocircuits, biocircuit components, effector modules, SREs or payload constructs of the present invention. Retroviral vectors (RVs) allow the permanent integration of a transgene in target cells. In addition to lentiviral vectors based on complex HIV-1/2, retroviral vectors based on simple gamma-retroviruses have been widely used to deliver therapeutic genes and demonstrated clinically as one of the most efficient and powerful gene delivery systems capable of transducing a broad range of cell types. Example species of Gamma retroviruses include the murine leukemia viruses (MLVs) and the feline leukemia viruses (FeLV).

In some embodiments, gamma-retroviral vectors derived from a mammalian gamma-retrovirus such as murine leukemia viruses (MLVs), are recombinant. The MLV families of gamma retroviruses include the ecotropic, amphotropic, xenotropic and polytropic subfamilies. Ecotropic viruses are able to infect only murine cells using mCAT-1 receptor. Examples of ecotropic viruses are Moloney MLV and AKV. Amphotropic viruses infect murine, human and other species through the Pit-2 receptor. One example of an amphotropic virus is the 4070A virus. Xenotropic and polytropic viruses utilize the same (Xpr1) receptor, but differ in their species tropism. Xenotropic viruses such as NZB-9-1 infect human and other species but not murine species, whereas polytropic viruses such as focus-forming viruses (MCF) infect murine, human and other species.

Gamma-retroviral vectors may be produced in packaging cells by co-transfecting the cells with several plasmids including one encoding the retroviral structural and enzymatic (gag-pol) polyprotein, one encoding the envelope (env) protein, and one encoding the vector mRNA comprising polynucleotide encoding the compositions of the present invention that is to be packaged in newly formed viral particles.

In some aspects, the recombinant gamma-retroviral vectors are pseudotyped with envelope proteins from other viruses. Envelope glycoproteins are incorporated in the outer lipid layer of the viral particles which can increase/alter the cell tropism. Exemplary envelop proteins include the gibbon ape leukemia virus envelope protein (GALV) or vesicular stomatitis virus G protein (VSV-G), or Simian endogenous retrovirus envelop protein, or Measles Virus H and F proteins, or Human immunodeficiency virus gp120 envelope protein, or cocal vesiculovirus envelop protein (See, e.g., U.S. application publication NO.: 2012/164118; the contents of which are incorporated herein by reference in its entirety). In other aspects, envelope glycoproteins may be genetically modified to incorporate targeting/binding ligands into gamma-retroviral vectors, binding ligands including, but not limited to, peptide ligands, single chain antibodies and growth factors (Waehler et al., Nat. Rev. Genet. 2007, 8(8):573-587; the contents of which are incorporated herein by reference in its entirety). These engineered glycoproteins can retarget vectors to cells expressing their corresponding target moieties. In other aspects, a “molecular bridge” may be introduced to direct vectors to specific cells. The molecular bridge has dual specificities: one end can recognize viral glycoproteins, and the other end can bind to the molecular determinant on the target cell. Such molecular bridges, for example ligand-receptor, avidin-biotin, and chemical conjugations, monoclonal antibodies and engineered fusogenic proteins, can direct the attachment of viral vectors to target cells for transduction (Yang et al., Biotechnol. Bioeng., 2008, 101(2): 357-368; and Maetzig et al., Viruses, 2011, 3, 677-713; the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, the recombinant gamma-retroviral vectors are self-inactivating (SIN) gammaretroviral vectors. The vectors are replication incompetent. SIN vectors may harbor a deletion within the 3′ U3 region initially comprising enhancer/promoter activity. Furthermore, the 5′ U3 region may be replaced with strong promoters (needed in the packaging cell line) derived from Cytomegalovirus or RSV, or an internal promoter of choice, and/or an enhancer element. The choice of the internal promoters may be made according to specific requirements of gene expression needed for a particular purpose of the invention.

In some embodiments, polynucleotides encoding the biocircuit, biocircuit components, effector module, SRE are inserted within the recombinant viral genome. The other components of the viral mRNA of a recombinant gamma-retroviral vector may be modified by insertion or removal of naturally occurring sequences (e.g., insertion of an IRES, insertion of a heterologous polynucleotide encoding a polypeptide or inhibitory nucleic acid of interest, shuffling of a more effective promoter from a different retrovirus or virus in place of the wild-type promoter and the like). In some examples, the recombinant gamma-retroviral vectors may comprise modified packaging signal, and/or primer binding site (PBS), and/or 5′-enhancer/promoter elements in the U3-region of the 5′-long terminal repeat (LTR), and/or 3′-SIN elements modified in the U3-region of the 3′-LTR. These modifications may increase the titers and the ability of infection.

Gamma retroviral vectors suitable for delivering biocircuit components, effector modules, SREs or payload constructs of the present invention may be selected from those disclosed in U.S. Pat. Nos. 8,828,718; 7,585,676; 7,351,585; U.S. application publication NO.: 2007/048285; PCT application publication NOs.: WO2010/113037; WO2014/121005; WO2015/056014; and EP Pat. Nos. EP1757702; EP1757703 (the contents of each of which are incorporated herein by reference in their entirety).

3. Adeno-Associated Viral Vectors (AAV)

In some embodiments, polynucleotides of present invention may be packaged into recombinant adeno-associated viral (rAAV) vectors. Such vectors or viral particles may be designed to utilize any of the known serotype capsids or combinations of serotype capsids. The serotype capsids may include capsids from any identified AAV serotypes and variants thereof, for example, AAV1, AAV2, AAV2G9, AAV3, AAV4, AAV4-4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12 and AAVrh10.

In one embodiment, the AAV serotype may be or have a sequence as described in United States Publication No. US20030138772, herein incorporated by reference in its entirety, such as, but not limited to, AAV1 (SEQ ID NO: 6 and 64 of US20030138772), AAV2 (SEQ ID NO: 7 and 70 of US20030138772), AAV3 (SEQ ID NO: 8 and 71 of US20030138772), AAV4 (SEQ ID NO: 63 of US20030138772), AAV5 (SEQ ID NO: 114 of US20030138772), AAV6 (SEQ ID NO: 65 of US20030138772), AAV7 (SEQ ID NO: 1-3 of US20030138772), AAV8 (SEQ ID NO: 4 and 95 of US20030138772), AAV9 (SEQ ID NO: 5 and 100 of US20030138772), AAV10 (SEQ ID NO: 117 of US20030138772), AAV11 (SEQ ID NO: 118 of US20030138772), AAV12 (SEQ ID NO: 119 of US20030138772), AAVrh10 (amino acids 1 to 738 of SEQ ID NO: 81 of US20030138772) or variants thereof. Non-limiting examples of variants include SEQ ID NOs: 9, 27-45, 47-62, 66-69, 73-81, 84-94, 96, 97, 99, 101-113 of US20030138772, the contents of which are herein incorporated by reference in their entirety.

In one embodiment, the AAV serotype may have a sequence as described in Pulicherla et al. (Molecular Therapy, 2011, 19(6):1070-1078), U.S. Pat. Nos. 6,156,303; 7,198,951; U.S. Patent Publication NOs.: US2015/0159173 and US2014/0359799; and International Patent Publication NOs.: WO1998/011244, WO2005/033321 and WO2014/14422; the contents of each of which are incorporated herein by reference in their entirety.

AAV vectors include not only single stranded vectors but self-complementary AAV vectors (scAAVs). scAAV vectors contain DNA which anneals together to form double stranded vector genome. By skipping second strand synthesis, scAAVs allow for rapid expression in the cell.

The rAAV vectors may be manufactured by standard methods in the art such as by triple transfection, in sf9 insect cells or in suspension cell cultures of human cells such as HEK293 cells.

The biocircuits, biocircuit components, effector modules, SREs or payload constructs may be encoded in one or more viral genomes to be packaged in the AAV capsids taught herein.

Such vectors or viral genomes may also include, in addition to at least one or two ITRs (inverted terminal repeats), certain regulatory elements necessary for expression from the vector or viral genome. Such regulatory elements are well known in the art and include for example promoters, introns, spacers, stuffer sequences, and the like.

In some embodiments, more than one effector module or SRE (e.g. DD) may be encoded in a viral genome.

4. Oncolytic Viral Vector

In some embodiments, polynucleotides of present invention may be packaged into oncolytic viruses, such as vaccine viruses. Oncolytic vaccine viruses may include viral particles of a thymidine kinase (TK)-deficient, granulocyte macrophage (GM)-colony stimulating factor (CSF)-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor (e.g., U.S. Pat. No. 9,226,977).

In some embodiments, the viral vector of the invention may comprise two or more immunotherapeutic agents taught herein, wherein the two or more immunotherapeutic agents may be included in one effector module under the regulation of the same DD. In this case, the two or more immunotherapeutic agents are tuned by the same stimulus simultaneously. In other embodiments, the viral vector of the invention may comprise two or more effector modules, wherein each effector module comprises a different immunotherapeutic agent. In this case, the two or more effector modules and immunotherapeutic agents are tuned by different stimuli, providing separately independent regulation of the two or more components.

5. Messenger RNA (mRNA)

In some embodiments, the effector modules of the invention may be designed as a messenger RNA (mRNA). As used herein, the term “messenger RNA” (mRNA) refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo. Such mRNA molecules may have the structural components or features of any of those taught in International Application number PCT/US2013/030062, the contents of which are incorporated herein by reference in its entirety.

Polynucleotides of the invention may also be designed as taught in, for example, Ribostem Limited in United Kingdom patent application serial number 0316089.2 filed on Jul. 9, 2003 now abandoned, PCT application number PCT/GB2004/002981 filed on Jul. 9, 2004 published as WO2005005622, United States patent application national phase entry Ser. No. 10/563,897 filed on Jun. 8, 2006 published as US20060247195 now abandoned, and European patent application national phase entry serial number EP2004743322 filed on Jul. 9, 2004 published as EP1646714 now withdrawn; Novozymes, Inc. in PCT application number PCT/US2007/88060 filed on Dec. 19, 2007 published as WO2008140615, United States patent application national phase entry Ser. No. 12/520,072 filed on Jul. 2, 2009 published as US20100028943 and European patent application national phase entry serial number EP2007874376 filed on Jul. 7, 2009 published as EP2104739; University of Rochester in PCT application number PCT/US2006/46120 filed on Dec. 4, 2006 published as WO2007064952 and U.S. patent application Ser. No. 11/606,995 filed on Dec. 1, 2006 published as US20070141030; BioNTech AG in European patent application serial number EP2007024312 filed Dec. 14, 2007 now abandoned, PCT application number PCT/EP2008/01059 filed on Dec. 12, 2008 published as WO2009077134, European patent application national phase entry serial number EP2008861423 filed on Jun. 2, 2010 published as EP2240572, United States patent application national phase entry Ser. No. 12/735,060 filed Nov. 24, 2010 published as US20110065103, German patent application serial number DE 10 2005 046 490 filed Sep. 28, 2005, PCT application PCT/EP2006/0448 filed Sep. 28, 2006 published as WO2007036366, national phase European patent EP1934345 published Mar. 21, 2012 and national phase U.S. patent application Ser. No. 11/992,638 filed Aug. 14, 2009 published as 20100129877; Immune Disease Institute Inc. in U.S. patent application Ser. No. 13/088,009 filed Apr. 15, 2011 published as US20120046346 and PCT application PCT/US2011/32679 filed Apr. 15, 2011 published as WO20110130624; Shire Human Genetic Therapeutics in U.S. patent application Ser. No. 12/957,340 filed on Nov. 20, 2010 published as US20110244026; Sequitur Inc. in PCT application PCT/US1998/019492 filed on Sep. 18, 1998 published as WO1999014346; The Scripps Research Institute in PCT application number PCT/US2010/00567 filed on Feb. 24, 2010 published as WO2010098861, and United States patent application national phase entry Ser. No. 13/203,229 filed Nov. 3, 2011 published as US20120053333; Ludwig-Maximillians University in PCT application number PCT/EP2010/004681 filed on Jul. 30, 2010 published as WO2011012316; Cellscript Inc. in U.S. Pat. No. 8,039,214 filed Jun. 30, 2008 and granted Oct. 18, 2011, U.S. patent application Ser. No. 12/962,498 filed on Dec. 7, 2010 published as US20110143436, 12/962,468 filed on Dec. 7, 2010 published as US20110143397, Ser. No. 13/237,451 filed on Sep. 20, 2011 published as US20120009649, and PCT applications PCT/US2010/59305 filed Dec. 7, 2010 published as WO2011071931 and PCT/US2010/59317 filed on Dec. 7, 2010 published as WO2011071936; The Trustees of the University of Pennsylvania in PCT application number PCT/US2006/32372 filed on Aug. 21, 2006 published as WO2007024708, and United States patent application national phase entry Ser. No. 11/990,646 filed on Mar. 27, 2009 published as US20090286852; Curevac GMBH in German patent application serial numbers DE10 2001 027 283.9 filed Jun. 5, 2001, DE10 2001 062 480.8 filed Dec. 19, 2001, and DE 20 2006 051 516 filed Oct. 31, 2006 all abandoned, European patent numbers EP1392341 granted Mar. 30, 2005 and EP1458410 granted Jan. 2, 2008, PCT application numbers PCT/EP2002/06180 filed Jun. 5, 2002 published as WO2002098443, PCT/EP2002/14577 filed on Dec. 19, 2002 published as WO2003051401, PCT/EP2007/09469 filed on Dec. 31, 2007 published as WO2008052770, PCT/EP2008/03033 filed on Apr. 16, 2008 published as WO2009127230, PCT/EP2006/004784 filed on May 19, 2005 published as WO2006122828, PCT/EP2008/00081 filed on Jan. 9, 2007 published as WO2008083949, and U.S. patent application Ser. No. 10/729,830 filed on Dec. 5, 2003 published as US20050032730, Ser. No. 10/870,110 filed on Jun. 18, 2004 published as US20050059624, Ser. No. 11/914,945 filed on Jul. 7, 2008 published as US20080267873, Ser. No. 12/446,912 filed on Oct. 27, 2009 published as US2010047261 now abandoned, Ser. No. 12/522,214 filed on Jan. 4, 2010 published as US20100189729, Ser. No. 12/787,566 filed on May 26, 2010 published as US20110077287, Ser. No. 12/787,755 filed on May 26, 2010 published as US20100239608, Ser. No. 13/185,119 filed on Jul. 18, 2011 published as US20110269950, and Ser. No. 13/106,548 filed on May 12, 2011 published as US20110311472 all of which are herein incorporated by reference in their entirety.

In some embodiments, the effector modules may be designed as self-amplifying RNA. “Self-amplifying RNA” as used herein refers to RNA molecules that can replicate in the host resulting in the increase in the amount of the RNA and the protein encoded by the RNA. Such self-amplifying RNA may have structural features or components of any of those taught in International Patent Application Publication No. WO2011005799 (the contents of which are incorporated herein by reference in their entirety.)

The compositions of the invention may be delivered to a cell or a subject through one or more routes and modalities. The viral vectors containing one or more effector modules, SREs, immunotherapeutic agents and other components described herein may be used to deliver them to a cell and/or a subject. Other modalities may also be used such as mRNAs, plasmids, and as recombinant proteins.

1. Delivery to Cells

In another aspect of the invention, polynucleotides encoding biocircuits, effector modules, SREs (e.g., DDs), payloads of interest (immunotherapeutic agents) and compositions of the invention and vectors comprising said polynucleotides may be introduced into cells such as immune effector cells.

In one aspect of the invention, polynucleotides encoding biocircuits, effector modules, SREs (e.g., DDs), payloads of interest (immunotherapeutic agents) and compositions of the invention, may be packaged into viral vectors or integrated into viral genomes allowing transient or stable expression of the polynucleotides. Preferable viral vectors are retroviral vectors including lentiviral vectors. In order to construct a retroviral vector, a polynucleotide molecule encoding a biocircuit, an effector module, a DD or a payload of interest (i.e. an immunotherapeutic agent) is inserted into the viral genome in the place of certain viral sequences to produce a virus that is replication-defective. The recombinant viral vector is then introduced into a packaging cell line containing the gag, pol, and env genes, but without the LTR and packaging components. The recombinant retroviral particles are secreted into the culture media, then collected, optionally concentrated, and used for gene transfer. Lentiviral vectors are especially preferred as they are capable of infecting both dividing and non-dividing cells.

Vectors may also be transferred to cells by non-viral methods by physical methods such as needles, electroporation, sonoporation, hydroboration; chemical carriers such as inorganic particles (e.g. calcium phosphate, silica, gold) and/or chemical methods. In some embodiments, synthetic or natural biodegradable agents may be used for delivery such as cationic lipids, lipid nano emulsions, nanoparticles, peptide based vectors, or polymer based vectors.

In some embodiments, the polypeptides of the invention may be delivered to the cell directly. In one embodiment, the polypeptides of the invention may be delivered using synthetic peptides comprising an endosomal leakage domain (ELD) fused to a cell penetration domain (CLD). The polypeptides of the invention are co introduced into the cell with the ELD-CLD-synthetic peptide. ELDs facilitate the escape of proteins that are trapped in the endosome, into the cytosol. Such domains are derived proteins of microbial and viral origin and have been described in the art. CPDs allow the transport of proteins across the plasma membrane and have also been described in the art. The ELD-CLD fusion proteins synergistically increase the transduction efficiency when compared to the co-transduction with either domain alone. In some embodiments, a histidine rich domain may optionally be added to the shuttle construct as an additional method of allowing the escape of the cargo from the endosome into the cytosol. The shuttle may also include a cysteine residue at the N or C terminus to generate multimers of the fusion peptide. Multimers of the ELD-CLD fusion peptides generated by the addition of cysteine residue to the terminus of the peptide show even greater transduction efficiency when compared to the single fusion peptide constructs. The polypeptides of the invention may also be appended to appropriate localization signals to direct the cargo to the appropriate sub-cellular location e.g. nucleus. In some embodiments any of the ELDs, CLDs or the fusion ELD-CLD synthetic peptides taught in the International Patent Publication, WO2016161516 and WO2017175072 may be useful in the present invention (the contents of each of which are herein incorporated by reference in their entirety).

2. Dosing

The present invention provides methods comprising administering any one or more compositions for immunotherapy to a subject in need thereof. These may be administered to a subject using any amount and any route of administration effective for preventing or treating a clinical condition such as cancer, infection diseases and other immunodeficient diseases.

Compositions in accordance with the invention are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, or prophylactically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, previous or concurrent therapeutic interventions and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.

Compositions of the invention may be used in varying doses to avoid T cell anergy, prevent cytokine release syndrome and minimize toxicity associated with immunotherapy. For example, low doses of the compositions of the present invention may be used to initially treat patients with high tumor burden, while patients with low tumor burden may be treated with high and repeated doses of the compositions of the invention to ensure recognition of a minimal tumor antigen load. In another instance, the compositions of the present invention may be delivered in a pulsatile fashion to reduce tonic T cell signaling and enhance persistence in vivo. In some aspects, toxicity may be minimized by initially using low doses of the compositions of the invention, prior to administering high doses. Dosing may be modified if serum markers such as ferritin, serum C-reactive protein, IL6, IFNγ, and TNF-α are elevated.

In one embodiment, polypeptides and/or polynucleotides expressing the compositions described herein e.g. effector modules, are administered to a subject in need thereof to treat cancer. In one embodiment, a population of cells comprising the biocircuits, effector modules and/or the SREs described herein is administered to a subject in need thereof to treat cancer.

In one embodiment, the cells expressing the compositions described herein is administered at a dose and/or dosing schedule described herein.

In one embodiment, compositions are introduced into immune cells (e.g., T cells, NK cells). The compositions may be introduced into the immune cells by methods including but not limited to viral transduction, transfection and/or in vitro transcription. In some embodiments, the immune cells are transduced with retroviruses. In one aspect, the retrovirus may be a lentivirus. In some aspects, the titer of the lentiviruses may be used to tune the expression of the payload. In some embodiments, the titer of the lentivirus may have a multiplicity of infection (MOI) ranging from 0.001-0.01, 0.01-0.1, 0.1-1, or 1-10. In some embodiments, the MOI may be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

In some embodiments, the subject (e.g., human) receives an initial administration of immune cells comprising the compositions described herein e.g. SREs, and one or more subsequent administrations of cells. In some embodiments, a therapeutically effective amount of the compositions and/or cells described herein may be administered to the subject. In some embodiments, the therapeutically effective amount may indicate the precise amount required to tumor inhibition, tumor prevalence and/or tumor burden. The therapeutically effective amount may be determined with consideration of the subject's age, weight, tumor size, sex, extent of infection or metastasis. In some embodiments, the cells expressing the compositions described herein may be administered at a dosage of 104 to 109 cells/kg body weight of the subject. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319: 1676, 1988; the contents of which are incorporated herein by reference in their entirety).

In some aspects, subjects may undergo leukapheresis, wherein leukocytes are collected, enriched, or depleted ex vivo to select and/or isolate the cells of interest, e.g., T cells. These T cell isolates may be expanded by methods known in the art and treated such that the compositions of the invention may be introduced into the cell. Subjects in need thereof may subsequently undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain aspects, following or concurrent with the transplant, subjects receive an infusion of the immune cells of the present invention. In an additional aspect, expanded cells are administered before or following surgery.

The dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment. The scaling of dosages for human administration can be performed according to art-accepted practices.

In one embodiment, the compositions are introduced into immune cells (e.g., T cells, NK cells), e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of immune cells (e.g., T cells, NK cells) of the invention, and one or more subsequent administrations of the immune cells (e.g., T cells, NK cells) of the invention, wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration. In one embodiment, more than one administration of the immune cells (e.g., T cells, NK cells) of the invention are administered to the subject (e.g., human) per week, e.g., 2, 3, or 4 administrations of the immune cells (e.g., T cells, NK cells) of the invention are administered per week. In one embodiment, the subject (e.g., human subject) receives more than one administration of the immune cells (e.g., T cells, NK cells) per week (e.g., 2, 3 or 4 administrations per week) (also referred to herein as a cycle), followed by a week of no immune cells (e.g., T cells, NK cells) administrations, and then one or more additional administration of the immune cells (e.g., T cells, NK cells) (e.g., more than one administration of the immune cells (e.g., T cells, NK cells) per week) is administered to the subject. In another embodiment, the subject (e.g., human subject) receives more than one cycle of immune cells (e.g., T cells, NK cells), and the time between each cycle is less than 10, 9, 8, 7, 6, 5, 4, or 3 days. In one embodiment, the immune cells (e.g., T cells, NK cells) are administered every other day for 3 administrations per week. In one embodiment, the immune cells (e.g., T cells, NK cells) of the invention are administered for at least two, three, four, five, six, seven, eight or more weeks. In some embodiments, a dose of immune cells expressing compositions of the invention described herein comprises about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises at least about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108, 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises up to about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108, 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises about 1.1×106-1.8×107 cells/kg. In some embodiments, a dose of immune cells comprises about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of the immune cells comprises at least about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of immune cells comprises up to about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of the immune cells comprises up to about 1×107, 1.5×107, 2×107, 2.5×107, 3×107, 3.5×107, 4×107, 5×107, 1×108, 1.5×108, 2×108, 2.5×108, 3×108, 3.5×108, 4×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of immune cells comprises up to about 1-3×107 to 1-3×108 cells.

In one embodiment, the cells expressing the compositions described herein, are administered as a first line treatment for the disease, e.g., the cancer, e.g., the cancer described herein. In another embodiment, the cells expressing the compositions described herein, are administered as a second, third, fourth line treatment for the disease, e.g., the cancer, e.g., the cancer described herein. In some embodiments, the subject may undergo preconditioning prior to the administration of the cells.

Also provided herein are methods of administering ligands in accordance with the invention to a subject in need thereof. The ligand may be administered to a subject or to cells, using any amount and any route of administration effective for tuning the biocircuits of the invention. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. The subject may be a human, a mammal, or an animal. Compositions in accordance with the invention are typically formulated in unit dosage form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment. In certain embodiments, the ligands in accordance with the present invention may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.001 mg/kg to about 0.05 mg/kg, from about 0.005 mg/kg to about 0.05 mg/kg, from about 0.001 mg/kg to about 0.005 mg/kg, from about 0.05 mg/kg to about 0.5 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, from about 10 mg/kg to about 100 mg/kg, from about 50 mg/kg to about 500 mg/kg, from about 100 mg/kg to about 1000 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired effect. In some embodiments, the dosage levels may be 1 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, 70 mg/kg, 80 mg/kg, 90 mg/kg, 100 mg/kg, 100 mg/kg, 110 mg/kg, 120 mg/kg, 130 mg/kg, 140 mg/kg, 150 mg/kg, 160 mg/kg, 170 mg/kg, 180 mg/kg, 190 mg/kg or mg/kg of subject body weight per day, or more times a day, to obtain the desired effect.

The present disclosure provides methods for delivering to a cell or tissue any of the ligands described herein, comprising contacting the cell or tissue with said ligand and can be accomplished in vitro, ex vivo, or in vivo. In certain embodiments, the ligands in accordance with the present invention may be administered to cells at dosage levels sufficient to deliver from about 1 nM to about 10 nM, from about 5 nM to about 50 nM, from about 10 nM to about 100 nM, from about 50 nM to about 500 nM, from about 100 nM to about 1000 nM, from about 1 μM to about 10 μM, from about 504 to about 50 μM, from about 10 μM to about 100 μM from about 2504 to about 250 μM, from about 50 μM to about 500 μM. In some embodiments, the ligand may be administered to cells at doses selected from but not limited to 0.0064 μM, 0.0032 μM, 0.016 μM, 0.08 μM, 0.4 μM, 1 μM, 2 μM, 5 μM, 10 μM, 25 μM, 50 μM, 75 μM, 100 μM, 150 μM, 200 μM, 250 μM.

The desired dosage of the ligands of the present invention may be delivered only once, three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. As used herein, a “split dose” is the division of “single unit dose” or total daily dose into two or more doses, e.g., two or more administrations of the “single unit dose”. As used herein, a “single unit dose” is a dose of any therapeutic administered in one dose/at one time/single route/single point of contact, i.e., single administration event. The desired dosage of the ligand of the present invention may be administered as a “pulse dose” or as a “continuous flow”. As used herein, a “pulse dose” is a series of single unit doses of any therapeutic administered with a set frequency over a period of time. As used herein, a “continuous flow” is a dose of therapeutic administered continuously for a period of time in a single route/single point of contact, i.e., continuous administration event. A total daily dose, an amount given or prescribed in 24-hour period, may be administered by any of these methods, or as a combination of these methods, or by any other methods suitable for a pharmaceutical administration.

3. Administration

In some embodiments, the compositions for immunotherapy may be administered to cells ex vivo and subsequently administered to the subject. Immune cells can be isolated and expanded ex vivo using a variety of methods known in the art. For example, methods of isolating cytotoxic T cells are described in U.S. Pat. Nos. 6,805,861 and 6,531,451; the contents of each of which are incorporated herein by reference in their entirety. Isolation of NK cells is described in U.S. Pat. Nos. 7,435,596; the contents of which are incorporated by reference herein in its entirety.

In some embodiments, depending upon the nature of the cells, the cells may be introduced into a host organism e.g. a mammal, in a wide variety of ways including by injection, transfusion, infusion, local instillation or implantation. In some aspects, the cells of the invention may be introduced at the site of the tumor. The number of cells that are employed will depend upon a number of circ*mstances, the purpose for the introduction, the lifetime of the cells, the protocol to be used, for example, the number of administrations, the ability of the cells to multiply, or the like. The cells may be in a physiologically-acceptable medium.

In some embodiments, the cells of the invention may be administrated in multiple doses to subjects having a disease or condition. The administrations generally effect an improvement in one or more symptoms of cancer or a clinical condition and/or treat or prevent cancer or clinical condition or symptom thereof.

In some embodiments, the compositions for immunotherapy may be administered in vivo. In some embodiments, polypeptides of the present invention comprising biocircuits, effector molecules, SREs, payloads of interest (immunotherapeutic agents) and compositions of the invention may be delivered in vivo to the subject. In vivo delivery of immunotherapeutic agents is well described in the art. For example, methods of delivery of cytokines are described in the E.P. Pat. No.: EP0930892 A1, the contents of which are incorporated herein by reference.

Routes of Delivery

The pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs (e.g., DDs), payloads (i.e. immunotherapeutic agents), vectors and cells of the present invention may be administered by any route to achieve a therapeutically effective outcome.

These include, but are not limited to enteral (into the intestine), gastroenteral, epidural (into the dura matter), oral (by way of the mouth), transdermal, peridural, intracerebral (into the cerebrum), intracerebroventricular (into the cerebral ventricles), epicutaneous (application onto the skin), intradermal, (into the skin itself), subcutaneous (under the skin), nasal administration (through the nose), intravenous (into a vein), intravenous bolus, intravenous drip, intra-arterial (into an artery), intramuscular (into a muscle), intracranial (into the heart), intraosseous infusion (into the bone marrow), intrathecal (into the spinal canal), intraperitoneal, (infusion or injection into the peritoneum), intrasinal infusion, intravitreal, (through the eye), intravenous injection (into a pathologic cavity) intracavitary (into the base of the penis), intravagin*l administration, intrauterine, extra-amniotic administration, transdermal (diffusion through the intact skin for systemic distribution), transmucosal (diffusion through a mucous membrane), transvagin*l, insufflation (snorting), sublingual, sublabial, enema, eye drops (onto the conjunctiva), in ear drops, auricular (in or by way of the ear), buccal (directed toward the cheek), conjunctival, cutaneous, dental (to a tooth or teeth), electro-osmosis, endocervical, endosinusial, endotracheal, extracorporeal, hemodialysis, infiltration, interstitial, intra-abdominal, intra-amniotic, intra-articular, intrabiliary, intrabronchial, intrabursal, intracartilaginous (within a cartilage), intracaudal (within the cauda equine), intracisternal (within the cisterna magna cerebellomedularis), intracorneal (within the cornea), dental intracorneal, intracoronary (within the coronary arteries), intracorporus cavernosum (within the dilatable spaces of the corporus cavernosa of the penis), intradiscal (within a disc), intraductal (within a duct of a gland), intraduodenal (within the duodenum), intradural (within or beneath the dura), intraepidermal (to the epidermis), intraesophageal (to the esophagus), intragastric (within the stomach), intragingival (within the gingivae), intraileal (within the distal portion of the small intestine), intralesional (within or introduced directly to a localized lesion), intraluminal (within a lumen of a tube), intralymphatic (within the lymph), intramedullary (within the marrow cavity of a bone), intrameningeal (within the meninges), intramyocardial (within the myocardium), intraocular (within the eye), intraovarian (within the ovary), intrapericardial (within the pericardium), intrapleural (within the pleura), intraprostatic (within the prostate gland), intrapulmonary (within the lungs or its bronchi), intrasinal (within the nasal or periorbital sinuses), intraspinal (within the vertebral column), intrasynovial (within the synovial cavity of a joint), intratendinous (within a tendon), intratesticular (within the testicl*), intrathecal (within the cerebrospinal fluid at any level of the cerebrospinal axis), intrathoracic (within the thorax), intratubular (within the tubules of an organ), intratumor (within a tumor), intratympanic (within the aurus media), intravascular (within a vessel or vessels), intraventricular (within a ventricle), iontophoresis (by means of electric current where ions of soluble salts migrate into the tissues of the body), irrigation (to bathe or flush open wounds or body cavities), laryngeal (directly upon the larynx), nasogastric (through the nose and into the stomach), occlusive dressing technique (topical route administration which is then covered by a dressing which occludes the area), ophthalmic (to the external eye), oropharyngeal (directly to the mouth and pharynx), parenteral, percutaneous, periarticular, peridural, perineural, periodontal, rectal, respiratory (within the respiratory tract by inhaling orally or nasally for local or systemic effect), retrobulbar (behind the pons or behind the eyeball), intramyocardial (entering the myocardium), soft tissue, subarachnoid, subconjunctival, submucosal, topical, transplacental (through or across the placenta), transtracheal (through the wall of the trachea), transtympanic (across or through the tympanic cavity), ureteral (to the ureter), urethral (to the urethra), vagin*l, caudal block, diagnostic, nerve block, biliary perfusion, cardiac perfusion, photopheresis or spinal.

Kits

The also provides a kit comprising any of the polynucleotides or expression vectors described herein.

The present invention includes a variety of kits for conveniently and/or effectively carrying out methods of the present invention. Typically, kits will comprise sufficient amounts and/or numbers of components to allow a user to perform one or multiple treatments of a subject(s) and/or to perform one or multiple experiments.

In one embodiment, the present invention provides kits for inhibiting genes in vitro or in vivo, comprising a biocircuit of the present invention or a combination of biocircuits of the present invention, optionally in combination with any other suitable active agents.

The kit may further comprise packaging and instructions and/or a delivery agent to form a formulation composition. The delivery agent may comprise, for example, saline, a buffered solution.

In additional embodiments, assay screening kits are provided. The kit includes a container for the screening assay. An instruction for the use of the assay and the information about the screening method are to be included in the kit.

In some embodiments, the DDs, effector modules and biocircuit system and compositions of the invention may be used as research tools to investigate protein activity in a biological system such a cell and a subject. In other embodiments, the DDs, effector modules and biocircuit system and compositions of the invention may be used for treating a disease such as a cancer and a genetic disorder.

In one aspect of the present invention, methods for reducing a tumor volume or burden are provided. The methods comprise administering a pharmaceutically effective amount of a pharmaceutical composition comprising at least one biocircuit system, effector module, DD, and/or payload of interest (i.e., an immunotherapeutic agent), at least one vector, or cells to a subject having a tumor. The biocircuit system and effector module having any immunotherapeutic agent as described herein may be in forms of a polypeptide, or a polynucleotide such as mRNA, or a viral vector comprising the polynucleotide, or a cell modified to express the biocircuit, effector module, DD, and payload of interest (i.e., immunotherapeutic agent).

In another aspect of the present invention, methods for inducing an anti-tumor immune response in a subject are provided. The methods comprise administering a pharmaceutically effective amount of a pharmaceutical composition comprising at least one biocircuit system, effector module, DD, and/or payload of interest (i.e., an immunotherapeutic agent), at least one vector, or cells to a subject having a tumor. The biocircuit and effector module having any immunotherapeutic agent as described herein may be in forms of a polypeptide, or a polynucleotide such as mRNA, or a viral vector comprising the polynucleotide, or a cell modified to express the biocircuit, effector module, DD, and payload of interest (i.e., immunotherapeutic agent).

The methods, per the present invention, may be adoptive cell transfer (ACT) using genetically engineered cells such as immune effector cells of the invention, cancer vaccines comprising biocircuit systems, effector modules, DDs, payloads of interest (i.e., immunotherapeutic agents) of the invention, or compositions that manipulate the tumor immunosuppressive microenvironment, or the combination thereof. These treatments may be further employed with other cancer treatment such as chemotherapy and radiotherapy.

1. Adoptive Cell Transfer (Adoptive Immunotherapy)

Recent progress in the field of cancer immunology has allowed the development of several approaches to help the immune system keep the cancer at bay. Such immunotherapy approaches include the targeting of cancer antigens through monoclonal antibodies or through adoptive transfer of ex vivo engineered T cells (e.g., which contain chimeric antigen receptors or engineered T cell receptors). The present invention also provides methods for inducing immune responses in a subject using the compositions of the invention. Also provided are methods for reducing a tumor burden in a subject using the compositions of the invention. The present invention also provides immune cells engineered to include one or more polypeptides, polynucleotides, or vectors of the present invention. The cells may be immune effector cells, including T cells such as cytotoxic T cells, helper T cells, memory T cells, regulatory T cells, natural killer (NK) cells, NK T cells, cytokine-induced killer (CIK) cells, cytotoxic T lymphocytes (CTLs), and tumor infiltrating lymphocytes (TILs). The engineered cell may be used for adoptive cell transfer for treating a disease (e.g., a cancer).

In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention may be used in the modulation or alteration or exploitation of the immune system to target one or more cancers. This approach may also be considered with other such biological approaches, e.g., immune response modifying therapies such as the administration of interferons, interleukins, colony-stimulating factors, other monoclonal antibodies, vaccines, gene therapy, and nonspecific immunomodulating agents are also envisioned as anti-cancer therapies to be combined with the pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention.

Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the patient's own immune system to fight the cancer. In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention are designed as immune-oncology therapeutics.

In some embodiments, cells which are genetically modified to express at least one biocircuit system, effector module, DD, and/or payload of interest (immunotherapeutic agent) may be used for adoptive cell therapy (ACT). As used herein, Adoptive cell transfer refers to the administration of immune cells (from autologous, allogenic or genetically modified hosts) with direct anticancer activity. ACT has shown promise in clinical application against malignant and infectious disease. For example, T cells genetically engineered to recognize CD19 have been used to treat follicular B cell lymphoma (Kochenderfer et al., Blood, 2010, 116:4099-4102; and Kochenderfer and Rosenberg, Nat Rev Clin Oncol., 2013, 10(5): 267-276) and ACT using autologous lymphocytes genetically-modified to express anti-tumor T cell receptors has been used to treat metastatic melanoma (Rosenberg and Dudley, Curr. Opin. Immunol. 2009, 21: 233-240).

Immune cells for adoptive cell therapy may be selected from but not limited to selected from a CD8+ T cell, a CD4+ T cell, a helper T cell, a natural killer (NK) cell, a NKT cell, a cytotoxic T lymphocyte (CTL), a tumor infiltrating lymphocyte (TIL), a memory T cell, a regulatory T (Treg) cell, a cytokine-induced killer (CIK) cell, a dendritic cell, a human embryonic stem cell, a mesenchymal stem cell, a hematopoietic stem cell, or a mixture thereof.

There are several types of cellular immunotherapies, including tumor infiltrating lymphocyte (TIL) therapy, genetically engineered T cells bearing chimeric antigen receptors (CARs), and recombinant TCR technology. In some embodiments, the compositions of the present invention may be utilized to alter TIL (tumor infiltrating lymphocyte) populations in a subject. In one embodiment, any of the payloads described herein may be utilized to change the ratio of CD4 positive cells to CD8 positive populations. In some embodiments, TILs may be sorted ex vivo and engineered to express any of the cytokines described herein. Payloads of the invention may be used to expand CD4 and/or CD8 populations of TILs to enhance TIL mediated immune response.

In one embodiment, the chimeric antigen receptor (CAR) of the present invention may be a conditionally active CAR. A wild type protein or domain thereof, such as those described herein may be used to generate a conditionally active biologic protein which are reversibly or irreversibly inactivated at the wild type normal physiological conditions as well as to such conditionally active biologic proteins and domains and uses of such conditional active biologic proteins and domains are provided. Such methods and conditionally active proteins are taught in, for example, International Publication No. WO2016033331, the contents of which are incorporated herein by reference in their entirety. As a non-limiting example, the CAR comprises at least one antigen specific targeting region evolved from a wild type protein or a domain thereof and one or more of a decrease in activity in the assay at the normal physiological condition compared to the antigen specific targeting region of the wild-type protein or a domain thereof, and an increase in activity in the assay under the aberrant condition compared to the antigen specific targeting region of the wild-type protein or a domain thereof.

According to the present invention, the biocircuits and systems may be used in the development and implementation of cell therapies such as adoptive cell therapy. Certain effector modules useful in cell therapy are given in FIGS. 7-12. The biocircuits, their components, effector modules and their SREs and payloads may be used in cell therapies to effect TCR removal-TCR gene disruption, TCR engineering, to regulate epitope tagged receptors, in APC platforms for stimulating T cells, as a tool to enhance ex vivo APC stimulation, to improve methods of T cell expansion, in ex vivo stimulation with antigen, in TCR/CAR combinations, in the manipulation or regulation of TILs, in allogeneic cell therapy, in combination T cell therapy with other treatment lines (e.g. radiation, cytokines), to encode engineered TCRs, or modified TCRs, or to enhance T cells other than TCRs (e.g. by introducing cytokine genes, genes for the checkpoint inhibitors PD1, CTLA4).

In some embodiments, improved response rates are obtained in support of cell therapies.

Expansion and persistence of cell populations may be achieved through regulation or fine tuning of the payloads, e.g., the receptors or pathway components in T cells, NK cells or other immune-related cells. In some embodiments, biocircuits, their components, SREs or effector modules are designed to spatially and/or temporally control the expression of proteins which enhance T-cell or NK cell response. In some embodiments, biocircuits, their components, SREs or effector modules are designed to spatially and/or temporally control the expression of proteins which inhibit T-cell or NK cell response.

Provided herein are methods for use in adoptive cell therapy. The methods involve preconditioning a subject in need thereof, modulating immune cells with SRE, biocircuits and compositions of the present invention, administering to a subject, engineered immune cells expressing compositions of the invention and the successful engraftment of engineered cells within the subject.

In some embodiments, SREs, biocircuits and compositions of the present invention may be used to minimize preconditioning regimens associated with adoptive cell therapy. As used herein “preconditioning” refers to any therapeutic regimen administered to a subject in order to improve the outcome of adoptive cell therapy. Preconditioning strategies include, but are not limited to total body irradiation and/or lymphodepleting chemotherapy. Adoptive therapy clinical trials without preconditioning have failed to demonstrate any clinical benefit, indicating its importance in ACT. Yet, preconditioning is associated with significant toxicity and limits the subject cohort that is suitable for ACT. In some instances, immune cells for ACT may be engineered to express cytokines such as IL12 and IL15 as payload using SREs of the present invention to reduce the need for preconditioning (Pengram et al. (2012) Blood 119 (18): 4133-41; the contents of which are incorporated by reference in their entirety).

In some embodiments, the neurotoxicity may be associated with CAR or TIL therapy. Such neurotoxicity may be associated CD19-CARs. Toxicity may be due to excessive T cell infiltration into the brain. In some embodiments, neurotoxicity may be alleviated by preventing the passage of T cells through the blood brain barrier. This can be achieved by the targeted gene deletion of the endogenous alpha-4 integrin inhibitors such as tysabri/natalizumab may also be useful in the present invention.

In some embodiments, the effector modules may encode one or more cytokines. In some embodiments, the cytokine is IL15. Effector modules encoding IL15 may be designed to induce proliferation in cytotoxic populations and avoid stimulation of T regs. In other cases, the effector modules which induce proliferation in cytotoxic populations may also stimulate NK and NKT cells.

In some embodiments, effector modules may encode, or be tuned or induced to produce, one or more cytokines for expansion of cells in the biocircuits of the invention. In such cases the cells may be tested for actual expansion. Expansion may be at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more.

In some embodiments, the tumor microenvironment may be remodeled using a biocircuit containing an effector module encoding IL17.

In some embodiments, biocircuits, their components, SREs or effector modules are designed to modulate Tregs to attenuate autoimmune disorders. In such a case, IL2 may be regulated using a singly tuned module or one having multiple tuned features as described herein.

In some embodiments, immune cells for ACT may be dendritic cells, T cells such as CD8+ T cells and CD4+ T cells, natural killer (NK) cells, NK T cells, Cytotoxic T lymphocytes (CTLs), tumor infiltrating lymphocytes (TILs), lymphokine activated killer (LAK) cells, memory T cells, regulatory T cells (Tregs), helper T cells, cytokine-induced killer (CIK) cells, and any combination thereof. In other embodiments, immune stimulatory cells for ACT may be generated from embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC). In some embodiments, autologous or allogeneic immune cells are used for ACT.

In some embodiments, cells used for ACT may be T cells engineered to express T cell receptors (TCRs) with new specificities or CARs comprising an antigen-binding domain specific to an antigen on tumor cells of interest. In other embodiments, cells used for ACT may be NK cells engineered to express CARs comprising an antigen-binding domain specific to an antigen on tumor cells of interest. In addition to adoptive transfer of genetically modified T cells (e.g., CAR T cells) for immunotherapy, alternate types of CAR-expressing leukocytes, either alone, or in combination with CAR T cells may be used for adoptive immunotherapy. In one example, a mixture of T cells and NK cells may be used for ACT. The expression level of CARs in T cells and NK cells, according to the present invention, is tuned and controlled by a small molecule that binds to the DD(s) operably linked to the CAR in the effector module.

In some embodiments, NK cells engineered to express the present compositions may be used for ACT. NK cell activation induces perforin/granzyme-dependent apoptosis in target cells. NK cell activation also induces cytokine secretion such as IFNγ, TNF-α and GM-CSF. These cytokines enhance the phagocytic function of macrophages and their antimicrobial activity, and augment the adaptive immune response via up-regulation of antigen presentation by antigen presenting cells such as dendritic cells (DCs) (Reviewed by Vivier et al., Nat. Immunol., 2008, 9(5): 503-510).

Other examples of genetic modification may include the introduction of chimeric antigen receptors (CARs) and the down-regulation of inhibitory NK cell receptors such as NKG2A. Examples of CARs include, but are not limited to, CD19 and CD20 specific CARs against B cell malignancies, CARs targeting CD33 on leukemia cells, CS1 CAR and CD138 CAR on myeloma cells, GD2 CAR on neuroblastoma cells, Her2/Neu and erbB2 on breast cancer cells, carcinoembryonic antigen (CEA) on colon cancers, EpCAM on epithelial tumors, GPA7 on melanoma, NKG2D ligand on leukemia and solid tumors, and TRAIL R1 on various tumor targets. The CARs may be POIs of the effector modules and regulated by the binding of the DD with its corresponding ligand.

In another example, NK cells for ACT may be modified to express an effector module comprising the high-affinity CD16-158V polymorphism (HA-CD16) which augments NK cell mediated antibody dependent cell cytotoxicity (ADCC) against tumors. Infusion of NK cells genetically modified to express HA-CD16 could be used as a strategy to improve the efficacy of antibody-based therapies for cancer patients.

NK cells may also be genetically reprogrammed to circumvent NK cell inhibitory signals upon interaction with tumor cells. For example, using CRISPR, ZFN, or TALEN to genetically modify NK cells to silence their inhibitory receptors may enhance the anti-tumor capacity of NK cells.

Immune cells can be isolated and expanded ex vivo using a variety of methods known in the art. For example, methods of isolating and expanding cytotoxic T cells are described in U.S. Pat. Nos. 6,805,861 and 6,531,451; U.S. Patent Publication No.: US20160348072A1 and International Patent Publication NO: WO2016168595A1; the contents of each of which are incorporated herein by reference in their entirety. Isolation and expansion of NK cells is described in U.S. Patent Publication NO.: US20150152387A1, U.S. Pat. No. 7,435,596; and Oyer, J. L. (2016). Cytotherapy. 18(5):653-63; the contents of each of which are incorporated by reference herein in its entirety. Specifically, human primary NK cells may be expanded in the presence of feeder cells e.g. a myeloid cell line that has been genetically modified to express membrane bound IL15, IL21, IL12 and 4-1 BBL.

In some instances, sub populations of immune cells may be enriched for ACT. Methods for immune cell enrichment are taught in International Patent Publication NO.: WO2015039100A1. In another example, T cells positive for B and T lymphocyte attenuator marker BTLA) may be used to enrich for T cells that are anti-cancer reactive as described in U.S. Pat. No. 9,512,401 (the content of each of which are incorporated herein by reference in their entirety).

In some embodiments, immune cells for ACT may be depleted of select sub populations to enhance T cell expansion. For example, immune cells may be depleted of Foxp3+T lymphocytes to minimize the ant-tumor immune response using methods taught in U.S. Patent Publication NO.: U.S. 20160298081A1; the contents of which are incorporated by reference herein in their entirety.

In some embodiments, activation and expansion of T cells for ACT is achieved antigenic stimulation of a transiently expressed Chimeric Antigen Receptor (CAR) on the cell surface. Such activation methods are taught in International Patent NO.: WO2017015427, the content of which are incorporated herein by reference in their entirety.

In some embodiments, immune cells may be activated by antigens associated with antigen presenting cells (APCs). In some embodiments, the APCs may be dendritic cells, macrophages or B cells that antigen specific or nonspecific. The APCs may autologous or hom*ologous in their organ. In some embodiments the APCs may be artificial antigen presenting cells (aAPCs) such as cell based aAPCs or acellular aAPCs. Cell based aAPCs are may be selected from either genetically modified allogeneic cells such as human erythroleukemia cells or xenogeneic cells such as murine fibroblasts and Drosophila cells. Alternatively, the APCs may be be acellular wherein the antigens or costimulatory domains are presented on synthetic surfaces such as latex beads, polystyrene beads, lipid vesicles or exosomes.

In some embodiments, adoptive cell therapy is carried out by autologous transfer, wherein the cells are derived from a subject in need of a treatment and the cells, following isolation and processing are administered to the same subject. In other instances, ACT may involve allogenic transfer wherein the cells are isolated and/or prepared from a donor subject other than the recipient subject who ultimately receives cell therapy. The donor and recipient subject may be genetically identical, or similar or may express the same HLA class or subtype.

In some embodiments, the multiple immunotherapeutic agents introduced into the immune cells for ACT (e.g., T cells and NK cells) may be controlled by the same biocircuit system. In one example, a cytokine such as IL12 and a CAR construct such as CD19 CAR are linked to the same hDHFR destabilizing domain. The expression of IL12 and CD19 CAR is tuned using TMP simultaneously. In other embodiments, the multiple immunotherapeutic agents introduced into the immune cells for ACT (e.g., T cells and NK cells) may be controlled by different biocircuit systems. In one example, a cytokine such as IL12 and a CAR construct such as CD19 CAR are linked to different DDs in two separate effector modules, thereby can be tuned separately using different stimuli. In another example, a suicide gene and a CAR construct may be linked to two separate effector modules.

Following genetic modulation using SREs, biocircuits and compositions of the invention, cells are administered to the subject in need thereof. Methods for administration of cells for adoptive cell therapy are known and may be used in connection with the provided methods and compositions. For example, adoptive T cell therapy methods are described, e.g., in U.S. Patent Application Publication No. 2003/0170238 to Gruenberg et al; U.S. Pat. No. 4,690,915 to Rosenberg; Rosenberg (2011) Nat Rev Clin Oncol. 8(10):577-85). See, e.g., Themeli et al. (2013) Nat Biotechnol. 31(10): 928-933; Tsukahara et al. (2013) Biochem Biophys Res Commun 438(1): 84-9; Davila et al. (2013) PLoS ONE 8(4): e61338; the contents of each of which are incorporated herein by reference in their entirety.

In some embodiments, immune cells for ACT may be modified to express one or more immunotherapeutic agents which facilitate immune cells activation, infiltration, expansion, survival and anti-tumor functions. The immunotherapeutic agents may be a second CAR or TCR specific to a different target molecule; a cytokine or a cytokine receptor; a chimeric switch receptor that converts an inhibitory signal to a stimulatory signal; a homing receptor that guides adoptively transferred cells to a target site such as the tumor tissue; an agent that optimizes the metabolism of the immune cell; or a safety switch gene (e.g., a suicide gene) that kills activated T cells when a severe event is observed after adoptive cell transfer or when the transferred immune cells are no-longer needed.

In some embodiments, immune cells used for adoptive cell transfer can be genetically manipulated to improve their persistence, cytotoxicity, tumor targeting capacity, and ability to home to disease sites in vivo, with the overall aim of further improving upon their capacity to kill tumors in cancer patients. One example is to introduce effector modules of the invention comprising cytokines such as gamma-cytokines (IL2 and IL15) into immune cells to promote immune cell proliferation and survival. Transduction of cytokine genes (e.g., gamma-cytokines IL2 and IL15) into cells will be able to propagate immune cells without addition of exogenous cytokines and cytokine expressing NK cells have enhanced tumor cytotoxicity.

Another example includes the use of genetic modification for directing the infused NK cells to proper tumor tissues. NK cells may be genetically engineered with an effector module that encodes the CCR7 receptor to improve their migration toward one of its ligands CCL19. Other strategies may involve utilizing chemokine receptors, such as CXCR3 to improve NK cell migration to inflamed tissues, such as those infiltrated with metastatic tumors.

NK cells may be modified to become insensitive to suppressive cytokines such as TGF-β, thereby preserving their cytotoxicity. For example, NK cells can be genetically modified to express the dominant negative mutant form of TGF-β type II receptor (DNTβRII) on their surface that render NK cells resistant to the suppressive effects of TGF-β.

In some embodiments, biocircuits, their components, SREs or effector modules are designed to be significantly less immunogenic than other biocircuits or switches in the art.

As used herein, “significantly less immunogenic” refers to a detectable decrease in immunogenicity. In another embodiment, the term refers to a fold decrease in immunogenicity. In another embodiment, the term refers to a decrease such that an effective amount of the biocircuits, their components, SREs or effector modules which can be administered without triggering a detectable immune response. In another embodiment, the term refers to a decrease such that the biocircuits, their components, SREs or effector modules can be repeatedly administered without eliciting an immune response. In another embodiment, the decrease is such that the biocircuits, their components, SREs or effector modules can be repeatedly administered without eliciting an immune response.

In another embodiment, the biocircuits, their components, SREs or effector modules is 2-fold less immunogenic than its unmodified counterpart or reference compound. In another embodiment, immunogenicity is reduced by a 3-fold factor. In another embodiment, immunogenicity is reduced by a 5-fold factor. In another embodiment, immunogenicity is reduced by a 7-fold factor. In another embodiment, immunogenicity is reduced by a 10-fold factor. In another embodiment, immunogenicity is reduced by a 15-fold factor. In another embodiment, immunogenicity is reduced by a fold factor. In another embodiment, immunogenicity is reduced by a 50-fold factor. In another embodiment, immunogenicity is reduced by a 100-fold factor. In another embodiment, immunogenicity is reduced by a 200-fold factor. In another embodiment, immunogenicity is reduced by a 500-fold factor. In another embodiment, immunogenicity is reduced by a 1000-fold factor. In another embodiment, immunogenicity is reduced by a 2000-fold factor. In another embodiment, immunogenicity is reduced by another fold difference.

Methods of determining immunogenicity are well known in the art, and include, e.g. measuring secretion of cytokines (e.g. IL12, IFNalpha, TNF-alpha, RANTES, MIP-1 alpha or beta, IL6, IFN beta, or IL8), measuring expression of DC activation markers (e.g. CD83, HLA-DR, CD80 and CD86), or measuring ability to act as an adjuvant for an adaptive immune response.

The present invention provides method of inducing an immune response in a cell. As used herein the term “immune response” refers to the activity of the cells of the immune system in response to stimulus, or an antigen. In some embodiments, the antigen may be a cancer antigen. In some aspects, the methods of inducing an immune response may involve administering to the cell, a therapeutically effective amount of any of the compositions described herein. In one aspect, the method may involve administering the pharmaceutical compositions described herein. In one aspect, the method may involve administering the polynucleotides, vectors. In some embodiments, induction of the immune response occurs due to the expression and or function of the immunotherapeutic agents described herein. Methods of inducing immune response further may involve administering to the cell, an effective amount of the stimulus to tune the expression of the immunotherapeutic agent. In some embodiments, the immunotherapeutic agent is capable of inducing an immune response in response to the stimulus. The induction of the immune response may occur in a cell within a subject i.e. in vivo, ex vivo or in vitro. The induction of an immune response may be evaluated by measuring the release of cytokine such as IL2 and IFNγ from the cells. In some embodiments, the induction of an immune response may be measured by evaluating the cell surface markers such as but not limited to CD3, CD4, CD8, CD 14, CD20, CD11b, CD16, CD45 and HLA-DR, CD 69, CD28, CD44, IFNgamma. Examples of cell surface markers for antigen presenting cells include, but are not limited to, WIC class I, MHC Class II, CD40, CD45, B7-1, B7-2, IFNγ receptor and IL2 receptor, ICAM-1 and/or Fcγ receptor. Examples of cell surface markers for dendritic cells include, but are not limited to, WIC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in some cases also having the absence of CD2, CD3, CD4, CD8, CD14, CD15, CD16, CD 19, CD20, CD56, and/or CD57. Examples of cell surface markers for NK cells include, but are not limited to, CCL3, CCL4, CCL5, Granulysin, Granzyme B, Granzyme K, IL10, IL22, IFNg, LAP, Perforin, and TNFa.

2. Cancer Vaccines

In some embodiments, biocircuits, effector modules, payloads of interest (immunotherapeutic agents), vectors, cells and compositions of the present invention may be used for cancer vaccines. In one aspect, dendritic cells are modified to express the compositions of the invention and used as cancer vaccines.

In some embodiments, cancer vaccine may comprise peptides and/or proteins derived from tumor associated antigen (TAA). Such strategies may be utilized to evoke an immune response in a subject, which in some instances may be a cytotoxic T lymphocyte (CTL) response. Peptides used for cancer vaccines may also modified to match the mutation profile of a subject. For example, EGFR derived peptides with mutations matched to the mutations found in the subject in need of therapy have been successfully used in patients with lung cancer (Li F et al. (2016) Oncoimmunology. October 7; 5 (12): e1238539; the contents of which are incorporated herein by reference in their entirety).

In one embodiment, cancer vaccines of the present invention may superagonist altered peptide ligands (APL) derived from TAAs. These are mutant peptide ligands deviate from the native peptide sequence by one or more amino acids, which activate specific CTL clones more effectively than native epitopes. These alterations may allow the peptide to bind better to the restricting Class I MHC molecule or interact more favorably with the TCR of a given tumor-specific CTL subset. APLs may be selected using methods taught in U.S. Patent Publication NO.: US20160317633A1, the contents of which are incorporated herein by reference in their entirety.

3. Tumor Microenvironment (TME)

In some embodiments, biocircuits, their components, SREs or effector modules are designed to reshape the tumor microenvironment in order to extend utility of the biocircuit or a pharmaceutical composition beyond direct cell killing.

In some embodiments, biocircuits, their components, SREs or effector modules are designed to reduce, mitigate or eliminate the CAR cytokine storm. In some embodiments, such reduction, mitigation and/or elimination occurs in solid tumors or tumor microenvironments.

In some embodiments, biocircuits, effector modules, payloads of interest (immunotherapeutic agents), vectors, cells and pharmaceutical compositions of the present invention may be used to convert the immunosuppressive microenvironment to increase immune responses.

In some embodiments, the invention provides methods for converting the inhibitory immunoregulatory signals from immunosuppressive cytokines secreted by cancer cells or the surrounding tumor stroma into stimulatory signals using compositions of the invention. Immunosuppressive cytokines include without limitation, IL13, IL4, TGF-beta, IL6, IL8, and IL10. In one aspect, the genetically modified tumor-specific T cells (e.g., CAR T cells) or T cells with native tumor specificity may be further engineered to express an effector module comprising a chimeric switch receptor that binds to inhibitory/suppressive cytokines and converts their intracellular consequences to an immunostimulatory/activating signal, thus improving the efficacy of tumor-specific T cells. The chimeric switch receptor is composed of the extracellular domains of an inhibitory cytokine receptor (e.g., IL13R, IL4R, IL10R, TGFβR1/ALK5, TGFβR2, and TGFβR3/β-glycan) fused with the intracellular signal transducing domains derived from stimulatory cytokine receptors such as IL2R (i.e., IL2Rα/CD25, IL2Rβ/CD122, and common γ chain receptor/CD132 which is shared by various cytokine receptors) and/or IL7R (IL7Rα/CD127, common γ chain receptor/CD132). These manipulations render tumor specific T cells or CAR T cells resistant to the suppressive tumor microenvironment.

In some embodiments, the present invention provides methods to abrogate the immunosuppressive effects produced by myeloid derived suppressor cells (MDSCs). Tumor cells secrete indoleamine 2,3-dioxygenase (IDO) which promotes immunosuppression through the recruitment of MDSCs. The immunosuppressive environment is further promoted by the MDSCs through nitric oxide synthase (NOS) and arginase 1 (ARG1) which can degrade extracellular arginine. Amino acid deprivation within the tumor microenvironment suppresses T cell anti-tumor activity. In some embodiments, payloads of the present invention may comprise inhibitors of NOS, ARG1 and tryptophan metabolism pathway such as IDO. In one embodiment, the payload may include inhibitors of colony stimulating factor receptor 1 (CSFR1) which required for the proliferation and function of MDSCs.

In some embodiments, dominant negative mutants of inhibitory co receptor such as PD-1, CTLA-4, LAG-3, TIM-3, KIRs, or BTLA may be utilized as payloads of the invention to overcome inhibitory signals in the tumor microenvironment.

4. Combination Treatments

In some embodiments, it is desirable to combine compositions, vectors and cells of the invention for administration to a subject. Compositions of the invention comprising different immunotherapeutic agents may be used in combination for enhancement of immunotherapy.

Immunotherapeutic Agents

In some embodiments, it is desirable to combine compositions of the invention with adjuvants, that can enhance the potency and longevity of antigen-specific immune responses. Adjuvants used as immunostimulants in combination therapy include biological molecules or delivery carriers that deliver antigens. As non-limiting examples, the compositions of the invention may be combined with biological adjuvants such as cytokines, Toll Like Receptors, bacterial toxins, and/or saponins. In other embodiments, the compositions of the present invention may be combined with delivery carriers. Exemplary delivery carriers include, polymer microspheres, immune stimulating complexes, emulsions (oil-in-water or water-in-oil), aluminum salts, liposomes or virosomes.

In some embodiments, immune effector cells modified to express biocircuits, effector modules, DDs and payloads of the invention may be combined with the biological adjuvants described herein. Dual regulation of CAR and cytokines and ligands to segregate the kinetic control of target-mediated activation from intrinsic cell T cell expansion. Such dual regulation also minimizes the need for pre-conditioning regimens in patients. As a non-limiting example, DD regulated CAR e.g. CD19 CAR may be combined with cytokines e.g. IL12 to enhance the anti-tumor efficacy of the CAR (Pegram H. J., et al. Tumor-targeted T cells modified to secrete IL12 eradicate systemic tumors without need for prior conditioning. Blood. 2012; 119:4133-41; the contents of each of which are incorporated herein by reference in their entirety). As another non-limiting example, Merchant et al. combined dendritic cell-based vaccinations with recombinant human IL7 to improve outcome in high-risk pediatric sarcomas patients (Merchant, M. S. et. al. Adjuvant immunotherapy to Improve Outcome in High-Risk Pediatric Sarcomas. Clin Cancer Res. 2016. 22(13):3182-91; the contents of each of which are incorporated herein by reference in their entirety).

In some embodiments, immune effector cells modified to express one or more antigen-specific TCRs or CARs may be combined with compositions of the invention comprising immunotherapeutic agents that convert the immunosuppressive tumor microenvironment.

In one aspect, effector immune cells modified to express CARs specific to different target molecules on the same cell may be combined. In another aspect, different immune cells modified to express the same CAR construct such as NK cells and T cells may be used in combination for a tumor treatment, for instance, a T cell modified to express a CD19 CAR may be combined with a NK cell modified to express the same CD19 CAR to treat B cell malignancy.

In other embodiments, immune cells modified to express CARs may be combined with checkpoint blockade agents.

In some embodiments, immune effector cells modified to expressed biocircuits, effector modules, DDs and payloads of the invention may be combined with cancer vaccines of the invention.

In some embodiments, an effector module comprising a CAR may be used in combination with an effector module comprising a cytokine, or an effector module comprising a safety switch, or an effector module comprising a metabolic factor, or an effector module comprising a homing receptor.

In one embodiment, an effector module comprising a CD19 CAR may be used in combination with amino pyrimidine derivatives such as the Burkit's tyrosine receptor kinase (BTK) inhibitor using methods taught in International Patent Application NO.: WO2016164580, the contents of which are incorporated herein by reference in their entirety.

Cancer

In some embodiments, methods of the invention may include combination of the compositions of the invention with other agents effective in the treatment of cancers, infection diseases and other immunodeficient disorders, such as anti-cancer agents. As used herein, the term “anti-cancer agent” refers to any agent which is capable of negatively affecting cancer in a subject, for example, by killing cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the lifespan of a subject with cancer.

In some embodiments, anti-cancer agent or therapy may be a chemotherapeutic agent, or radiotherapy, immunotherapeutic agent, surgery, or any other therapeutic agent which, in combination with the present invention, improves the therapeutic efficacy of treatment.

In some embodiments, compositions of the present invention may be used in combination with immunotherapeutics other than the inventive therapy described herein, such as antibodies specific to some target molecules on the surface of a tumor cell.

Exemplary chemotherapies include, without limitation, Acivicin; Aclarubicin; Acodazole hydrochloride; Acronine; Adozelesin; Aldesleukin; Altretamine; Ambomycin; Ametantrone acetate; Amsacrine; Anastrozole; Anthramycin; Asparaginase; Asperrin, Sulindac, Curcumin, alkylating agents including: Nitrogen mustards such as mechlor-ethamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil; nitrosoureas such as carmustine (BC U), lomustine (CCNU), and semustine (methyl-CC U); thylenimines/methylmelamine such as thriethylenemelamine (TEM), triethylene, thiophosphoramide (thiotepa), hexamethylmelamine (HMM, altretamine); alkyl sulfonates such as busulfan; triazines such as dacarbazine (DTIC); antimetabolites including folic acid analogs such as methotrexate and trimetrexate, pyrrolidine analogs such as 5-fluorouracil, fluorodeoxyuridine, gemcitabine, cytosine arabinoside (AraC, cytarabine), 5-azacytidine, 2,2′-difluorodeoxycytidine, purine analogs such as 6-mercaptopurine, 6-thioguanine, azathioprine, 2′-deoxycoformycin (pentostatin), erythrohydroxynonyladenine (EHNA), fludarabine phosphate, and 2-chlorodeoxyadenosine (cladribine, 2-CdA); natural products including antimitotic drugs such as pacl*taxel, vinca alkaloids including vinblastine (VLB), vincristine, and vinorelbine, taxotere, estramustine, and estramustine phosphate; epipodophyllotoxins such as etoposide and teniposide; antibiotics, such as actinomycin D, daunomycin (rubidomycin), doxorubicin, mitoxantrone, idarubicin, bleomycins, plicamycin (mithramycin), mitomycin C, and actinomycin; enzymes such as L-asparaginase, cytokines such as interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, TNF-beta and GM-CSF, anti-angiogenic factors, such as angiostatin and endostatin, inhibitors of FGF or VEGF such as soluble forms of receptors for angiogenic factors, including soluble VGF/VEGF receptors, platinum coordination complexes such as cisplatin and carboplatin, anthracenediones such as mitoxantrone, substituted urea such as hydroxyurea, methylhydrazine derivatives including N-methylhydrazine (MIFf) and procarbazine, adrenocortical suppressants such as mitotane (o,ρ′-DDD) and aminoglutethimide; hormones and antagonists including adrenocorticosteroid antagonists such as prednisone and equivalents, dexamethasone and aminoglutethimide; progestin such as hydroxyprogesterone caproate, medroxyprogesterone acetate and megestrol acetate; estrogen such as diethylstilbestrol and ethinyl estradiol equivalents; antiestrogen such as tamoxifen; androgens including testosterone propionate and fluoxymesterone/equivalents; antiandrogens such as flutamide, gonadotropin-releasing hormone analogs and leuprolide; non-steroidal antiandrogens such as flutamide; kinase inhibitors, histone deacetylase inhibitors, methylation inhibitors, proteasome inhibitors, monoclonal antibodies, oxidants, anti-oxidants, telomerase inhibitors, BH3 mimetics, ubiquitin ligase inhibitors, stat inhibitors and receptor tyrosin kinase inhibitors such as imatinib mesylate (marketed as Gleevac or Glivac) and erlotinib (an EGF receptor inhibitor) now marketed as Tarveca; anti-virals such as oseltamivir phosphate, Amphotericin B, and palivizumab; Sdi 1 mimetics; Semustine; Senescence derived inhibitor 1; Sparfosic acid; Spicamycin D; Spiromustine; Splenopentin; Spongistatin 1; Squalamine; Stipiamide; Stromelysin inhibitors; Sulfinosine; Superactive vasoactive intestinal peptide antagonist; Velaresol; Veramine; Verdins; Verteporfin; Vinorelbine; Vinxaltine; Vitaxin; Vorozole; Zanoterone; Zeniplatin; Zilascorb; and Zinostatin stimalamer; PI3Kβ small-molecule inhibitor, GSK2636771; pan-PI3K inhibitor (BKM120); BRAF inhibitors. Vemurafenib (Zelboraf) and dabrafenib (Tafinlar); or any analog or derivative and variant of the foregoing.

In one embodiment, the invention further relates to the use of pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention for treating one or more forms of cancer, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders. For example, the pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention can also be administered in conjunction with one or more additional anti-cancer treatments, such as biological, chemotherapy and radiotherapy. Accordingly, a treatment can include, for example, imatinib (Gleevac), all-trans-retinoic acid, a monoclonal antibody treatment (gemtuzumab, ozogamicin), chemotherapy (for example, chlorambucil, prednisone, prednisolone, vincristine, cytarabine, clofarabine, farnesyl transferase inhibitors, decitabine, inhibitors of MDR1), rituximab, interferon-α, anthracycline drugs (such as daunorubicin or idarubicin), L-asparaginase, doxorubicin, cyclophosphamide, doxorubicin, bleomycin, fludarabine, etoposide, pentostatin, or cladribine), bone marrow transplant, stem cell transplant, radiation therapy, anti-metabolite drugs (methotrexate and 6-mercaptopurine), or any of the antibodies taught herein such as those in Table 6 of the co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety), or combinations thereof.

Radiotherapeutic agents and factors include radiation and waves that induce DNA damage for example, γ-irradiation, X-rays, UV-irradiation, microwaves, electronic emissions, radioisotopes, and the like. Therapy may be achieved by irradiating the localized tumor site with the above described forms of radiations. It is most likely that all of these factors effect a broad range of damage DNA, on the precursors of DNA, the replication and repair of DNA, and the assembly and maintenance of chromosomes. Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens. Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.

Radiation therapy (also called radiotherapy, X-ray therapy, or irradiation) is the use of ionizing radiation to kill cancer cells and shrink tumors. Radiation therapy can be administered externally via external beam radiotherapy (EBRT) or internally via brachytherapy. The effects of radiation therapy are localized and confined to the region being treated. Radiation therapy may be used to treat almost every type of solid tumor, including cancers of the brain, breast, cervix, larynx, lung, pancreas, prostate, skin, stomach, uterus, or soft tissue sarcomas. Radiation is also used to treat leukemia and lymphoma.

In some embodiments, the chemotherapeutic agent may be an immunomodulatory agent such as lenalidomide (LEN). Recent studies have demonstrated that lenalidomide can enhance antitumor functions of CAR modified T cells (Otahal et al., Oncoimmunology, 2015, 5(4): e1115940). Some examples of anti-tumor antibodies include tocilizumab, siltuximab.

Chemotherapy is the treatment of cancer with drugs that can destroy cancer cells. In current usage, the term “chemotherapy” usually refers to cytotoxic drugs which affect rapidly dividing cells in general, in contrast with targeted therapy. Chemotherapy drugs interfere with cell division in various possible ways, e.g. with the duplication of DNA or the separation of newly formed chromosomes. Most forms of chemotherapy target all rapidly dividing cells and are not specific to cancer cells, although some degree of specificity may come from the inability of many cancer cells to repair DNA damage, while normal cells generally can.

Most chemotherapy regimens are given in combination. Exemplary chemotherapeutic agents include, but are not limited to, 5-FU Enhancer, 9-AC, AG2037, AG3340, Aggrecanase Inhibitor, Aminoglutethimide, Amsacrine (m-AMSA), Asparaginase, Azacitidine, Batimastat (BB94), BAY 12-9566, BCH-4556, Bis-Naphthalimide, Busulfan, Capecitabine, Carboplatin, Carmustaine+Polifepr Osan, cdk4/cdk2 inhibitors, Chlorambucil, CI-994, Cisplatin, Cladribine, CS-682, Cytarabine HCl, D2163, Dactinomycin, Daunorubicin HCl, DepoCyt, Dexifosamide, Docetaxel, Dolastain, Doxifluridine, Doxorubicin, DX8951f, E 7070, EGFR, Epirubicin, Erythropoietin, Estramustine phosphate sodium, Etoposide (VP16-213), Farnesyl Transferase Inhibitor, FK 317, Flavopiridol, Floxuridine, Fludarabine, Fluorouracil (5-FU), Flutamide, Fragyline, Gemcitabine, Hexamethylmelamine (HMM), Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alfa-2a, Interferon Alfa-2b, Interleukin-2, Irinotecan, ISI 641, Krestin, Lemonal DP 2202, Leuprolide acetate (LHRH-releasing factor analogue), Levamisole, LiGLA (lithium-gamma linolenate), Lodine Seeds, Lometexol, Lomustine (CCNU), Marimistat, Mechlorethamine HCl (nitrogen mustard), Megestrol acetate, Meglamine GLA, Mercaptopurine, Mesna, Mitoguazone (methyl-GAG; methyl glyoxal bis-guanylhydrazone; MGBG), Mitotane (o.p′-DDD), Mitoxantrone, Mitoxantrone HCl, MMI 270, MMP, MTA/LY 231514, Octreotide, ODN 698, OK-432, Oral Platinum, Oral Taxoid, Pacl*taxel (TAXOL.®), PARP Inhibitors, PD 183805, Pentostatin (2′ deoxycoformycin), PKC 412, Plicamycin, Procarbazine HCl, PSC 833, Ralitrexed, RAS Farnesyl Transferase Inhibitor, RAS Oncogene Inhibitor, Semustine (methyl-CCNU), Streptozocin, Suramin, Tamoxifen citrate, Taxane Analog, Temozolomide, Teniposide (VM-26), Thioguanine, Thiotepa, Topotecan, Tyrosine Kinase, UFT (Tegafur/Uracil), Valrubicin, Vinblastine sulfate, Vindesine sulfate, VX-710, VX-853, YM 116, ZD 0101, ZD 0473/Anormed, ZD 1839, ZD 9331.

Other agents may be used in combination with compositions of the invention may also include, but not limited to, agents that affect the upregulation of cell surface receptors and their ligands such as Fas/Fas ligand, DR4 or DR5/TRAIL and GAP junctions, cytostatic and differentiation agents, inhibitors of cell adhesion such as focal adhesion kinase (FAKs) inhibitors and Lovastatin, or agents that increase the sensitivity of the hyper proliferative cells to apoptotic inducers such as the antibody C225.

The combinations may include administering the compositions of the invention and other agents at the same time or separately. Alternatively, the present immunotherapy may precede or follow the other agent/therapy by intervals ranging from minutes, days, weeks to months.

5. Therapeutic Uses

Provided in the present invention is a method of reducing a tumor volume or burden in a subject in need, the method comprising introducing into the subject a composition of the invention.

The present invention also provides methods for treating a cancer in a subject, comprising administering to the subject an effective amount of an immune effector cell genetically modified to express at least one effector module of the invention.

Cancer

Various cancers may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “cancer” refers to any of various malignant neoplasms characterized by the proliferation of anaplastic cells that tend to invade surrounding tissue and metastasize to new body sites and refers to the pathological condition characterized by such malignant neoplastic growths. Cancers may be tumors or hematological malignancies, and include but are not limited to, all types of lymphomas/leukemias, carcinomas and sarcomas, such as those cancers or tumors found in the anus, bladder, bile duct, bone, brain, breast, cervix, colon/rectum, endometrium, esophagus, eye, gallbladder, head and neck, liver, kidney, larynx, lung, mediastinum (chest), mouth, ovaries, pancreas, penis, prostate, skin, small intestine, stomach, spinal marrow, tailbone, testicl*s, thyroid and uterus.

Types of carcinomas which may be treated with the compositions of the present invention include, but are not limited to, papilloma/carcinoma, choriocarcinoma, endodermal sinus tumor, teratoma, adenoma/adenocarcinoma, melanoma, fibroma, lipoma, leiomyoma, rhabdomyoma, mesothelioma, angioma, osteoma, chondroma, glioma, lymphoma/leukemia, squamous cell carcinoma, small cell carcinoma, large cell undifferentiated carcinomas, basal cell carcinoma and sinonasal undifferentiated carcinoma.

Types of carcinomas which may be treated with the compositions of the present invention include, but are not limited to, soft tissue sarcoma such as alveolar soft part sarcoma, angiosarcoma, dermatofibrosarcoma, desmoid tumor, desmoplastic small round cell tumor, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, hemangiopericytoma, hemangiosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphosarcoma, malignant fibrous histiocytoma, neurofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, and Askin's tumor, Ewing's sarcoma (primitive neuroectodermal tumor), malignant hemangioendothelioma, malignant schwannoma, osteosarcoma, and chondrosarcoma.

As a non-limiting example, the carcinoma which may be treated may be Acute granulocytic leukemia, Acute lymphocytic leukemia, Acute myelogenous leukemia, Adenocarcinoma, Adenosarcoma, Adrenal cancer, Adrenocortical carcinoma, Anal cancer, Anaplastic astrocytoma, Angiosarcoma, Appendix cancer, Astrocytoma, Basal cell carcinoma, B-Cell lymphoma), Bile duct cancer, Bladder cancer, Bone cancer, Bowel cancer, Brain cancer, Brain stem glioma, Brain tumor, Breast cancer, Carcinoid tumors, Cervical cancer, Cholangiocarcinoma, Chondrosarcoma, Chronic lymphocytic leukemia, Chronic myelogenous leukemia, Colon cancer, Colorectal cancer, Craniopharyngioma, Cutaneous lymphoma, Cutaneous melanoma, Diffuse astrocytoma, Ductal carcinoma in situ, Endometrial cancer, Ependymoma, Epithelioid sarcoma, Esophageal cancer, Ewing sarcoma, Extrahepatic bile duct cancer, Eye cancer, Fallopian tube cancer, Fibrosarcoma, Gallbladder cancer, Gastric cancer, Gastrointestinal cancer, Gastrointestinal carcinoid cancer, Gastrointestinal stromal tumors, General, Germ cell tumor, Glioblastoma multiforme, Glioma, Hairy cell leukemia, Head and neck cancer, Hemangioendothelioma, Hodgkin lymphoma, Hodgkin's disease, Hodgkin's lymphoma, Hypopharyngeal cancer, Infiltrating ductal carcinoma, Infiltrating lobular carcinoma, Inflammatory breast cancer, Intestinal Cancer, Intrahepatic bile duct cancer, Invasive/infiltrating breast cancer, Islet cell cancer, Jaw cancer, Kaposi sarcoma, Kidney cancer, Laryngeal cancer, Leiomyosarcoma, Leptomeningeal metastases, Leukemia, Lip cancer, Liposarcoma, Liver cancer, Lobular carcinoma in situ, Low-grade astrocytoma, Lung cancer, Lymph node cancer, Lymphoma, Male breast cancer, Medullary carcinoma, Medulloblastoma, Melanoma, Meningioma, Merkel cell carcinoma, Mesenchymal chondrosarcoma, Mesenchymous, Mesothelioma, Metastatic breast cancer, Metastatic melanoma, Metastatic squamous neck cancer, Mixed gliomas, Mouth cancer, Mucinous carcinoma, Mucosal melanoma, Multiple myeloma, Nasal cavity cancer, Nasopharyngeal cancer, Neck cancer, Neuroblastoma, Neuroendocrine tumors, Non-Hodgkin lymphoma, Non-Hodgkin's lymphoma, Non-small cell lung cancer, Oat cell cancer, Ocular cancer, Ocular melanoma, Oligodendroglioma, Oral cancer, Oral cavity cancer, Oropharyngeal cancer, Osteogenic sarcoma, Osteosarcoma, Ovarian cancer, Ovarian epithelial cancer, Ovarian germ cell tumor, Ovarian primary peritoneal carcinoma, Ovarian sex cord stromal tumor, Paget's disease, Pancreatic cancer, Papillary carcinoma, Paranasal sinus cancer, Parathyroid cancer, Pelvic cancer, Penile cancer, Peripheral nerve cancer, Peritoneal cancer, Pharyngeal cancer, Pheochromocytoma, Pilocytic astrocytoma, Pineal region tumor, Pineoblastoma, Pituitary gland cancer, Primary central nervous system lymphoma, Prostate cancer, Rectal cancer, Renal cell cancer, Renal pelvis cancer, Rhabdomyosarcoma, Salivary gland cancer, Sarcoma, Sarcoma, bone, Sarcoma, soft tissue, Sarcoma, uterine, Sinus cancer, Skin cancer, Small cell lung cancer, Small intestine cancer, Soft tissue sarcoma, Spinal cancer, Spinal column cancer, Spinal cord cancer, Spinal tumor, Squamous cell carcinoma, Stomach cancer, Synovial sarcoma, T-cell lymphoma), Testicular cancer, Throat cancer, Thymoma/thymic carcinoma, Thyroid cancer, Tongue cancer, Tonsil cancer, Transitional cell cancer, Transitional cell cancer, Transitional cell cancer, Triple-negative breast cancer, Tubal cancer, Tubular carcinoma, Ureteral cancer, Ureteral cancer, Urethral cancer, Uterine adenocarcinoma, Uterine cancer, Uterine sarcoma, vagin*l cancer, and Vulvar cancer.

In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of multiple myeloma such as a CS1 CAR, a CD38 CAR, a CD138 CAR, and a BCMA CAR. In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of acute myeloid leukemia such as a CD33 CAR, a CD123 CAR, and a CLL1 CAR. In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of T cell leukemia such as a CD5 CAR, and a CD7 CAR. In some embodiments, the CARs of the present invention may be a CAR useful in the treatment of solid tumors such a mesothelin CAR, a GD2 CAR, a GPC3 CAR, a Her2 CAR, an EGFR CAR, a Mud CAR, an EpCAM CAR, a PD-L1 CAR, a CEA CAR, a Muc16 CAR, a CD133 CAR, a CD171 CAR, a CD70 CAR, a CLD18 CAR, a cMET CAR, a EphA2 CAR, a FAP CAR, a Folate Receptor CAR, an IL13Rα2 CAR, an MG7 CAR, a PSMA CAR, a ROR1 CAR, and a VEGFR2 CAR.

The present invention also provides methods of reducing tumor burden in a subject. In some embodiments. As used herein, “tumor burden” refers to the number of cancer cells, or the amount of cancer in a subject. In some aspects tumor burden also refers to tumor load. In some embodiments, the tumor may be disseminated throughout the body of the subject. In one aspect, the tumor may be a liquid tumor such as leukemia or a lymphoma. The methods of reducing tumor burden may involve administering to the subject, a therapeutically effective amount of the immune cells. Immune cells may be engineered to express the compositions described herein. In some embodiments, the immune cells expressing the compositions of the invention may be administered to the subject via any of the routes of delivery described herein. Also provided herein are dosing regimens for administering the immune cells. In some embodiments, the subject may also be administered a therapeutically effective amount of the stimulus to tune the expression of the immunotherapeutic agent. In some aspects, the immunotherapeutic agents may be capable of reducing the tumor burden. Regimens for ligand/stimulus dosing are also provided. Reduction in tumor burden may be measured by any of the methods known in the art including tumor imaging, and measurement of marker proteins. In some aspects, bioluminescent imaging may be used to measure tumor burden. Bioluminescence imaging utilizes native light emission from bioluminescent proteins such as luciferase. Such bioluminescent proteins can participate in chemical reactions that release photons by the addition of suitable substrates. The release of photons can be captured by sensitive detection methods and quantified. Tumor cells may be engineered to express luciferase and the efficacy of the compositions described herein to reduce tumor burden may quantified by imaging. In some aspects, the tumor burden may be measured by the flux of photons (photons per sec). In some embodiments, photon flux positively correlates with tumor burden.

Diseases and Toxins

Various infectious diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “infectious disease” refers to any disorders caused by organisms such as bacteria, viruses, fungi or parasites. As a non-limiting example, the infectious disease may be Acute bacterial rhinosinusitis, 14-day measles, Acne, Acrodermatitis chronica atrophicans (ACA)-(late skin manifestation of latent Lyme disease), Acute hemorrhagic conjunctivitis, Acute hemorrhagic cystitis, Acute rhinosinusitis, Adult T-cell Leukemia-Lymphoma (ATLL), African Sleeping Sickness, AIDS (Acquired Immunodeficiency Syndrome), Alveolar hydatid, Amebiasis, Amebic meningoencephalitis, Anaplasmosis, Anthrax, Arboviral or parainfectious, Ascariasis—(Roundworm infections), Aseptic meningitis, Athlete's foot (Tinea pedis), Australian tick typhus, Avian Influenza, Babesiosis, Bacillary angiomatosis, Bacterial meningitis, Bacterial vaginosis, Balanitis, Balantidiasis, Bang's disease, Barmah Forest virus infection, Bartonellosis (Verruga peruana; Carrion's disease; Oroya fever), Bat Lyssavirus Infection, Bay sore (Chiclero's ulcer), Baylisascaris infection (Racoon roundworm infection), Beaver fever, Beef tapeworm, Bejel (endemic syphilis), Biphasic meningoencephalitis, Black Bane, Black death, Black piedra, Blackwater Fever, Blastomycosis, Blennorrhea of the newborn, Blepharitis, Boils, Bornholm disease (pleurodynia), Borrelia miyamotoi Disease, Botulism, Boutonneuse fever, Brazilian purpuric fever, Break Bone fever, Brill, Bronchiolitis, Bronchitis, Brucellosis (Bang's disease), Bubonic plague, Bullous impetigo, Burkholderia mallei (Glanders), Burkholderia pseudomallei (Melioidosis), Buruli ulcers (also Mycoburuli ulcers), Busse, Busse-Buschke disease (Cryptococcosis), California group encephalitis, Campylobacteriosis, Candidiasis, Canefield fever (Canicola fever; 7-day fever; Weil's disease; leptospirosis; canefield fever), Canicola fever, Capillariasis, Carate, Carbapenem-resistant Enterobacteriaceae (CRE), Carbuncle, Carrion's disease, Cat Scratch fever, Cave disease, Central Asian hemorrhagic fever, Central European tick, Cervical cancer, Chagas disease, Chancroid (Soft chancre), Chicago disease, Chickenpox (Varicella), Chiclero's ulcer, Chikungunya fever, Chlamydial infection, Cholera, Chromoblastomycosis, Ciguatera, Clap, Clonorchiasis (Liver fluke infection), Clostridium Difficile Infection, Clostridium Perfringens (Epsilon Toxin), Coccidioidomycosis fungal infection (Valley fever; desert rheumatism), Coenurosis, Colorado tick fever, Condyloma accuminata, Condyloma accuminata (Warts), Condyloma lata, Congo fever, Congo hemorrhagic fever virus, Conjunctivitis, cowpox, Crabs, Crimean, Croup, Cryptococcosis, Cryptosporidiosis (Crypto), Cutaneous Larval Migrans, Cyclosporiasis, Cystic hydatid, Cysticercosis, Cystitis, Czechoslovak tick, D68 (EV-D68), Dacryocytitis, Dandy fever, Darling's Disease, Deer fly fever, Dengue fever (1, 2, 3 and 4), Desert rheumatism, Devil's grip, Diphasic milk fever, Diphtheria, Disseminated Intravascular Coagulation, Dog tapeworm, Donovanosis, Donovanosis (Granuloma inguinale), Dracontiasis, Dracunculosis, Duke's disease, Dum Dum Disease, Durand-Nicholas-Favre disease, Dwarf tapeworm, E. Coli infection (E. coli), Eastern equine encephalitis, Ebola Hemorrhagic Fever (Ebola virus disease EVD), Ectothrix, Ehrlichiosis (Sennetsu fever), Encephalitis, Endemic Relapsing fever, Endemic syphilis, Endophthalmitis, Endothrix, Enterobiasis (Pinworm infection), Enterotoxin-B Poisoning (Staph Food Poisoning), Enterovirus Infection, Epidemic Keratoconjunctivitis, Epidemic Relapsing fever, Epidemic typhus, Epiglottitis, Erysipelis, Erysipeloid (Erysipelothricosis), Erythema chronicum migrans, Erythema infectiosum, Erythema marginatum, Erythema multiforme, Erythema nodosum, Erythema nodosum leprosum, Erythrasma, Espundia, Eumycotic mycetoma, European blastomycosis, Exanthem subitum (Sixth disease), Eyeworm, Far Eastern tick, Fascioliasis, Fievre boutonneuse (Tick typhus), Fifth Disease (erythema infectiosum), Filatow-Dukes' Disease (Scalded Skin Syndrome; Ritter's Disease), Fish tapeworm, Fitz-Hugh-Curtis syndrome-Perihepatitis, Flinders Island Spotted Fever, Flu (Influenza), Folliculitis, Four Corners Disease, Four Corners Disease (Human Pulmonary Syndrome (HPS)), Frambesia, Francis disease, Furunculosis, Gas gangrene, Gastroenteritis, Genital Herpes, Genital Warts, German measles, Gerstmann-Straussler-Scheinker (GSS), Giardiasis, Gilchrist's disease, Gingivitis, Gingivostomatitis, Glanders, Glandular fever (infectious mononucleosis), Gnathostomiasis, Gonococcal Infection (Gonorrhea), Gonorrhea, Granuloma inguinale (Donovanosis), Guinea Worm, Haemophilus Influenza disease, Hamburger disease, Hansen's disease—leprosy, Hantaan disease, Hantaan-Korean hemorrhagic fever, Hantavirus Pulmonary Syndrome, Hantavirus Pulmonary Syndrome (HPS), Hard chancre, Hard measles, Haverhill fever—Rat bite fever, Head and Body Lice, Heartland fever, Helicobacterosis, Hemolytic Uremic Syndrome (HUS), Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, Herpangina, Herpes—genital, Herpes labialis, Herpes—neonatal, Hidradenitis, Histoplasmosis, Histoplasmosis infection (Histoplasmosis), His-Werner disease, HIV infection, Hookworm infections, Hordeola, Hordeola (Stye), HTLV, HTLV-associated myelopathy (HAM), Human granulocytic ehrlichiosis, Human monocytic ehrlichiosis, Human Papillomavirus (HPV), Human Pulmonary Syndrome, Hydatid cyst, Hydrophobia, Impetigo, Including congenital (German Measles), Inclusion conjunctivitis, Inclusion conjunctivitis-Swimming Pool conjunctivitis—Pannus, Infantile diarrhea, Infectious Mononucleosis, Infectious myocarditis, Infectious pericarditis, Influenza, Isosporiasis, Israeli spotted fever, Japanese Encephalitis, Jock itch, Jorge Lobo disease—lobomycosis, Jungle yellow fever, Junin Argentinian hemorrhagic fever, Kala Azar, Kaposi's sarcoma, Keloidal blastomycosis, Keratoconjunctivitis, Kuru, Kyasanur forest disease, LaCrosse encephalitis, Lassa hemorrhagic fever, Legionellosis (Legionnaires Disease), Legionnaire's pneumonia, Lemierre's Syndrome (Postanginal septicemia), Lemming fever, Leprosy, Leptospirosis (Nanukayami fever; Weil's disease), Listeriosis (Listeria), Liver fluke infection, Lobo's mycosis, Lockjaw, Loiasis, Louping Ill, Ludwig's angina, Lung fluke infection, Lung fluke infection (Paragonimiasis), Lyme disease, Lymphogranuloma venereum infection (LGV), Machupo Bolivian hemorrhagic fever, Madura foot, Mal del pinto, Malaria, Malignant pustule, Malta fever, Marburg hemorrhagic fever, Masters disease, Maternal Sepsis (Puerperal fever), Measles, Mediterranean spotted fever, Melioidosis (Whitmore's disease), Meningitis, Meningococcal Disease, MERS, Milker's nodule, Molluscum contagiosum, Moniliasis, monkeypox, Mononucleosis, Mononucleosis-like syndrome, Montezuma's Revenge, Morbilli, MRSA (methicillin-resistant Staphylococcus aureus) infection, Mucormycosis-Zygomycosis, Multiple Organ Dysfunction Syndrome or MODS, Multiple-system atrophy (MSA), Mumps, Murine typhus, Murray Valley Encephalitis (MVE), Mycoburuli ulcers, Mycoburuli ulcers-Buruli ulcers, Mycotic vulvovaginitis, Myositis, Nanukayami fever, Necrotizing fasciitis, Necrotizing fasciitis-Type 1, Necrotizing fasciitis-Type 2, Negishi, New world spotted fever, Nocardiosis, Nongonococcal urethritis, Non-Polio (Non-Polio Enterovirus), Norovirus infection, North American blastomycosis, North Asian tick typhus, Norwalk virus infection, Norwegian itch, O'Hara disease, Omsk hemorrhagic fever, Onchoceriasis, Onychomycosis, Opisthorchiasis, Opthalmia neonatorium, Oral hairy leukoplakia, Orf, Oriental Sore, Oriental Spotted Fever, Ornithosis (Parrot fever; Psittacosis), Oroya fever, Otitis externa, Otitis media, Pannus, Paracoccidioidomycosis, Paragonimiasis, Paralytic Shellfish Poisoning (Paralytic Shellfish Poisoning), Paronychia (Whitlow), Parotitis, PCP pneumonia, Pediculosis, Peliosis hepatica, Pelvic Inflammatory Disease, Pertussis (also called Whooping cough), Phaeohyphomycosis, Pharyngoconjunctival fever, Piedra (White Piedra), Piedra (Black Piedra), Pigbel, Pink eye conjunctivitis, Pinta, Pinworm infection, Pitted Keratolysis, Pityriasis versicolor (Tinea versicolor), Plague; Bubonic, Pleurodynia, Pneumococcal Disease, Pneumocystis, Pneumonia, Pneumonic (Plague), Polio or Poliomyelitis, Polycystic hydatid, Pontiac fever, Pork tapeworm, Posada-Wernicke disease, Postanginal septicemia, Powassan, Progressive multifocal leukoencephalopathy, Progressive Rubella Panencephalitis, Prostatitis, Pseudomembranous colitis, Psittacosis, Puerperal fever, Pustular Rash diseases (Small pox), Pyelonephritis, Pylephlebitis, Q-Fever, Quinsy, Quintana fever (5-day fever), Rabbit fever, Rabies, Racoon roundworm infection, Rat bite fever, Rat tapeworm, Reiter Syndrome, Relapsing fever, Respiratory syncytial virus (RSV) infection, Rheumatic fever, Rhodotorulosis, Ricin Poisoning, Rickettsialpox, Rickettsiosis, Rift Valley Fever, Ringworm, Ritter's Disease, River Blindness, Rocky Mountain spotted fever, Rose Handler's disease (Sporotrichosis), Rose rash of infants, Roseola, Ross River fever, Rotavirus infection, Roundworm infections, Rubella, Rubeola, Russian spring, Salmonellosis gastroenteritis, San Joaquin Valley fever, Sao Paulo Encephalitis, Sao Paulo fever, SARS, Scabies Infestation (Scabies) (Norwegian itch), Scalded Skin Syndrome, Scarlet fever (Scarlatina), Schistosomiasis, Scombroid, Scrub typhus, Sennetsu fever, Sepsis (Septic shock), Severe Acute Respiratory Syndrome, Severe Acute Respiratory Syndrome (SARS), Shiga Toxigenic Escherichia coli (STEC/VTEC), Shigellosis gastroenteritis (Shigella), Shinbone fever, Shingles, Shipping fever, Siberian tick typhus, Sinusitis, Sixth disease, Slapped cheek disease, Sleeping sickness, Smallpox (Variola), Snail Fever, Soft chancre, Southern tick associated rash illness, Sparganosis, Spelunker's disease, Sporadic typhus, Sporotrichosis, Spotted fever, Spring, St. Louis encephalitis, Staphylococcal Food Poisoning, Staphylococcal Infection, Strep. throat, Streptococcal Disease, Streptococcal Toxic-Shock Syndrome, Strongyloiciasis, Stye, Subacute Sclerosing Panencephalitis, Subacute Sclerosing Panencephalitis (SSPE), Sudden Acute Respiratory Syndrome, Sudden Rash, Swimmer's ear, Swimmer's Itch, Swimming Pool conjunctivitis, Sylvatic yellow fever, Syphilis, Systemic Inflammatory Response Syndrome (SIRS), Tabes dorsalis (tertiary syphilis), Taeniasis, Taiga encephalitis, Tanner's disease, Tapeworm infections, Temporal lobe encephalitis, Temporal lobe encephalitis, tetani (Lock Jaw), Tetanus Infection, Threadworm infections, Thrush, Tick, Tick typhus, Tinea barbae, Tinea capitis, Tinea corporis, Tinea cruris, Tinea manuum, Tinea nigra, Tinea pedis, Tinea unguium, Tinea versicolor, Torulopsis, Torulopsis, Toxic Shock Syndrome, Toxoplasmosis, transmissible spongioform (CJD), Traveler's diarrhea, Trench fever 5, Trichinellosis, Trichom*oniasis, Trichomycosis axillaris, Trichuriasis, Tropical Spastic Paraparesis (TSP), Trypanosomiasis, Tuberculosis (TB), Tuberculosis, Tularemia, Typhoid Fever, Typhus fever, Ulcus molle, Undulant fever, Urban yellow fever, Urethritis, Vaginitis, Vaginosis, Vancomycin Intermediate (VISA), Vancomycin Resistant (VRSA), Varicella, Venezuelan Equine encephalitis, Verruga peruana, Vibrio cholerae (Cholera), Vibriosis (Vibrio), Vincent's disease or Trench mouth, Viral conjunctivitis, Viral Meningitis, Viral meningoencephalitis, Viral rash, Visceral Larval Migrans, Vomito negro, Vulvovaginitis, Warts, Waterhouse, Weil's disease, West Nile Fever, Western equine encephalitis, Whipple's disease, Whipworm infection, White Piedra, Whitlow, Whitmore's disease, Winter diarrhea, Wolhynia fever, Wool sorters' disease, Yaws, Yellow Fever, Yersinosis, Yersinosis (Yersinia), Zahorsky's disease, Zika virus disease, Zoster, Zygomycosis, John Cunningham Virus (JCV), Human immunodeficiency virus (HIV), Influenza virus, Hepatitis B, Hepatitis C, Hepatitis D, Respiratory syncytial virus (RSV), Herpes simplex virus 1 and 2, Human Cytomegalovirus, Epstein-Barr virus, Varicella zoster virus, Coronaviruses, Poxviruses, Enterovirus 71, Rubella virus, Human papilloma virus, Streptococcus pneumoniae, Streptococcus viridans, Staphylococcus aureus (S. aureus), Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-intermediate Staphylococcus aureus (VISA), Vancomycin-resistant Staphylococcus aureus (VRSA), Staphylococcus epidermidis (S. epidermidis), Clostridium Tetani, Bordetella pertussis, Bordetella paratussis, Mycobacterium, Francisella tularensis, Toxoplasma gondii, Candida (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei and C. lusitaniae) and/or any other infectious diseases, disorders or syndromes.

Various toxins may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of toxins include Ricin, Bacillus anthracis, Shiga toxin and Shiga-like toxin, Botulinum toxins.

Various tropical diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of tropical diseases include Chikungunya fever, Dengue fever, Chagas disease, Rabies, Malaria, Ebola virus, Marburg virus, West Nile Virus, Yellow Fever, Japanese encephalitis virus, St. Louis encephalitis virus.

Various foodborne illnesses and gastroenteritis may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of foodborne illnesses and gastroenteritis include Rotavirus, Norwalk virus (Norovirus), Campylobacter jejuni, Clostridium difficile, Entamoeba histolytica, Helicobacter pylori, Enterotoxin B of Staphylococcus aureus, Hepatitis A virus (HAV), Hepatitis E, Listeria monocytogenes, Salmonella, Clostridium perfringens, and Salmonella.

Various infectious agents may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. Non-limited examples of infectious agents include adenoviruses, Anaplasma phagocytophilum, Ascaris lumbricoides, Bacillus anthracis, Bacillus cereus, Bacteroides sp, Barmah Forest virus, Bartonella bacilliformis, Bartonella henselae, Bartonella quintana, beta-toxin of Clostridium perfringens, Bordetella pertussis, Bordetella parapertussis, Borrelia burgdorferi, Borrelia miyamotoi, Borrelia recurrentis, Borrelia sp., Botulinum toxin, Brucella sp., Burkholderia pseudomallei, California encephalitis virus, Campylobacter, Candida albicans, chikungunya virus, Chlamydia psittaci, Chlamydia trachomatis, Clonorchis sinensis, Clostridium difficile bacteria, Clostridium tetani, Colorado tick fever virus, Corynebacterium diphtherias, Corynebacterium minutissimum, Coxiella burnetii, coxsackie A, coxsackie B, Crimean-Congo hemorrhagic fever virus, cytomegalovirus, dengue virus, Eastern Equine encephalitis virus, Ebola viruses, echovirus, Ehrlichia chaffeensis, Ehrlichia equi, Ehrlichia sp., Entamoeba histolytica, Enterobacter sp., Enterococcus faecalis, Enterovirus 71, Epstein-Barr virus (EBV), Erysipelothrix rhusiopathiae, Escherichia coli, Flavivirus, Fusobacterium necrophorum, Gardnerella vagin*lis, Group B streptococcus, Haemophilus aegyptius, Haemophilus ducreyi, Haemophilus influenzae, hantavirus, Helicobacter pylori, Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, herpes simplex virus 1 and 2, human herpes virus 6, human herpes Virus 8, human immunodeficiency virus 1 and 2, human T-cell leukemia viruses I and II, influenza viruses (A, B, C), Jamestown Canyon virus, Japanese encephalitis antigenic, Japanese encephalitis virus, John Cunninham virus, juninvirus, Kaposi's Sarcoma-associated Herpes Virus (KSHV), Klebsiella granulomatis, Klebsiella sp Kyasanur Forest Disease virus, La Crosse virus, Lassavirus, Legionella pneumophila, Leptospira interrogans, Listeria monocytogenes, lymphocytic choriomeningitis virus, lyssavirus, Machupovirus, Marburg virus, measles virus, MERS coronavirus (MERS-CoV), Micrococcus sedentarius, Mobiluncus sp., Molluscipoxvirus, Moraxella catarrhalis, Morbilli-Rubeola virus, Mumps virus, Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium ulcerans, Mycoplasma genitalium, Mycoplasma sp, Nairovirus, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia, Norwalk virus, norovirus, Omsk hemorrhagic fever virus, papilloma virus, parainfluenza viruses 1-3, parapoxvirus, parvovirus B19, Peptostreptococcus sp., Plasmodium sp., polioviruses types I, II, and III, Proteus sp., Pseudomonas aeruginosa, Pseudomonas pseudomallei, Pseudomonas sp., rabies virus, respiratory syncytial virus, ricin toxin, Rickettsia australis, Rickettsia conori, Rickettsia honei, Rickettsia prow azekii, Ross River Virus, rotavirus, rubellavirus, Saint Louis encephalitis, Salmonella typhi, Sarcoptes scabiei, SARS-associated coronavirus (SARS-CoV), Serratia sp., Shiga toxin and Shiga-like toxin, Shigella sp., Sin Nombre Virus, Snowshoe hare virus, Staphylococcus aureus, Staphylococcus epidermidis, Streptobacillus moniliformis, Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus group A-H, Streptococcus pneumoniae, Streptococcus pyogenes, Treponema pallidum subsp. Pallidum, Treponema pallidum var. carateum, Treponema pallidum var. endemicum, Tropheryma whippelii, Ureaplasma urealyticum, Varicella-Zoster virus, variola virus, Vibrio cholerae, West Nile virus, yellow fever virus, Yersinia enterocolitica, Yersinia pestis, and Zika virus.

Various rare diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “rare disease” refers to any disease that affects a small percentage of the population. As a non-limiting example, the rare disease may be Acrocephalosyndactylia, Acrodermatitis, Addison Disease, Adie Syndrome, Alagille Syndrome, Amylose, Amyotrophic Lateral Sclerosis, Angelman Syndrome, Angiolymphoid Hyperplasia with Eosinophilia, Arnold-Chiari Malformation, Arthritis, Juvenile Rheumatoid, Asperger Syndrome, Bardet-Biedl Syndrome, Barrett Esophagus, Beckwith-Wiedemann Syndrome, Behcet Syndrome, Bloom Syndrome, Bowen's Disease, Brachial Plexus Neuropathies, Brown-Sequard Syndrome, Budd-Chiari Syndrome, Burkitt Lymphoma, Carcinoma 256, Walker, Caroli Disease, Charcot-Marie-Tooth Disease, Chediak-Higashi Syndrome, Chiari-Frommel Syndrome, Chondrodysplasia Punctata, Colonic Pseudo-Obstruction, Colorectal Neoplasms, Hereditary Nonpolyposis, Craniofacial Dysostosis, Creutzfeldt-Jakob Syndrome, Crohn Disease, Cushing Syndrome, Cystic Fibrosis, Dandy-Walker Syndrome, De Lange Syndrome, Dementia, Vascular, Dermatitis Herpetiformis, DiGeorge Syndrome, Diffuse Cerebral Sclerosis of Schilder, Duane Retraction Syndrome, Dupuytren Contracture, Ebstein Anomaly, Eisenmenger Complex, Ellis-Van Creveld Syndrome, Encephalitis, Enchondromatosis, Epidermal Necrolysis, Toxic, Facial Hemiatrophy, Factor XII Deficiency, Fanconi Anemia, Felty's Syndrome, Fibrous Dysplasia, Polyostotic, Fox-Fordyce Disease, Friedreich Ataxia, Fusobacterium, Gardner Syndrome, Gaucher Disease, Gerstmann Syndrome, Giant Lymph Node Hyperplasia, Glycogen Storage Disease Type I, Glycogen Storage Disease Type II, Glycogen Storage Disease Type IV, Glycogen Storage Disease Type V, Glycogen Storage Disease Type VII, Goldenhar Syndrome, Guillain-Barre Syndrome, Hallermann's Syndrome, Hamartoma Syndrome, Multiple, Hartnup Disease, Hepatolenticular Degeneration, Hepatolenticular Degeneration, Hereditary Sensory and Motor Neuropathy, Hirschsprung Disease, Histiocytic Necrotizing Lymphadenitis, Histiocytosis, Langerhans-Cell, Hodgkin Disease, Homer Syndrome, Huntington Disease, Hyperaldosteronism, Hyperhidrosis, Hyperostosis, Diffuse Idiopathic Skeletal, Hypopituitarism, Inappropriate ADH Syndrome, Intestinal Polyps, Isaacs Syndrome, Kartagener Syndrome, Kearns-Sayre Syndrome, Klippel-Feil Syndrome, Klippel-Trenaunay-Weber Syndrome, Kluver-Bucy Syndrome, Korsakoff Syndrome, Lafora Disease, Lambert-Eaton Myasthenic Syndrome, Landau-Kleffner Syndrome, Langer-Giedion Syndrome, Leigh Disease, Lesch-Nyhan Syndrome, Leukodystrophy, Globoid Cell, Li-Fraumeni Syndrome, Long QT Syndrome, Machado-Joseph Disease, Mallory-Weiss Syndrome, Marek Disease, Marfan Syndrome, Meckel Diverticulum, Meige Syndrome, Melkersson-Rosenthal Syndrome, Meniere Disease, Mikulicz's Disease, Miller Fisher Syndrome, Mobius Syndrome, Moyamoya Disease, Mucocutaneous Lymph Node Syndrome, Mucopolysaccharidosis I, Mucopolysaccharidosis II, Mucopolysaccharidosis III, Mucopolysaccharidosis IV, Mucopolysaccharidosis VI, Multiple Endocrine Neoplasia Type 1, Munchausen Syndrome by Proxy, Muscular Atrophy, Spinal, Narcolepsy, Neuroaxonal Dystrophies, Neuromyelitis Optica, Neuronal Ceroid-Lipofuscinoses, Niemann-Pick Diseases, Noonan Syndrome, Optic Atrophies, Hereditary, Osteitis Deformans, Osteochondritis, Osteochondrodysplasias, Osteolysis, Essential, Paget Disease Extramammary, Paget's Disease, Mammary, Panniculitis, Nodular Nonsuppurative, Papillon-Lefevre Disease, Paralysis, Pelizaeus-Merzbacher Disease, Pemphigus, Benign Familial, Penile Induration, Pericarditis, Constrictive, Peroxisomal Disorders, Peutz-Jeghers Syndrome, Pick Disease of the Brain, Pierre Robin Syndrome, Pigmentation Disorders, Pityriasis Lichenoides, Polycystic Ovary Syndrome, Polyendocrinopathies, Autoimmune, Prader-Willi Syndrome, Pupil Disorders, Rett Syndrome, Reye Syndrome, Rubinstein-Taybi Syndrome, Sandhoff Disease, Sarcoma, Ewing's, Schnitzler Syndrome, Sjogren's Syndrome, Sjogren-Larsson Syndrome, Smith-Lemli-Opitz Syndrome, Spinal Muscular Atrophies of Childhood, Sturge-Weber Syndrome, Sweating, Gustatory, Takayasu Arteritis, Tangier Disease, Tay-Sachs Disease, Thromboangiitis Obliterans, Thyroiditis, Autoimmune, Tietze's Syndrome, Togaviridae Infections, Tolosa-Hunt Syndrome, Tourette Syndrome, Uveomeningoencephalitic Syndrome, Waardenburg's Syndrome, Wegener Granulomatosis, Weil Disease, Werner Syndrome, Williams Syndrome, Wilms Tumor, Wolff-Parkinson-White Syndrome, Wolfram Syndrome, Wolman Disease, Zellweger Syndrome, Zollinger-Ellison Syndrome, and von Willebrand Diseases.

Various autoimmune diseases and autoimmune-related diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As used herein, the term “autoimmune disease” refers to a disease in which the body produces antibodies that attack its own tissues. As a non-limiting example, the autoimmune disease may be Acute Disseminated Encephalomyelitis (ADEM), Acute necrotizing hemorrhagic leukoencephalitis, Addison's disease, Agammaglobulinemia, Alopecia areata, Amyloidosis, Ankylosing spondylitis, Anti-GBM/Anti-TBM nephritis, Antiphospholipid syndrome (APS), Autoimmune angioedema, Autoimmune aplastic anemia, Autoimmune dysautonomia, Autoimmune hepatitis, Autoimmune hyperlipidemia, Autoimmune immunodeficiency, Autoimmune inner ear disease (AIED), Autoimmune myocarditis, Autoimmune oophoritis, Autoimmune pancreatitis, Autoimmune retinopathy, Autoimmune thrombocytopenic purpura (ATP), Autoimmune thyroid disease, Autoimmune urticaria, Axonal & neuronal neuropathies, Balo disease, Behcet's disease, Bullous pemphigoid, Cardiomyopathy, Castleman disease, Celiac disease, Chagas disease, Chronic fatigue syndrome, Chronic inflammatory demyelinating polyneuropathy (CIDP), Chronic recurrent multifocal ostomyelitis (CRMO), Churg-Strauss syndrome, Cicatricial pemphigoid/benign mucosal pemphigoid, Crohn's disease, Cogans syndrome, Cold agglutinin disease, Congenital heart block, Coxsackie myocarditis, CREST disease, Essential mixed cryoglobulinemia, Demyelinating neuropathies, Dermatitis herpetiformis, Dermatomyositis, Devic's disease (neuromyelitis optica), Discoid lupus, Dressler's syndrome, Endometriosis, Eosinophilic esophagitis, Eosinophilic fasciitis, Erythema nodosum, Experimental allergic encephalomyelitis, Evans syndrome, Fibromyalgia**, Fibrosing alveolitis, Giant cell arteritis (temporal arteritis), Giant cell myocarditis, Glomerulonephritis, Goodpasture's syndrome, Granulomatosis with Polyangiitis (GPA) (formerly called Wegener's Granulomatosis), Graves' disease, Guillain-Barre syndrome, Hashimoto's encephalitis, Hashimoto's thyroiditis, Hemolytic anemia, Henoch-Schonlein purpura, Herpes gestationis, Hypogammaglobulinemia, Idiopathic thrombocytopenic purpura (ITP), IgA nephropathy, IgG4-related sclerosing disease, Immunoregulatory lipoproteins, Inclusion body myositis, Interstitial cystitis, Juvenile arthritis, Juvenile diabetes (Type 1 diabetes), Juvenile myositis, Kawasaki syndrome, Lambert-Eaton syndrome, Leukocytoclastic vasculitis, Lichen planus, Lichen sclerosis, Ligneous conjunctivitis, Linear IgA disease (LAD), Lupus (SLE), Lyme disease, chronic, Meniere's disease, Microscopic polyangiitis, Mixed connective tissue disease (MCTD), Mooren's ulcer, Mucha-Habermann disease, Multiple sclerosis, Myasthenia gravis, Myositis, Narcolepsy, Neuromyelitis optica (Devic's), Neutropenia, Ocular cicatricial pemphigoid, Optic neuritis, Palindromic rheumatism, PANDAS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus), Paraneoplastic cerebellar degeneration, Paroxysmal nocturnal hemoglobinuria (PNH), Parry Romberg syndrome, Parsonnage-Turner syndrome, Pars planitis (peripheral uveitis), Pemphigus, Peripheral neuropathy, Perivenous encephalomyelitis, Pernicious anemia, POEMS syndrome, Polyarteritis nodosa, Type I, II, & III autoimmune polyglandular syndromes, Polymyalgia rheumatica, Polymyositis, Postmyocardial infarction syndrome, Postpericardiotomy syndrome, Progesterone dermatitis, Primary biliary cirrhosis, Primary sclerosing cholangitis, Psoriasis, Psoriatic arthritis, Idiopathic pulmonary fibrosis, Pyoderma gangrenosum, Pure red cell aplasia, Raynauds phenomenon, Reactive Arthritis, Reflex sympathetic dystrophy, Reiter's syndrome, Relapsing polychondritis, Restless legs syndrome, Retroperitoneal fibrosis, Rheumatic fever, Rheumatoid arthritis, Sarcoidosis, Schmidt syndrome, Scleritis, Scleroderma, Sjogren's syndrome, Sperm & testicular autoimmunity, Stiff person syndrome, Subacute bacterial endocarditis (SBE), Susac's syndrome, Sympathetic ophthalmia, Takayasu's arteritis, Temporal arteritis/Giant cell arteritis, Thrombocytopenic purpura (TTP), Tolosa-Hunt syndrome, Transverse myelitis, Ulcerative colitis, Undifferentiated connective tissue disease (UCTD), Uveitis, Vasculitis, Vesiculobullous dermatosis, Vitiligo, and Wegener's granulomatosis (now termed Granulomatosis with Polyangiitis (GPA).

Various kidney diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the kidney disease Abderhalden-Kaufmann-Lignac syndrome (Nephropathic Cystinosis), Abdominal Compartment Syndrome, Acute Kidney Failure/Acute Kidney Injury, Acute Lobar Nephronia, Acute Phosphate Nephropathy, Acute Tubular Necrosis, Adenine Phosphoribosyltransferase Deficiency, Adenovirus Nephritis, Alport Syndrome, Amyloidosis, ANCA Vasculitis Related to Endocarditis and Other Infections, Angiomyolipoma, Analgesic Nephropathy, Anorexia Nervosa and Kidney Disease, Angiotensin Antibodies and Focal Segmental Glomerulosclerosis, Antiphospholipid Syndrome, Anti-TNF-α Therapy-related Glomerulonephritis, APOL1 Mutations, Apparent Mineralocorticoid Excess Syndrome, Aristolochic Acid Nephropathy, Chinese Herbal Nephropathy, Balkan Endemic Nephropathy, Bartter Syndrome, Beeturia, β-Thalassemia Renal Disease, Bile Cast Nephropathy, BK Polyoma Virus Nephropathy in the Native Kidney, Bladder Rupture, Bladder Sphincter Dyssynergia, Bladder Tamponade, Border-Crossers' Nephropathy, Bourbon Virus and Acute Kidney Injury, Burnt Sugarcane Harvesting and Acute Renal Dysfunction, Byetta and Renal Failure, C1q Nephropathy, Cannabinoid Hyperemesis Acute Renal Failure, Cardiorenal syndrome, Carfilzomib-Indiced Renal Injury, CFHR5 nephropathy, Charcot-Marie-Tooth Disease with Glomerulopathy, Cherry Concentrate and Acute Kidney Injury, Cholesterol Emboli, Churg-Strauss syndrome, Chyluria, Colistin Nephrotoxicity, Collagenofibrotic Glomerulopathy, Collapsing Glomerulopathy, Collapsing Glomerulopathy Related to CMV, Congenital Nephrotic Syndrome, Conorenal syndrome (Mainzer-Saldino Syndrome or Saldino-Mainzer Disease), Contrast Nephropathy, Copper Sulfate Intoxication, Cortical Necrosis, Crizotinib-related Acute Kidney Injury, Cryoglobuinemia, Crystalglobulin-Induced Nephropathy, Crystal-Induced Acute Kidney injury, Cystic Kidney Disease, Acquired, Cystinuria, Dasatinib-Induced Nephrotic-Range Proteinuria, Dense Deposit Disease (MPGN Type 2), Dent Disease (X-linked Recessive Nephrolithiasis), Dialysis Disequilibrium Syndrome, Diabetes and Diabetic Kidney Disease, Diabetes Insipidus, Dietary Supplements and Renal Failure, Drugs of Abuse and Kidney Disease, Duplicated Ureter, EAST syndrome, Ebola and the Kidney, Ectopic Kidney, Ectopic Ureter, Edema, Swelling, Erdheim-Chester Disease, Fabry's Disease, Familial Hypocalciuric Hypercalcemia, Fanconi Syndrome, Fraser syndrome, Fibronectin Glomerulopathy, Fibrillary Glomerulonephritis and Immunotactoid Glomerulopathy, Fraley syndrome, Focal Segmental Glomerulosclerosis, Focal Sclerosis, Focal Glomerulosclerosis, Galloway Mowat syndrome, Giant Cell (Temporal) Arteritis with Kidney Involvement, Gestational Hypertension, Gitelman Syndrome, Glomerular Diseases, Glomerular Tubular Reflux, Glycosuria, Goodpasture Syndrome, Hair Dye Ingestion and Acute Kidney Injury, Hantavirus Infection Podocytopathy, Hematuria (Blood in Urine), Hemolytic Uremic Syndrome (HUS), Atypical Hemolytic Uremic Syndrome (aHUS), Hemophagocytic Syndrome, Hemorrhagic Cystitis, Hemorrhagic Fever with Renal Syndrome (HFRS, Hantavirus Renal Disease, Korean Hemorrhagic Fever, Epidemic Hemorrhagic Fever, Nephropathis Epidemica), Hemosiderosis related to Paroxysmal Nocturnal Hemoglobinuria and Hemolytic Anemia, Hepatic Glomerulopathy, Hepatic Veno-Occlusive Disease, Sinusoidal Obstruction Syndrome, Hepatitis C-Associated Renal Disease, Hepatorenal Syndrome, Herbal Supplements and Kidney Disease, High Blood Pressure and Kidney Disease, HIV-Associated Nephropathy (HIVAN), Horseshoe Kidney (Renal Fusion), Hunner's Ulcer, Hyperaldosteronism, Hypercalcemia, Hyperkalemia, Hypermagnesemia, Hypernatremia, Hyperoxaluria, Hyperphosphatemia, Hypocalcemia, Hypokalemia, Hypokalemia-induced renal dysfunction, Hypokalemic Periodic Paralysis, Hypomagnesemia, Hyponatremia, Hypophosphatemia, IgA Nephropathy, IgG4 Nephropathy, Interstitial Cystitis, Painful Bladder Syndrome (Questionnaire), Interstitial Nephritis, Ivemark's syndrome, Ketamine-Associated Bladder Dysfunction, Kidney Stones, Nephrolithiasis, Kombucha Tea Toxicity, Lead Nephropathy and Lead-Related Nephrotoxicity, Leptospirosis Renal Disease, Light Chain Deposition Disease, Monoclonal Immunoglobulin Deposition Disease, Liddle Syndrome, Lightwood-Albright Syndrome, Lipoprotein Glomerulopathy, Lithium Nephrotoxicity, LMX1B Mutations Cause Hereditary FSGS, Loin Pain Hematuria, Lupus, Systemic Lupus Erythematosis, Lupus Kidney Disease, Lupus Nephritis, Lupus Nephritis with Antineutrophil Cytoplasmic Antibody Seropositivity, Lyme Disease-Associated Glomerulonephritis, Malarial Nephropathy, Malignancy-Associated Renal Disease, Malignant Hypertension, Malakoplakia, Meatal Stenosis, Medullary Cystic Kidney Disease, Medullary Sponge Kidney, Megaureter, Melamine Toxicity and the Kidney, Membranoproliferative Glomerulonephritis, Membranous Nephropathy, MesoAmerican Nephropathy, Metabolic Acidosis, Metabolic Alkalosis, Methotrexate-related Renal Failure, Microscopic Polyangiitis, Milk-alkalai syndrome, Minimal Change Disease, MDMA (Molly; Ecstacy; 3,4-Methylenedioxymethamphetamine) and Kidney Failure, Multicystic dysplastic kidney, Multiple Myeloma, Myeloproliferative Neoplasms and Glomerulopathy, Nail-patella Syndrome, Nephrocalcinosis, Nephrogenic Systemic Fibrosis, Nephroptosis (Floating Kidney, Renal Ptosis), Nephrotic Syndrome, Neurogenic Bladder, Nodular Glomerulosclerosis, Non-Gonococcal Urethritis, Nutcracker syndrome, Orofaciodigital Syndrome, Orotic Aciduria, Orthostatic Hypotension, Orthostatic Proteinuria, Osmotic Diuresis, Ovarian Hyperstimulation Syndrome, Page Kidney, Papillary Necrosis, Papillorenal Syndrome (Renal-Coloboma Syndrome, Isolated Renal Hypoplasia), Parvovirus B19 and the Kidney, The Peritoneal-Renal Syndrome, Posterior Urethral Valve, Post-infectious Glomerulonephritis, Post-streptococcal Glomerulonephritis, Polyarteritis Nodosa, Polycystic Kidney Disease, Posterior Urethral Valves, Preeclampsia, Propofol infusion syndrome, Proliferative Glomerulonephritis with Monoclonal IgG Deposits (Nasr Disease), Propolis (Honeybee Resin) Related Renal Failure, Proteinuria (Protein in Urine), Pseudohyperaldosteronism, Pseudohypobicarbonatemia, Pseudohypoparathyroidism, Pulmonary-Renal Syndrome, Pyelonephritis (Kidney Infection), Pyonephrosis, Radiation Nephropathy, Ranolazine and the Kidney, Refeeding syndrome, Reflux Nephropathy, Rapidly Progressive Glomerulonephritis, Renal Abscess, Perinephric Abscess, Renal Agenesis, Renal Arcuate Vein Microthrombi-Associated Acute Kidney Injury, Renal Artery Aneurysm, Renal Artery Stenosis, Renal Cell Cancer, Renal Cyst, Renal Hypouricemia with Exercise-induced Acute Renal Failure, Renal Infarction, Renal Osteodystrophy, Renal Tubular Acidosis, Renin Secreting Tumors (Juxtaglomerular Cell Tumor), Reset Osmostat, Retrocaval Ureter, Retroperitoneal Fibrosis, Rhabdomyolysis, Rhabdomyolysis related to Bariatric Surgery, Rheumatoid Arthritis-Associated Renal Disease, Sarcoidosis Renal Disease, Salt Wasting, Renal and Cerebral, Schistosomiasis and Glomerular Disease, Schimke immuno-osseous dysplasia, Scleroderma Renal Crisis, Serpentine Fibula-Polycystic Kidney Syndrome, Exner Syndrome, Sickle Cell Nephropathy, Silica Exposure and Chronic Kidney Disease, Sri Lankan Farmers' Kidney Disease, Sjögren's Syndrome and Renal Disease, Synthetic Cannabinoid Use and Acute Kidney Injury, Kidney Disease Following Hematopoietic Cell Transplantation, Kidney Disease Related to Stem Cell Transplantation, Thin Basem*nt Membrane Disease, Benign Familial Hematuria, Trigonitis, Tuberculosis, Genitourinary, Tuberous Sclerosis, Tubular Dysgenesis, Immune Complex Tubulointerstitial Nephritis Due to Autoantibodies to the Proximal Tubule Brush Border, Tumor Lysis Syndrome, Uremia, Uremic Optic Neuropathy, Ureteritis Cystica, Ureterocele, Urethral Caruncle, Urethral Stricture, Urinary Incontinence, Urinary Tract Infection, Urinary Tract Obstruction, Vesicointestinal Fistula, Vesicoureteral Reflux, Volatile Anesthetics and Acute Kidney Injury, Von Hippel-Lindau Disease, Waldenstrom's Macroglobulinemic Glomerulonephritis, Warfarin-Related Nephropathy, Wasp Stings and Acute Kidney Injury, Wegener's Granulomatosis, Granulomatosis with Polyangiitis, West Nile Virus and Chronic Kidney Disease, and Wunderlich syndrome.

Various cardiovascular diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the cardiovascular disease may be Ischemic heart disease also known as coronary artery disease, Cerebrovascular disease (Stroke), Peripheral vascular disease, Heart failure, Rheumatic heart disease, and Congenital heart disease.

Various antibody deficiencies may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the antibody deficiencies may be X-Linked Agammaglobulinemia (XLA), Autosomal Recessive Agammaglobulinemia (ARA), Common Variable Immune Deficiency (CVID), IgG (IgG1, IgG2, IgG3 and IgG4) Subclass Deficiency, Selective IgA Deficiency, Specific Antibody Deficiency (SAD), Transient Hypogammaglobulinemia of Infancy, Antibody Deficiency with Normal or Elevated Immunoglobulins, Selective IgM Deficiency, Immunodeficiency with Thymoma (Good's Syndrome), Transcobalamin II Deficiency, Warts, Hypogammaglobulinemia, Infection, Myelokathexis (WHIM) Syndrome, Drug-Induced Antibody Deficiency, Kappa Chain Deficiency, Heavy Chain Deficiencies, Post-Meiotic Segregation (PMS2) Disorder, and Unspecified Hypogammaglobulinemia.

Various ocular diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the ocular disease may be thyroid eye disease (TED), Graves' disease (GD) and orbitopathy, Retina Degeneration, Cataract, optic atrophy, macular degeneration, Leber congenital amaurosis, retinal degeneration, cone-rod dystrophy, Usher syndrome, leopard syndrome, photophobia, and photoaversion.

Various neurological diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the neurological disease may be Absence of the Septum Pellucidum, Acid Lipase Disease, Acid Maltase Deficiency, Acquired Epileptiform Aphasia, Acute Disseminated Encephalomyelitis, Attention Deficit-Hyperactivity Disorder (ADHD), Adie's Pupil, Adie's Syndrome, Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Agnosia, Aicardi Syndrome, Aicardi-Goutieres Syndrome Disorder, AIDS—Neurological Complications, Alexander Disease, Alpers' Disease, Alternating Hemiplegia, Alzheimer's Disease, Amyotrophic Lateral Sclerosis (ALS), Anencephaly, Aneurysm, Angelman Syndrome, Angiomatosis, Anoxia, Antiphospholipid Syndrome, Aphasia, Apraxia, Arachnoid Cysts, Arachnoiditis, Arnold-Chiari Malformation, Arteriovenous Malformation, Asperger Syndrome, Ataxia, Ataxia Telangiectasia, Ataxias and Cerebellar or Spinocerebellar Degeneration, Atrial Fibrillation and Stroke, Attention Deficit-Hyperactivity Disorder, Autism Spectrum Disorder, Autonomic Dysfunction, Back Pain, Barth Syndrome, Batten Disease, Becker's Myotonia, Behcet's Disease, Bell's Palsy, Benign Essential Blepharospasm, Benign Focal Amyotrophy, Benign Intracranial Hypertension, Bernhardt-Roth Syndrome, Binswanger's Disease, Blepharospasm, Bloch-Sulzberger Syndrome, Brachial Plexus Birth Injuries, Brachial Plexus Injuries, Bradbury-Eggleston Syndrome, Brain and Spinal Tumors, Brain Aneurysm, Brain Injury, Brown-Sequard Syndrome, Bulbospinal Muscular Atrophy, Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), Canavan Disease, Carpal Tunnel Syndrome, Causalgia, Cavernomas, Cavernous Angioma, Cavernous Malformation, Central Cervical Cord Syndrome, Central Cord Syndrome, Central Pain Syndrome, Central Pontine Myelinolysis, Cephalic Disorders, Ceramidase Deficiency, Cerebellar Degeneration, Cerebellar Hypoplasia, Cerebral Aneurysms, Cerebral Arteriosclerosis, Cerebral Atrophy, Cerebral Beriberi, Cerebral Cavernous Malformation, Cerebral Gigantism, Cerebral Hypoxia, Cerebral Palsy, Cerebro-Oculo-Facio-Skeletal Syndrome (COFS), Charcot-Marie-Tooth Disease, Chiari Malformation, Cholesterol Ester Storage Disease, Chorea, Choreoacanthocytosis, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Chronic Orthostatic Intolerance, Chronic Pain, co*ckayne Syndrome Type II, Coffin Lowry Syndrome, Colpocephaly, Coma, Complex Regional Pain Syndrome, Congenital Facial Diplegia, Congenital Myasthenia, Congenital Myopathy, Congenital Vascular Cavernous Malformations, Corticobasal Degeneration, Cranial Arteritis, Craniosynostosis, Cree encephalitis, Creutzfeldt-Jakob Disease, Cumulative Trauma Disorders, Cushing's Syndrome, Cytomegalic Inclusion Body Disease, Cytomegalovirus Infection, Dancing Eyes-Dancing Feet Syndrome, Dandy-Walker Syndrome, Dawson Disease, De Morsier's Syndrome, Dejerine-Klumpke Palsy, Dementia, Dementia-Multi-Infarct, Dementia-Semantic, Dementia-Subcortical, Dementia With Lewy Bodies, Dentate Cerebellar Ataxia, Dentatorubral Atrophy, Dermatomyositis, Developmental Dyspraxia, Devic's Syndrome, Diabetic Neuropathy, Diffuse Sclerosis, Dravet Syndrome, Dysautonomia, Dysgraphia, Dyslexia, Dysphagia, Dyspraxia, Dyssynergia Cerebellaris Myoclonica, Dyssynergia Cerebellaris Progressiva, Dystonias, Early Infantile Epileptic Encephalopathy, Empty Sella Syndrome, Encephalitis, Encephalitis Lethargica, Encephaloceles, Encephalopathy, Encephalopathy (familial infantile), Encephalotrigeminal Angiomatosis, Epilepsy, Epileptic Hemiplegia, Erb's Palsy, Erb-duch*enne and Dej erine-Klumpke Palsies, Essential Tremor, Extrapontine Myelinolysis, Fabry Disease, Fahr's Syndrome, Fainting, Familial Dysautonomia, Familial Hemangioma, Familial Idiopathic Basal Ganglia Calcification, Familial Periodic Paralyses, Familial Spastic Paralysis, Farber's Disease, Febrile Seizures, Fibromuscular Dysplasia, Fisher Syndrome, Floppy Infant Syndrome, Foot Drop, Friedreich's Ataxia, Frontotemporal Dementia, Gaucher Disease, Generalized Gangliosidoses, Gerstmann's Syndrome, Gerstmann-Straussler-Scheinker Disease, Giant Axonal Neuropathy, Giant Cell Arteritis, Giant Cell Inclusion Disease, Globoid Cell Leukodystrophy, Glossopharyngeal Neuralgia, Glycogen Storage Disease, Guillain-Barré Syndrome, Hallervorden-Spatz Disease, Head Injury, Headache, Hemicrania Continua, Hemifacial Spasm, Hemiplegia Alterans, Hereditary Neuropathies, Hereditary Spastic Paraplegia, Heredopathia Atactica Polyneuritiformis, Herpes Zoster, Herpes Zoster Oticus, Hirayama Syndrome, Holmes-Adie syndrome, Holoprosencephaly, HTLV-1 Associated Myelopathy, Hughes Syndrome, Huntington's Disease, Hydranencephaly, Hydrocephalus, Hydrocephalus-Normal Pressure, Hydromyelia, Hypercortisolism, Hypersomnia, Hypertonia, Hypotonia, Hypoxia, Immune-Mediated Encephalomyelitis, Inclusion Body Myositis, Incontinentia Pigmenti, Infantile Hypotonia, Infantile Neuroaxonal Dystrophy, Infantile Phytanic Acid Storage Disease, Infantile Refsum Disease, Infantile Spasms, Inflammatory Myopathies, Iniencephaly, Intestinal Lipodystrophy, Intracranial Cysts, Intracranial Hypertension, Isaacs' Syndrome, Joubert Syndrome, Kearns-Sayre Syndrome, Kennedy's Disease, Kinsbourne syndrome, Kleine-Levin Syndrome, Klippel-Feil Syndrome, Klippel-Trenaunay Syndrome (KTS), Klüver-Bucy Syndrome, Korsakoffs Amnesic Syndrome, Krabbe Disease, Kugelberg-Welander Disease, Kuru, Lambert-Eaton Myasthenic Syndrome, Landau-Kleffner Syndrome, Lateral Femoral Cutaneous Nerve Entrapment, Lateral Medullary Syndrome, Learning Disabilities, Leigh's Disease, Lennox-Gastaut Syndrome, Lesch-Nyhan Syndrome, Leukodystrophy, Levine-Critchley Syndrome, Lewy Body Dementia, Lipid Storage Diseases, Lipoid Proteinosis, Lissencephaly, Locked-In Syndrome, Lou Gehrig's Disease, Lupus-Neurological Sequelae, Lyme Disease—Neurological Complications, Machado-Joseph Disease, Macrocephaly, Megalocephaly, Melkersson-Rosenthal Syndrome, Meningitis, Meningitis and Encephalitis, Menkes Disease, Meralgia Paresthetica, Metachromatic Leukodystrophy, Microcephaly, Migraine, Miller Fisher Syndrome, Mini Stroke, Mitochondrial Myopathy, Moebius Syndrome, Monomelic Amyotrophy, Motor Neuron Diseases, Moyamoya Disease, Mucolipidoses, Mucopolysaccharidosis, Multi-Infarct Dementia, Multifocal Motor Neuropathy, Multiple Sclerosis, Multiple System Atrophy, Multiple System Atrophy with Orthostatic Hypotension, Muscular Dystrophy, Myasthenia-Congenital, Myasthenia Gravis, Myelinoclastic Diffuse Sclerosis, Myoclonic Encephalopathy of Infants, Myoclonus, Myopathy, Myopathy-Congenital, Myopathy-Thyrotoxic, Myotonia, Myotonia Congenita, Narcolepsy, Neuroacanthocytosis, Neurodegeneration with Brain Iron Accumulation, Neurofibromatosis, Neuroleptic Malignant Syndrome, Neurological Complications of AIDS, Neurological Complications of Lyme Disease, Neurological Consequences of Cytomegalovirus Infection, Neurological Manifestations of Pompe Disease, Neurological Sequelae Of Lupus, Neuromyelitis Optica, Neuromyotonia, Neuronal Ceroid Lipofuscinosis, Neuronal Migration Disorders, Neuropathy-Hereditary, Neurosarcoidosis, Neurosyphilis, Neurotoxicity, Nevus Cavernosus, Niemann-Pick Disease, O'Sullivan-McLeod Syndrome, Occipital Neuralgia, Ohtahara Syndrome, Olivopontocerebellar Atrophy, Opsoclonus Myoclonus, Orthostatic Hypotension, Overuse Syndrome, Pain—Chronic, Pantothenate Kinase-Associated Neurodegeneration, Paraneoplastic Syndromes, Paresthesia, Parkinson's Disease, Paroxysmal Choreoathetosis, Paroxysmal Hemicrania, Parry-Romberg, Pelizaeus-Merzbacher Disease, Pena Shokeir II Syndrome, Perineural Cysts, Periodic Paralyses, Peripheral Neuropathy, Periventricular Leukomalacia, Persistent Vegetative State, Pervasive Developmental Disorders, Phytanic Acid Storage Disease, Pick's Disease, Pinched Nerve, Piriformis Syndrome, Pituitary Tumors, Polymyositis, Pompe Disease, Porencephaly, Post-Polio Syndrome, Postherpetic Neuralgia, Post infectious Encephalomyelitis, Postural Hypotension, Postural Orthostatic Tachycardia Syndrome, Postural Tachycardia Syndrome, Primary Dentatum Atrophy, Primary Lateral Sclerosis, Primary Progressive Aphasia, Prion Diseases, Progressive Hemifacial Atrophy, Progressive Locomotor Ataxia, Progressive Multifocal Leukoencephalopathy, Progressive Sclerosing Poliodystrophy, Progressive Supranuclear Palsy, Prosopagnosia, Pseudo-Torch syndrome, Pseudotoxoplasmosis syndrome, Pseudotumor Cerebri, Psychogenic Movement, Ramsay Hunt Syndrome I, Ramsay Hunt Syndrome II, Rasmussen's Encephalitis, Reflex Sympathetic Dystrophy Syndrome, Refsum Disease, Refsum Disease—Infantile, Repetitive Motion Disorders, Repetitive Stress Injuries, Restless Legs Syndrome, Retrovirus-Associated Myelopathy, Rett Syndrome, Reye's Syndrome, Rheumatic Encephalitis, Riley-Day Syndrome, Sacral Nerve Root Cysts, Saint Vitus Dance, Salivary Gland Disease, Sandhoff Disease, Schilder's Disease, Schizencephaly, Seitelberger Disease, Seizure Disorder, Semantic Dementia, Septo-Optic Dysplasia, Severe Myoclonic Epilepsy of Infancy (SMEI), Shaken Baby Syndrome, Shingles, Shy-Drager Syndrome, Sjögren's Syndrome, Sleep Apnea, Sleeping Sickness, Sotos Syndrome, Spasticity, Spina Bifida, Spinal Cord Infarction, Spinal Cord Injury, Spinal Cord Tumors, Spinal Muscular Atrophy, Spinocerebellar Atrophy, Spinocerebellar Degeneration, Steele-Richardson-Olszewski Syndrome, Stiff-Person Syndrome, Striatonigral Degeneration, Stroke, Sturge-Weber Syndrome, Subacute Sclerosing Panencephalitis, Subcortical Arteriosclerotic Encephalopathy, Short-lasting, Unilateral, Neuralgiform (SUNCT) Headache, Swallowing Disorders, Sydenham Chorea, Syncope, Syphilitic Spinal Sclerosis, Syringohydromyelia, Syringomyelia, Systemic Lupus Erythematosus, Tabes Dorsalis, Tardive Dyskinesia, Tarlov Cysts, Tay-Sachs Disease, Temporal Arteritis, Tethered Spinal Cord Syndrome, Thomsen's Myotonia, Thoracic Outlet Syndrome, Thyrotoxic Myopathy, Tic Douloureux, Todd's Paralysis, Tourette Syndrome, Transient Ischemic Attack, Transmissible Spongiform Encephalopathies, Transverse Myelitis, Traumatic Brain Injury, Tremor, Trigeminal Neuralgia, Tropical Spastic Paraparesis, Troyer Syndrome, Tuberous Sclerosis, Vascular Erectile Tumor, Vasculitis Syndromes of the Central and Peripheral Nervous Systems, Von Economo's Disease, Von Hippel-Lindau Disease (VHL), Von Recklinghausen's Disease, Wallenberg's Syndrome, Werdnig-Hoffman Disease, Wernicke-Korsakoff Syndrome, West Syndrome, Whiplash, Whipple's Disease, Williams Syndrome, Wilson Disease, Wolman's Disease, X-Linked Spinal and Bulbar Muscular Atrophy.

Various psychological disorders may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the psychological disorders may be Aboulia, Absence epilepsy, Acute stress Disorder, Adjustment Disorders, Adverse effects of medication NOS, Age related cognitive decline, Agoraphobia, Alcohol Addiction, Alzheimer's Disease, Amnesia (also known as Amnestic Disorder), Amphetamine Addiction, Anorexia Nervosa, Anterograde amnesia, Antisocial personality disorder (also known as Sociopathy), Anxiety Disorder (Also known as Generalized Anxiety Disorder), Anxiolytic related disorders, Asperger's Syndrome (now part of Autism Spectrum Disorder), Attention Deficit Disorder (Also known as ADD), Attention Deficit Hyperactivity Disorder (Also known as ADHD), Autism Spectrum Disorder (also known as Autism), Autophagia, Avoidant Personality Disorder, Barbiturate related disorders, Benzodiazepine related disorders, Bereavement, Bibliomania, Binge Eating Disorder, Bipolar disorder (also known as Manic Depression, includes Bipolar I and Bipolar II), Body Dysmorphic Disorder, Borderline intellectual functioning, Borderline Personality Disorder, Breathing-Related Sleep Disorder, Brief Psychotic Disorder, Bruxism, Bulimia Nervosa, Caffeine Addiction, Cannabis Addiction, Catatonic disorder, Catatonic schizophrenia, Childhood amnesia, Childhood Disintegrative Disorder (now part of Autism Spectrum Disorder), Childhood Onset Fluency Disorder (formerly known as Stuttering), Circadian Rhythm Disorders, Claustrophobia, Cocaine related disorders, Communication disorder, Conduct Disorder, Conversion Disorder, Cotard delusion, Cyclothymia (also known as Cyclothymic Disorder), Delerium, Delusional Disorder, dementia, Dependent Personality Disorder (also known as Asthenic Personality Disorder), Depersonalization disorder (now known as Depersonalization/Derealization Disorder), Depression (also known as Major Depressive Disorder), Depressive personality disorder, Derealization disorder (now known as Depersonalization/Derealization Disorder), Dermotillomania, Desynchronosis, Developmental coordination disorder, Diogenes Syndrome, Disorder of written expression, Dispareunia, Dissocial Personality Disorder, Dissociative Amnesia, Dissociative Fugue, Dissociative Identity Disorder (formerly known as Multiple Personality Disorder), Down syndrome, Dyslexia, Dyspareunia, Dysthymia (now known as Persistent Depressive Disorder), Eating disorder NOS, Ekbom's Syndrome (Delusional Parasitosis), Emotionally unstable personality disorder, Encopresis, Enuresis (bedwetting), Erotomania, Exhibitionistic Disorder, Expressive language disorder, Factitious Disorder, Female Sexual Disorders, Fetishistic Disorder, Folie á deux, Fregoli delusion, Frotteuristic Disorder, Fugue State, Ganser syndrome, Gambling Addiction, Gender Dysphoria (formerly known as Gender Identity Disorder), Generalized Anxiety Disorder, General adaptation syndrome, Grandiose delusions, Hallucinogen Addiction, Haltlose personality disorder, Histrionic Personality Disorder, Primary hypersomnia, Huntington's Disease, Hypoactive sexual desire disorder, Hypochondriasis, Hypomania, Hyperkinetic syndrome, Hypersomnia, Hysteria, Impulse control disorder, Impulse control disorder NOS, Inhalant Addiction, Insomnia, Intellectual Development Disorder, Intermittent Explosive Disorder, Joubert syndrome, Kleptomania, Korsakoff's syndrome, Lacunar amnesia, Language Disorder, Learning Disorders, Major Depression (also known as Major Depressive Disorder), major depressive disorder, Male Sexual Disorders, Malingering, Mathematics disorder, Medication-related disorder, Melancholia, Mental Retardation (now known as Intellectual Development Disorder), Misophonia, Morbid jealousy, Multiple Personality Disorder (now known as Dissociative Identity Disorder), Munchausen Syndrome, Munchausen by Proxy, Narcissistic Personality Disorder, Narcolepsy, Neglect of child, Neurocognitive Disorder (formerly known as Dementia), Neuroleptic-related disorder, Nightmare Disorder, Non Rapid Eye Movement, Obsessive-Compulsive Disorder, Obsessive-Compulsive Personality Disorder (also known as Anankastic Personality Disorder), Oneirophrenia, Onychophagia, Opioid Addiction, Oppositional Defiant Disorder, Orthorexia (ON), Pain disorder, Panic attacks, Panic Disorder, Paranoid Personality Disorder, Parkinson's Disease, Partner relational problem, Passive-aggressive personality disorder, Pathological gambling, Pedophilic Disorder, Perfectionism, Persecutory delusion, Persistent Depressive Disorder (also known as Dysthymia), Personality change due to a general medical condition, Personality disorder, Pervasive developmental disorder (PDD), Phencyclidine related disorder, Phobic disorder, Phonological disorder, Physical abuse, Pica, Polysubstance related disorder, Postpartum Depression, Post-traumatic embitterment disorder (PTED), Post-Traumatic Stress Disorder, Premature ejacul*tion, Premenstrual Dysphoric Disorder, Psychogenic amnesia, Psychological factor affecting medical condition, Psychoneurotic personality disorder, Psychotic disorder, not otherwise specified, Pyromania, Reactive Attachment Disorder, Reading disorder, Recurrent brief depression, Relational disorder, REM Sleep Behavior Disorder, Restless Leg Syndrome, Retrograde amnesia, Retts Disorder (now part of Autism Spectrum Disorder), Rumination syndrome, sad*stic personality disorder, Schizoaffective Disorder, Schizoid Personality Disorder, Schizophrenia, Schizophreniform disorder, Schizotypal Personality Disorder, Seasonal Affective Disorder, Sedative, Hypnotic, or Anxiolytic Addiction, Selective Mutism, Self-defeating personality disorder, Separation Anxiety Disorder, Sexual Disorders Female, Sexual Disorders Male, Sexual Addiction, Sexual Masochism Disorder, Sexual Sadism Disorder, Shared Psychotic Disorder, Sleep Arousal Disorders, Sleep Paralysis, Sleep Terror Disorder (now part of Nightmare Disorder, Social Anxiety Disorder, Somatization Disorder, Specific Phobias, Stendhal syndrome, Stereotypic movement disorder, Stimulant Addiction, Stuttering (now known as Childhood Onset Fluency Disorder), Substance related disorder, Tardive dyskinesia, Tobacco Addiction, Tourettes Syndrome, Transient tic disorder, Transient global amnesia, Transvestic Disorder, Trichotillomania, Undifferentiated Somatoform Disorder, Vaginismus, and Voyeuristic Disorder.

Various lung diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the lung diseases may be Asbestosis, Asthma, Bronchiectasis, Bronchitis, Chronic Cough, Chronic Obstructive Pulmonary Disease (COPD), Croup, Cystic Fibrosis, Hantavirus, Idiopathic Pulmonary Fibrosis, Pertussis, Pleurisy, Pneumonia, Pulmonary Embolism, Pulmonary Hypertension, Sarcoidosis, Sleep Apnea, Spirometry, Sudden Infant Death Syndrome (SIDS), Tuberculosis, Alagille Syndrome, Autoimmune Hepatitis, Biliary Atresia, Cirrhosis, ERCP (Endoscopic Retrograde Cholangiopancreatography), and Hemochromatosis. Nonalcoholic Steatohepatitis, Porphyria, Primary Biliary Cirrhosis, Primary Sclerosing Cholangitis.

Various bone diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the bone diseases may be osteoporosis, neurofibromatosis, osteogenesis imperfecta (OI), rickets, osteosarcoma, achondroplasia, fracture, osteomyelitis, Ewing tumor of bone, osteomalacia, hip dysplasia, Paget disease of bone, marble bone disease, osteochondroma, bone cancer, bone disease, osteochondrosis, osteoma, fibrous dysplasia, cleidocranial dysostosis, osteoclastoma, bone cyst, metabolic bone disease, melorheostosis, callus, Caffey syndrome, and mandibulofacial dysostosis.

Various blood diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present invention. As a non-limiting example, the blood diseases may be Anemia and CKD (for health care professionals), Aplastic Anemia and Myelodysplastic Syndromes, Deep Vein Thrombosis, Hemochromatosis, Hemophilia, Henoch-Schönlein Purpura, Idiopathic Thrombocytopenic Purpura, Iron-Deficiency Anemia, Pernicious Anemia, Pulmonary Embolism, Sickle Cell Anemia, Sickle Cell Trait and Other Hemoglobinopathies, Thalassemia, Thrombotic Thrombocytopenic Purpura, and Von Willebrand Disease.

In some embodiment, biocircuits of the invention may be used for the treatment of infectious diseases. Biocircuits of the invention may be introduced in cells suitable for adoptive cell transfer such as macrophages, dendritic cells, natural killer cells, and or T cells. Infectious diseases treated by the biocircuits of the invention may be diseases caused by viruses, bacteria, fungi, and/or parasites. IL15-IL15Ra payloads of the invention may be used to increase immune cell proliferation and/or persistence of the immune cells useful in treating infectious diseases.

6. Microbiome

Alterations in the composition of the microbiome may impact the action of anti-cancer therapies. A diverse community of symbiotic, commensal and pathogenic microorganisms exist in all environmentally exposed sites in the body and is herein referred to as the “Microbiome.” Environmentally exposed sites of the body that may be inhabited by a microbiome include the skin, nasopharynx, the oral cavity, respiratory tract, gastrointestinal tract, and the reproductive tract.

In some embodiments, microbiome engineered with the biocircuits of the present invention may be used to improve the efficacy of the anti-cancer immunotherapies. Sivan et al., found that mice with Bifidobacterium in their gut microbiome were more responsive to immune check point blockage e.g. anti PD-L1 immunotherapy in subcutaneous melanoma tumor model (Sivan A., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350:1084-9; the contents of which are incorporated herein by reference in their entirety). In one embodiment, protein, RNA and/or other biomolecules derived from the microbiome may be used as a payload to influence the efficacy of the anti-cancer immunotherapies. In other embodiments, the microorganisms may be delivered along with immunotherapeutic compositions of the present invention to improve the efficacy of immunotherapy.

7. Tools and Agents for Making Therapeutics

Provided in the present invention are tools and agents that may be used in generating immunotherapeutics for reducing a tumor volume or burden in a subject in need. A considerable number of variables are involved in producing a therapeutic agent, such as structure of the payload, type of cells, method of gene transfers, method and time of ex vivo expansion, pre-conditioning and the amount and type of tumor burden in the subject. Such parameters may be optimized using tools and agents described herein.

Cell Lines

The present disclosure provides a mammalian cell that has been genetically modified with the compositions of the invention. Suitable mammalian cells include primary cells and immortalized cell lines. Suitable mammalian cell lines include, but are not limited to Human embryonic kidney cell line 293, fibroblast cell line NIH 3T3, human colorectal carcinoma cell line HCT116, ovarian carcinoma cell line SKOV-3, immortalized T cell lines Jurkat cells, lymphoma cell line Raji cells, NALM-6 cells, K562 cells, HeLa cells, PC12 cells, HL-60 cells, NK cell lines (e.g. NKL. NK962, and YTS), and the like. In some instances, the cell is not an immortalized cell line, but instead a cell obtained from an individual and is herein referred to as a primary cell. For example, the cell is a T lymphocyte obtained from an individual. Other examples include, but are not limited to cytotoxic cells, stem cells, peripheral blood mononuclear cells or progenitor cells obtained from an individual.

Tracking SREs, Biocircuits and Cell Lines

In some embodiments, it may be desirable to track the compositions of the invention or the cells modified by the compositions of the invention. Tracking may be achieved by using payloads such as reporter moieties, which, as used herein, refers to any protein capable of creating a detectable signal, in response to an input. Examples include alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase, β-glucuronidase, peroxidase, β-lactamase, catalytic antibodies, bioluminescent proteins e.g. luciferase, and fluorescent proteins such as Green fluorescent protein (GFP).

Reporter moieties may be used to monitor the response of the DD upon addition of the ligand corresponding to the DD. In other instances, reporter moieties may be used to track cell survival, persistence, cell growth, and/or localization in vitro, in vivo, or ex vivo.

In some embodiments, the preferred reporter moiety may be luciferase proteins. In one embodiment, the reporter moiety is the Renilla luciferase, or a firefly luciferase.

Animal Models

The utility and efficacy of the compositions of the present invention may be tested in vivo animal models, preferably mouse models. Mouse models used to may be syngeneic mouse models wherein mouse cells are modified with compositions of the invention and tested in mice of the same genetic background. Examples include pMEL-1 and 4T1 mouse models.

Alternatively, xenograft models where human cells such as tumor cells and immune cells are introduced into immunodeficient mice may also be utilized in such studies. Immunodeficient mice used may be CByJ.Cg-Foxn1nu/J, B6; 129S7-Rag1tm1Mom/J, B6.129S7-Rag1tm1Mom/J, B6. CB17-Prkdcscid/SzJ, NOD.129S7 (B6)-Rag1tm1Mom/J, NOD.Cg-Rag1tm1Mom Prf1tm1Sd/Sz, NOD.CB17-Prkdcscid/SzJ, NOD.Cg-PrkdcscidB2mtm1Unc/J, NOD-scid IL2Rgnull, Nude (nu) mice, SCID mice, NOD mice, RAG1/RAG2 mice, NOD-Scid mice, IL2 rgnull mice, b2 mnull mice, NOD-scid IL2rγnull mice, NOD-scid-B2 mnull mice, and HLA transgenic mice.

Cellular Assays

In some embodiments, the effectiveness of the compositions of the inventions as immunotherapeutic agents may be evaluated using cellular assays. Levels of expression and/or identity of the compositions of the invention may be determined according to any methods known in the art for identifying proteins and/or quantitating proteins levels. In some embodiments, such methods may include Western Blotting, flow cytometry, and immunoprecipitation.

Provided herein are methods for functionally characterizing cells expressing SRE, biocircuits and compositions of the invention. In some embodiments, functional characterization is carried out in primary immune cells or immortalized immune cell lines and may be determined by expression of cell surface markers. Examples of cell surface markers for T cells include, but are not limited to, CD3, CD4, CD8, CD 14, CD20, CD11b, CD16, CD45 and HLA-DR, CD 69, CD28, CD44, IFNgamma. Examples of cell surface markers for antigen presenting cells include, but are not limited to, MHC class I, MHC Class II, CD40, CD45, B7-1, B7-2, IFN 7 receptor and IL2 receptor, ICAM-1 and/or Fcγ receptor. Examples of cell surface markers for dendritic cells include, but are not limited to, MHC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in some cases also having the absence of CD2, CD3, CD4, CD8, CD14, CD15, CD16, CD 19, CD20, CD56, and/or CD57. Examples of cell surface markers for NK cells include, but are not limited to, CCL3, CCL4, CCL5, Granulysin, Granzyme B, Granzyme K, IL10, IL22, IFNg, LAP, Perforin, and TNFa.

8. Gene Editing

The CRISPR-Cas9 system is a novel genome editing system which has been rapidly developed and implemented in a multitude of model organisms and cell types, and supplants other genome editing technologies, such as TALENs and ZFNs. CRISPRs are sequence motifs are present in bacterial and archaeal genomes, and are composed of short (about 24-48 nucleotide) direct repeats separated by similarly sized, unique spacers (Grissa et al. BMC Bioinformatics 8, 172 (2007). They are generally flanked by a set of CRISPR-associated (Cas) protein-coding genes that are required for CRISPR maintenance and function (Barrangou et al., Science 315, 1709 (2007), Brouns et al., Science 321, 960 (2008), Haft et al. PLoS Comput Biol 1, e60 (2005)). CRISPR-Cas systems provide adaptive immunity against invasive genetic elements (e.g., viruses, phages and plasmids) (Horvath and Barrangou, Science, 2010, 327: 167-170; Bhaya et al., Annu. Rev. Genet., 2011, 45: 273-297; and Brrangou R, RNA, 2013, 4: 267-278). Three different types of CRISPR-Cas systems have been classified in bacteria and the type II CRISPR-Cas system is most studied. In the bacterial Type II CRISPR-Cas system, small CRISPR RNAs (crRNAs) processed from the pre-repeat-spacer transcript (pre-crRNA) in the presence of a trans-activating RNA (tracrRNA)/Cas9 can form a duplex with the tracrRNA/Cas9 complex. The mature complex is recruited to a target double strand DNA sequence that is complementary to the spacer sequence in the tracrRNA: crRNA duplex to cleave the target DNA by Cas9 endonuclease (Garneau et al., Nature, 2010, 468: 67-71; Jinek et al., Science, 2012, 337: 816-821; Gasiunas et al., Proc. Natl Acad. Sci. USA, 109: E2579-2586; and Haurwitz et al., Science, 2010, 329: 1355-1358). Target recognition and cleavage by the crRNA: tracrRNA/Cas9 complex in the type II CRISPR-CAS system not only requires a sequence in the tracrRNA: crRNA duplex that is a complementary to the target sequence (also called “protospacer” sequence) but also requires a protospacer adjacent motif (PAM) sequence located 3′ end of the protospacer sequence of a target polynucleotide. The PAM motif can vary between different CRISPR-Cas systems.

CRISPR-Cas9 systems have been developed and modified for use in genetic editing and prove to be a high effective and specific technology for editing a nucleic acid sequence even in eukaryotic cells. Many researchers disclosed various modifications to the bacterial CRISPR-Cas systems and demonstrated that CRISPR-Cas systems can be used to manipulate a nucleic acid in a cell, such as in a mammalian cell and in a plant cell. Representative references include U.S. Pat. Nos. 8,993,233; 8,999,641; 8,945,839; 8,932,814; 8,906,616; 8,895,308; 8,889,418; 8,889,356; 8,871,445; 8,865,406; 8,771,945; and 8,697,359; U.S. patent publication NOs.: 20150031134; 20150203872; 20150218253; 20150176013; 20150191744; 20150071889; 20150067922; and 20150167000; each of which is incorporated herein by reference in their entirety.

However, controlling the effects and activity of the CRISPR-Cas system (e.g., guide RNA and nuclease) has been challenging and often can be problematic.

The biocircuits of the present invention and/or any of their components may be utilized in regulating or tuning the CRISPR/Cas9 system to optimize its utility.

In some embodiments, the payloads of the effector modules of the invention may include alternative isoforms or orthologs of the Cas9 enzyme.

The most commonly used Cas9 is derived from Streptococcus pyogenes and the RuvC domain can be inactivated by a D10A mutation and the HNH domain can be inactivated by an H840A mutation.

In addition to Cas9 derived from S. pyogenes, other RNA guided endonucleases (RGEN) may also be used for programmable genome editing. Cas9 sequences have been identified in more than 600 bacterial strains. Though Cas9 family shows high diversity of amino acid sequences and protein sizes, All Cas9 proteins share a common architecture with a central HNH nuclease domain and a split RuvC/RHase H domain. Examples of Cas9 orthologs from other bacterial strains including but not limited to, Cas proteins identified in Acaryochloris marina MBIC11017; Acetohalobium arabaticum DSM 5501; Acidithiobacillus caldus; Acidithiobacillus ferrooxidans ATCC 23270; Alicyclobacillus acidocaldarius LAA1; Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446; Allochromatium vinosum DSM 180; Ammonfex degensii KC4; Anabaena variabilis ATCC 29413; Arthrospira maxima CS-328; Arthrospira platensis str. Paraca; Arthrospira sp. PCC 8005; Bacillus pseudomycoides DSM 12442; Bacillus selenitireducens MLS10; Burkholderiales bacterium 1_1_47; Caldicelulosiruptor becscii DSM 6725; Candidatus Desulforudis audaxviator MP104C; Caldicellulosiruptor hydrothermalis 108; Clostridium phage c-st; Clostridium botulinum A3 str. Loch Maree; Clostridium botulinum Ba4 str. 657; Clostridium difficile QCD-63q42; Crocosphaera watsonii WH 8501; Cyanothece sp. ATCC 51142; Cyanothece sp. CCY0110; Cyanothece sp. PCC 7424; Cyanothece sp. PCC 7822; Exiguobacterium sibiricum 255-15; Finegoldia magna ATCC 29328; Ktedonobacter racemifer DSM 44963; Lactobacillus delbrueckii subsp. bulgaricus PB2003/044-T3-4; Lactobacillus salivarius ATCC 11741; Listeria innocua; Lyngbya sp. PCC 8106; Marinobacter sp. ELB17; Methanohalobium evestigatum Z-7303; Microcystis phage Ma-LMM01; Microcystis aeruginosa NIES-843; Microscilla marina ATCC 23134; Microcoleus chthonoplastes PCC 7420; Neisseria meningitidis; Nitrosococcus halophilus Nc4; Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111; Nodularia spumigena CCY9414; Nostoc sp. PCC 7120; Oscillatoria sp. PCC 6506; Pelotomaculum thermopropionicum SI; Petrotoga mobilis SJ95; Polaromonas naphthalenivorans CJ2; Polaromonas sp. JS666; Pseudoalteromonas haloplanktis TAC125; Streptomyces pristinaespiralis ATCC 25486; Streptomyces pristinaespiralis ATCC 25486; Streptococcus thermophilus; Streptomyces viridochromogenes DSM 40736; Streptosporangium roseum DSM 43021; Synechococcus sp. PCC 7335; and Thermosipho africanus TCF52B (Chylinski et al., RNA Biol., 2013; 10(5): 726-737).

In addition to Cas9 orthologs, other Cas9 variants such as fusion proteins of inactive dCas9 and effector domains with different functions may be served as a platform for genetic modulation. Any of the foregoing enzymes may be useful in the present invention.

9. Stem Cell Applications

The biocircuits of the present invention and/or any of their components may be utilized in the regulated reprogramming of cells, stem cell engraftment or other application where controlled or tunable expression of such reprogramming factors are useful.

The biocircuits of the present invention may be used in reprogramming cells including stem cells or induced stem cells. Induction of induced pluripotent stem cells (iPSC) was first achieved by Takahashi and Yamanaka (Cell, 2006. 126(4):663-76; herein incorporated by reference in its entirety) using viral vectors to express KLF4, c-MYC, OCT4 and SOX2 otherwise collectively known as KMOS.

Excisable lentiviral and transposon vectors, repeated application of transient plasmid, episomal and adenovirus vectors have also been used to try to derive iPSC (Chang, C. W., et al., Stem Cells, 2009. 27(5):1042-1049; Kaji, K., et al., Nature, 2009. 458(7239):771-5; Okita, K., et al., Science, 2008. 322(5903):949-53; Stadtfeld, M., et al., Science, 2008. 322(5903):945-9; Woltjen, K., et al., Nature, 2009; Yu, J., et al., Science, 2009:1172482; Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8):348-62; each of which is herein incorporated by reference in its entirety).

DNA-free methods to generate human iPSC has also been derived using serial protein transduction with recombinant proteins incorporating cell-penetrating peptide moieties (Kim, D., et al., Cell Stem Cell, 2009. 4(6): 472-476; Zhou, H., et al., Cell Stem Cell, 2009. 4(5):381-4; each of which is herein incorporated by reference in its entirety), and infectious transgene delivery using the Sendai virus (Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85 (8): p. 348-62; herein incorporated by reference in its entirety).

The effector modules of the present invention may include a payload comprising any of the genes including, but not limited to, OCT such as OCT4, SOX such as SOX1, SOX2, SOX3, SOX15 and SOX18, NANOG, KLF such as KLF1, KLF2, KLF4 and KLF5, MYC such as c-MYC and n-MYC, REM2, TERT and LIN28 and variants thereof in support of reprogramming cells. Sequences of such reprogramming factors are taught in for example International Application PCT/US2013/074560, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, the payload of the present invention may be cardiac lineage specification factors such as eomesodermin (EOMES), a T-box transcription factor; WNT signaling pathway components such as WNT3 and WNT 3A. EOMES is crucially required for the development of the heart. Cardiomyocyte programming by EOMES involves autocrine activation of the canonical WNT signaling pathway and vice versa. Under conditions that are conducive to promoting cardiac lineage, WNT signaling activates EOMES and EOMES in turn promotes WNT signaling creating a self-sustaining loop that promotes the cardiac lineage. An activation loop that is too weak or too strong promotes non-cardiac fates such as endodermal and other mesodermal fates respectively. The DDs of the present invention may be used to tune EOMES and WNT payload levels to generate an activation loop that initiate and/or sustain cardiac specification during gastrulation.

At various places in the present specification, features or functions of the compositions of the present disclosure are disclosed in groups or in ranges. It is specifically intended that the present disclosure include each and every individual sub-combination of the members of such groups and ranges. The following is a non-limiting list of term definitions.

Activity: As used herein, the term “activity” refers to the condition in which things are happening or being done. Compositions of the invention may have activity and this activity may involve one or more biological events. In some embodiments, biological events may include cell signaling events. In some embodiments, biological events may include cell signaling events associated protein interactions with one or more corresponding proteins, receptors, small molecules or any of the biocircuit components described herein.

Adoptive cell therapy (ACT): The terms “Adoptive cell therapy” or “Adoptive cell transfer”, as used herein, refer to a cell therapy involving in the transfer of cells into a patient, wherein cells may have originated from the patient, or from another individual, and are engineered (altered) before being transferred back into the patient. The therapeutic cells may be derived from the immune system, such as Immune effector cells: CD4+ T cell; CD8+ T cell, Natural Killer cell (NK cell); and B cells and tumor infiltrating lymphocytes (TILs) derived from the resected tumors. Most commonly transferred cells are autologous anti-tumor T cells after ex vivo expansion or manipulation. For example, autologous peripheral blood lymphocytes can be genetically engineered to recognize specific tumor antigens by expressing T-cell receptors (TCR) or chimeric antigen receptor (CAR).

Agent: As used herein, the term “agent” refers to a biological, pharmaceutical, or chemical compound. Non-limiting examples include simple or complex organic or inorganic molecule, a peptide, a protein, an oligonucleotide, an antibody, an antibody derivative, antibody fragment, a receptor, and soluble factor.

Agonist: the term “agonist” as used herein, refers to a compound that, in combination with a receptor, can produce a cellular response. An agonist may be a ligand that directly binds to the receptor. Alternatively, an agonist may combine with a receptor indirectly by, for example, (a) forming a complex with another molecule that directly binds to the receptor, or (b) otherwise resulting in the modification of another compound so that the other compound directly binds to the receptor. An agonist may be referred to as an agonist of a particular receptor or family of receptors, e.g., agonist of a co-stimulatory receptor.

Antagonist: the term “antagonist” as used herein refers to any agent that inhibits or reduces the biological activity of the target(s) it binds.

Antigen: the term “antigen” as used herein is defined as a molecule that provokes an immune response when it is introduced into a subject or produced by a subject such as tumor antigens which arise by the cancer development itself. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells such as cytotoxic T lymphocytes and T helper cells, or both. An antigen can be derived from organisms, subunits of proteins/antigens, killed or inactivated whole cells or lysates. In the context of the invention, the terms “antigens of interest” or “desired antigens” refers to those proteins and/or other biomolecules provided herein that are immunospecifically bound or interact with antibodies of the present invention and/or fragments, mutants, variants, and/or alterations thereof described herein. In some embodiments, antigens of interest may comprise any of the polypeptides or payloads or proteins described herein, or fragments or portions thereof.

Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).

Alkyl: The terms “alkyl”, “alkoxy”, “hydroxyalkyl”, “alkoxy alkyl”, and “alkoxy carbonyl”, as used herein, include both straight and branched chains containing one to twelve carbon atoms, and/or which may or may not be substituted.

Alkenyl: The terms “alkenyl” and “alkynyl” as used herein alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms.

Aryl: The term “aryl” as used herein alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refers to monocyclic, bicyclic and tricyclic carbocyclic ring systems having a total of five to fourteen ring members, wherein at least one ring is aromatic and wherein each ring in the system contains 3 to 8 ring members. The term “aryl” may be used interchangeably with the term “aryl ring.”

Aromatic: The term “aromatic” as used herein, refers to an unsaturated hydrocarbon ring structure with delocalized pi electrons. As used herein “aromatic” may refer to monocyclic, bicyclic or polycyclic aromatic compounds.

Aliphatic: The term “aliphatic” or “aliphatic group” as used herein, refers to a straight or branched C1-C8 hydrocarbon chain or a monocyclic C3-C8 hydrocarbon or bicyclic C8-C12 hydrocarbon which are fully saturated or that contains one or more units of unsaturation, that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” or “cycloalkyl”), and that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members.

Associated with: As used herein, the terms “associated with,” “conjugated,” “linked,” “attached,” and “tethered,” when used with respect to two or more moieties, mean that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serve as linking agents, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions. An “association” need not be strictly through direct covalent chemical bonding. It may also suggest ionic or hydrogen bonding or a hybridization based connectivity sufficiently stable such that the “associated” entities remain physically associated.

Autologous: the term “autologous” as used herein is meant to refer to any material derived from the same individual to which it is later to be re-introduced into the individual.

Barcode: the term “barcode” as used herein refers to polynucleotide or amino acid sequence that distinguishes one polynucleotide or amino acid from another.

Biocircuit system: As used herein, a “biocircuit” or “biocircuit system” is defined as a circuit within or useful in biologic systems comprising a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces at least one signal or outcome within, between, as an indicator of, or on a biologic system. Biologic systems are generally understood to be any cell, tissue, organ, organ system or organism, whether animal, plant, fungi, bacterial, or viral. It is also understood that biocircuits may be artificial circuits which employ the stimuli or effector modules taught by the present invention and effect signals or outcomes in acellular environments such as with diagnostic, reporter systems, devices, assays or kits. The artificial circuits may be associated with one or more electronic, magnetic, or radioactive components or parts. In the context of the present invention, a biocircuit includes a destabilizing domain (DD) biocircuit system.

Checkpoint factor: As used herein, a checkpoint factor is any moiety or molecule whose function acts at the junction of a process. For example, a checkpoint protein, ligand or receptor may function to stall or accelerate the cell cycle.

Co-stimulatory molecule: As used herein, in accordance with its meaning in immune T cell activation, refers to a group of immune cell surface receptor/ligands which engage between T cells and APCs and generate a stimulatory signal in T cells which combines with the stimulatory signal in T cells that results from T cell receptor (TCR) recognition of antigen/MHC complex (pMHC) on APCs

Cytokines: the term “cytokines”, as used herein, refers to a family of small soluble factors with pleiotropic functions that are produced by many cell types that can influence and regulate the function of the immune system.

Delivery: the term “delivery” as used herein refers to the act or manner of delivering a compound, substance, entity, moiety, cargo or payload. A “delivery agent” refers to any agent which facilitates, at least in part, the in vivo delivery of one or more substances (including, but not limited to compounds and/or compositions of the present invention) to a cell, subject or other biological system cells.

Destabilized: As used herein, the term “destable,” “destabilize,” “destabilizing region” or “destabilizing domain” means a region or molecule that is less stable than a starting, reference, wild-type or native form of the same region or molecule.

Engineered: As used herein, embodiments of the invention are “engineered” when they are designed to have a feature or property, whether structural or chemical, that varies from a starting point, wild type or native molecule.

Expression: As used herein, “expression” of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; (4) folding of a polypeptide or protein; and (5) post-translational modification of a polypeptide or protein.

Feature: As used herein, a “feature” refers to a characteristic, a property, or a distinctive element.

Formulation: As used herein, a “formulation” includes at least a compound and/or composition of the present invention and a delivery agent.

Fragment: A “fragment,” as used herein, refers to a portion. For example, fragments of proteins may comprise polypeptides obtained by digesting full-length protein. In some embodiments, a fragment of a protein includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250 or more amino acids. In some embodiments, fragments of an antibody include portions of an antibody.

Functional: As used herein, a “functional” biological molecule is a biological entity with a structure and in a form in which it exhibits a property and/or activity by which it is characterized.

Heterocycle: The term “heterocycle”, “heterocyclyl”, or “heterocyclic” as used herein refers to monocyclic, bicyclic or tricyclic ring systems having three to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members and is non-aromatic.

Hotspot: As used herein, a “hotspot” or a “mutational hotspot” refers to an amino acid position in a protein coding gene that is mutated (by substitutions) more frequently relative to elsewhere within the same gene.

Hydrophilic: As used herein, “hydrophilic” refers to a molecule that interacts with or has affinity for water.

Hydrophobic: As used herein, “hydrophobic” refers to a molecule that does not interact or have affinity for water.

Immune cells: the term “an immune cell”, as used herein, refers to any cell of the immune system that originates from a hematopoietic stem cell in the bone marrow, which gives rise to two major lineages, a myeloid progenitor cell (which give rise to myeloid cells such as monocytes, macrophages, dendritic cells, megakaryocytes and granulocytes) and a lymphoid progenitor cell (which give rise to lymphoid cells such as T cells, B cells and natural killer (NK) cells). Exemplary immune system cells include a CD4+ T cell, a CD8+ T cell, a CD4− CD8− double negative T cell, a T γδ cell, a Tαβ cell, a regulatory T cell, a natural killer cell, and a dendritic cell. Macrophages and dendritic cells may be referred to as “antigen presenting cells” or “APCs,” which are specialized cells that can activate T cells when a major histocompatibility complex (MHC) receptor on the surface of the APC complexed with a peptide interacts with a TCR on the surface of a T cell.

Immunotherapy: the term “immunotherapy” as used herein, refers to a type of treatment of a disease that uses immunological tools, such as monoclonal antibodies, receptor-immunoglobulin fusion proteins, vaccines and/or immune cells.

In vitro: As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).

In vivo: As used herein, the term “in vivo” refers to events that occur within an organism (e.g., animal, plant, or microbe or cell or tissue thereof).

Linker: As used herein, a linker refers to a moiety that connects two or more domains, moieties or entities. In one embodiment, a linker may comprise 10 or more atoms. In a further embodiment, a linker may comprise a group of atoms, e.g., 10-1,000 atoms, and can be comprised of the atoms or groups such as, but not limited to, carbon, amino, alkylamino, oxygen, sulfur, sulfoxide, sulfonyl, carbonyl, and imine. In some embodiments, a linker may comprise one or more nucleic acids comprising one or more nucleotides. In some embodiments, the linker may comprise an amino acid, peptide, polypeptide or protein. In some embodiments, a moiety bound by a linker may include, but is not limited to an atom, a chemical group, a nucleoside, a nucleotide, a nucleobase, a sugar, a nucleic acid, an amino acid, a peptide, a polypeptide, a protein, a protein complex, a payload (e.g., a therapeutic agent), or a marker (including, but not limited to a chemical, fluorescent, radioactive or bioluminescent marker). The linker can be used for any useful purpose, such as to form multimers or conjugates, as well as to administer a payload, as described herein. Examples of chemical groups that can be incorporated into the linker include, but are not limited to, alkyl, alkenyl, alkynyl, amido, amino, ether, thioether, ester, alkylene, heteroalkylene, aryl, or heterocyclyl, each of which can be optionally substituted, as described herein. Examples of linkers include, but are not limited to, unsaturated alkanes, polyethylene glycols (e.g., ethylene or propylene glycol monomeric units, e.g., diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, tetraethylene glycol, or tetraethylene glycol), and dextran polymers, Other examples include, but are not limited to, cleavable moieties within the linker, such as, for example, a disulfide bond (—S—S—) or an azo bond (—N═N—), which can be cleaved using a reducing agent or photolysis. Non-limiting examples of a selectively cleavable bonds include an amido bond which may be cleaved for example by the use of tris(2-carboxyethyl) phosphine (TCEP), or other reducing agents, and/or photolysis, as well as an ester bond which may be cleaved for example by acidic or basic hydrolysis.

Lipophilic: As used herein, the term “lipophilic” refers to an affinity for lipids or fats.

Metabolite: Metabolites are the intermediate products of metabolic reactions catalyzed by enzymes that naturally occur within cells. This term is usually used to describe small molecules, fragments of larger biomolecules or processed products.

Modified: As used herein, the term “modified” refers to a changed state or structure of a molecule or entity as compared with a parent or reference molecule or entity. Molecules may be modified in many ways including chemically, structurally, and functionally. In some embodiments, compounds and/or compositions of the present invention are modified by the introduction of non-natural amino acids.

Mutation: As used herein, the term “mutation” refers to a change and/or alteration. In some embodiments, mutations may be changes and/or alterations to proteins (including peptides and polypeptides) and/or nucleic acids (including polynucleic acids). In some embodiments, mutations comprise changes and/or alterations to a protein and/or nucleic acid sequence. Such changes and/or alterations may comprise the addition, substitution and or deletion of one or more amino acids (in the case of proteins and/or peptides) and/or nucleotides (in the case of nucleic acids and or polynucleic acids). In some embodiments, wherein mutations comprise the addition and/or substitution of amino acids and/or nucleotides, such additions and/or substitutions may comprise 1 or more amino acid and/or nucleotide residues and may include modified amino acids and/or nucleotides. The resulting construct, molecule or sequence of a mutation, change or alteration may be referred to herein as a mutant.

Neoantigen: the term “neoantigen”, as used herein, refers to a tumor antigen that is present in tumor cells but not normal cells and do not induce deletion of their cognate antigen specific T cells in thymus (i.e., central tolerance). These tumor neoantigens may provide a “foreign” signal, similar to pathogens, to induce an effective immune response needed for cancer immunotherapy. A neoantigen may be restricted to a specific tumor. A neoantigen be a peptide/protein with a missense mutation (missense neoantigen), or a new peptide with long, completely novel stretches of amino acids from novel open reading frames (neoORFs). The neoORFs can be generated in some tumors by out-of-frame insertions or deletions (due to defects in DNA mismatch repair causing microsatellite instability), gene-fusion, read-through mutations in stop codons, or translation of improperly spliced RNA (e.g., Saeterdal et al., Proc Natl Acad Sci USA, 2001, 98: 13255-13260).

Off-target: As used herein, “off target” refers to any unintended effect on any one or more target, gene, cellular transcript, cell, and/or tissue.

Operably linked: As used herein, the phrase “operably linked” refers to a functional connection between two or more molecules, constructs, transcripts, entities, moieties or the like.

Phenyl: As used herein, “phenyl” refers to a cyclic group of atoms with a formula C6H5.

Payload or payload of interest (POI): the terms “payload” and “payload of interest (POI)”, as used herein, are used interchangeable. A payload of interest (POI) refers to any protein or compound whose function is to be altered. In the context of the present invention, the POI is a component in the immune system, including both innate and adaptive immune systems. Payloads of interest may be a protein, a fusion construct encoding a fusion protein, or non-coding gene, or variant and fragment thereof. Payload of interest may, when amino acid based, may be referred to as a protein of interest.

Pharmaceutically acceptable excipients: the term “pharmaceutically acceptable excipient,” as used herein, refers to any ingredient other than active agents (e.g., as described herein) present in pharmaceutical compositions and having the properties of being substantially nontoxic and non-inflammatory in subjects. In some embodiments, pharmaceutically acceptable excipients are vehicles capable of suspending and/or dissolving active agents. Excipients may include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspending or dispersing agents, sweeteners, and waters of hydration. Exemplary excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, sucrose, talc, titanium dioxide, vitamin A, vitamin E, vitamin C, and xylitol.

Pharmaceutically acceptable salts: Pharmaceutically acceptable salts of the compounds described herein are forms of the disclosed compounds wherein the acid or base moiety is in its salt form (e.g., as generated by reacting a free base group with a suitable organic acid). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. Pharmaceutically acceptable salts include the conventional non-toxic salts, for example, from non-toxic inorganic or organic acids. In some embodiments, a pharmaceutically acceptable salt is prepared from a parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, Pharmaceutical Salts: Properties, Selection, and Use, P. H. Stahl and C. G. Wermuth (eds.), Wiley-VCH, 2008, and Berge et al., Journal of Pharmaceutical Science, 66, 1-19 (1977), each of which is incorporated herein by reference in its entirety. Pharmaceutically acceptable solvate: The term “pharmaceutically acceptable solvate,” as used herein, refers to a crystalline form of a compound wherein molecules of a suitable solvent are incorporated in the crystal lattice. For example, solvates may be prepared by crystallization, recrystallization, or precipitation from a solution that includes organic solvents, water, or a mixture thereof. Examples of suitable solvents are ethanol, water (for example, mono-, di-, and tri-hydrates), N-methylpyrrolidinone (NMP), dimethyl sulfoxide (DMSO), N, N′-dimethylformamide (DMF), N, N′-dimethylacetamide (DMAC), 1,3-dimethyl-2-imidazolidinone (DMEU), 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone (DMPU), acetonitrile (ACN), propylene glycol, ethyl acetate, benzyl alcohol, 2-pyrrolidone, benzyl benzoate, and the like. When water is the solvent, the solvate is referred to as a “hydrate.” In some embodiments, the solvent incorporated into a solvate is of a type or at a level that is physiologically tolerable to an organism to which the solvate is administered (e.g., in a unit dosage form of a pharmaceutical composition).

Piperazine: As used herein, “piperazine” refers to a six membered ring containing two nitrogen atoms at opposite positions in the ring.

Protein of interest: As used herein, the terms “proteins of interest” or “desired proteins” include those provided herein and fragments, mutants, variants, and alterations thereof.

Purine: As used herein, “purine” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is an imidazole ring and one of the heterocycles is a pyrimidine ring.

Pyrimidine: As used herein, “pyrimidine” refers to an aromatic heterocyclic structure similar to benzene, but wherein two of the carbon atoms are replaced by nitrogen atoms.

Pyridopyrimidine: As used herein, “Pyridopyrimidine” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is a purine ring and one of the heterocycles is a pyrimidine ring.

Quinazoline: As used herein, the term, “Quinazoline” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is a benzene ring and one of the heterocycles is a pyrimidine ring.

Stable: As used herein “stable” refers to a compound or entity that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and preferably capable of formulation into an efficacious therapeutic agent.

Stabilized: As used herein, the term “stabilize”, “stabilized,” “stabilized region” means to make or become stable. In some embodiments, stability is measured relative to an absolute value. In some embodiments, stability is measured relative to a secondary status or state or to a reference compound or entity.

Standard CAR: As used herein, the term “standard CAR” refers to the standard design of a chimeric antigen receptor. The components of a CAR fusion protein including the extracellular scFv fragment, transmembrane domain and one or more intracellular domains are linearly constructed as a single fusion protein.

Stimulus response element (SRE): the term “stimulus response element (SRE), as used herein, is a component of an effector module which is joined, attached, linked to or associated with one or more payloads of the effector module and in some instances, is responsible for the responsive nature of the effector module to one or more stimuli. As used herein, the “responsive” nature of an SRE to a stimulus may be characterized by a covalent or non-covalent interaction, a direct or indirect association or a structural or chemical reaction to the stimulus. Further, the response of any SRE to a stimulus may be a matter of degree or kind. The response may be a partial response. The response may be a reversible response. The response may ultimately lead to a regulated signal or output. Such output signal may be of a relative nature to the stimulus, e.g., producing a modulatory effect of between 1 and 100 or a factored increase or decrease such as 2-fold, 3-fold, 4-fold, 5-fold, 10-fold or more. One non-limiting example of an SRE is a destabilizing domain (DD).

Subject: As used herein, the term “subject” or “patient” refers to any organism to which a composition in accordance with the invention may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.

T cell: A T cell is an immune cell that produces T cell receptors (TCRs). T cells can be naïve (not exposed to antigen; increased expression of CD62L, CCR7, CD28, CD3, CD127, and CD45RA, and decreased expression of CD45RO as compared to TCM), memory T cells (TM) (antigen-experienced and long-lived), and effector cells (antigen-experienced, cytotoxic). TM can be further divided into subsets of central memory T cells (TCM, increased expression of CD62L, CCR7, CD28, CD127, CD45RO, and CD95, and decreased expression of CD54RA as compared to naïve T cell and effector memory T cells (TEM, decreased expression of CD62L, CCR7, CD28, CD45RA, and increased expression of CD127 as compared to naïve T cells or TCM). Effector T cells (TE) refers to antigen-experienced CD8+ cytotoxic T lymphocytes that have decreased expression of CD62L, CCR7, CD28, and are positive for granzyme and perforin as compared to TCM. Other exemplary T cells include regulatory T cells, such as CD4+CD25+(Foxp3+) regulatory T cells and Treg17 cells, as well as Tr1, Th3, CD8+CD28−, and Qa-1 restricted T cells.

T cell receptor: T cell receptor (TCR) refers to an immunoglobulin superfamily member having a variable antigen binding domain, a constant domain, a transmembrane region, and a short cytoplasmic tail, which is capable of specifically binding to an antigen peptide bound to a MHC receptor. A TCR can be found on the surface of a cell or in soluble form and generally is comprised of a heterodimer having α and β chains (also known as TCRα and TCRβ, respectively), or γ and δ chains (also known as TCRγ and TCRδ, respectively). The extracellular portion of TCR chains (e.g., α-chain, β-chain) contains two immunoglobulin domains, a variable domain (e.g., α-chain variable domain or Vα, β-chain variable domain or Vβ) at the N-terminus, and one constant domain (e.g., α-chain constant domain or Cα and β-chain constant domain or Cβ) adjacent to the cell membrane. Similar to immunoglobulin, the variable domains contain complementary determining regions (CDRs) separated by framework regions (FRs). A TCR is usually associated with the CD3 complex to form a TCR complex. As used herein, the term “TCR complex” refers to a complex formed by the association of CD3 with TCR. For example, a TCR complex can be composed of a CD3γ chain, a CD3δ chain, two CD3ε chains, a hom*odimer of CD3ζ chains, a TCRα chain, and a TCRβ chain. Alternatively, a TCR complex can be composed of a CD3γ chain, a CD3δ chain, two CD3ε chains, a hom*odimer of CD3ζ chains, a TCRγ chain, and a TCR chain. A “component of a TCR complex,” as used herein, refers to a TCR chain (i.e., TCRα, TCRβ, TCRγ or TCRδ), a CD3 chain (i.e., CD3γ, CD3δ, CD3ε or CD3ζ, or a complex formed by two or more TCR chains or CD3 chains (e.g., a complex of TCRα and TCRβ, a complex of TCRγ and TCRδ, a complex of CD3ε and CD3δ, a complex of CD3γ and CD3ε, or a sub-TCR complex of TCRα, TCRβ, CD3γ, CD3δ, and two CD3ε chains.

Therapeutic Agent: The term “therapeutic agent” refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect. Therapeutic agents of the present invention include any of the biocircuit components taught herein either alone or in combination with other therapeutic agents.

Therapeutically effective amount: As used herein, the term “therapeutically effective amount” means an amount of an agent to be delivered (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to an infection, disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the infection, disease, disorder, and/or condition. In some embodiments, a therapeutically effective amount is provided in a single dose. In some embodiments, a therapeutically effective amount is administered in a dosage regimen comprising a plurality of doses. Those skilled in the art will appreciate that in some embodiments, a unit dosage form may be considered to comprise a therapeutically effective amount of a particular agent or entity if it comprises an amount that is effective when administered as part of such a dosage regimen.

Triazine: As used herein, “triazine” is a class of nitrogen containing heterocycles with a structure similar to benzene, but wherein three carbon atoms are replaced by nitrogen atoms.

Treatment or treating: As used herein, the terms “treatment” or “treating” denote an approach for obtaining a beneficial or desired result including and preferably a beneficial or desired clinical result. Such beneficial or desired clinical results include, but are not limited to, one or more of the following: reducing the proliferation of (or destroying) cancerous cells or other diseased, reducing metastasis of cancerous cells found in cancers, shrinking the size of the tumor, decreasing symptoms resulting from the disease, increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, delaying the progression of the disease, and/or prolonging survival of individuals.

Tune: As used herein, the term “tune” means to adjust, balance or adapt one thing in response to a stimulus or toward a particular outcome. In one non-limiting example, the SREs and/or DDs of the present invention adjust, balance or adapt the function or structure of compositions to which they are appended, attached or associated with in response to particular stimuli and/or environments.

Variant: As used herein, the term “variant” refers to a first composition (e.g., a first DD or payload), that is related to a second composition (e.g., a second DD or payload, also termed a “parent” molecule). The variant molecule can be derived from, isolated from, based on or hom*ologous to the parent molecule. The term variant can be used to describe either polynucleotides or polypeptides.

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the invention described herein. The scope of the present invention is not intended to be limited to the above Description, but rather is as set forth in the appended claims.

In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process.

It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed.

Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.

In addition, it is to be understood that any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the invention (e.g., any antibiotic, therapeutic or active ingredient; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.

It is to be understood that the words which have been used are words of description rather than limitation, and that changes may be made within the purview of the appended claims without departing from the true scope and spirit of the invention in its broader aspects.

While the present invention has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the invention. The present invention is further illustrated by the following nonlimiting examples.

Study Design

To engineer constructs that display ligand dependent stability, a candidate ligand binding domain (LBD) is selected and a cell-based screen using yellow fluorescent protein (YFP) as a reporter for protein stability is designed to identify mutants of the candidate LBD possessing the desired characteristics of a destabilizing domain: low protein levels in the absence of a ligand of the LBD, (i.e., low basal stability), large dynamic range, robust and predictable dose-response behavior, and rapid kinetics of degradation (Banaszynski, et al., (2006) Cell; 126(5): 995-1004). The candidate LBD binds to a desired ligand but not endogenous signaling molecules.

The candidate LBD sequence (as a template) is first mutated using a combination of nucleotide analog mutagenesis and error-prone PCR, to generate libraries of mutants based on the template candidate domain sequence. The libraries generated are cloned in-frame at either the 5′- or 3′-ends of the YFP gene, and a retroviral expression system is used to stably transduce the libraries of YFP fusions into NIH3T3 fibroblasts.

The transduced NIH3T3 cells are subjected to three to four rounds of sorting using fluorescence-activated cell sorting (FACS) to screen the libraries of candidate DDs. Transduced NIH3T3 cells are cultured in the absence of the high affinity ligand of the ligand binding domain (LBD), and cells that exhibit low levels of YFP expression are selected through FACS.

Screening Strategy I

The selected cell population is cultured in the presence of the high affinity ligand of the ligand binding domain for a period of time (e.g., 24 hours), at which point cells are sorted again by FACS. Cells that exhibit high levels of YFP expression are selected through FACS and the selected cell population is split into two groups and treated again with the high affinity ligand of the ligand binding domain at different concentrations; one group is treated with the lower concentration of the ligand and the other is treated with a high concentration of the ligand, for a period of time (e.g., 24 hours), at which point cells are sorted again by FACS. Cells expressing mutants that are responsive to lower concentrations of the ligand are isolated.

The isolated cells responsive to the lower concentration of the ligand are treated with the ligand again and cells exhibiting low fluorescence levels are collected 4 hours following removal of the ligand from the media. This fourth sorting is designed to enrich cells that exhibit fast kinetics of degradation (Iwamoto et al., Chem Biol. 2010 Sep. 24; 17(9): 981-988).

Screening Strategy II

The selected cell population is subject to additional one or more sorts by FACS in the absence of high affinity ligand of LBD and cells that exhibit low levels of YFP expression are selected for further analysis. Cells are treated with high affinity ligand of the ligand binding domain, for a period of time (e.g. 24 hours), and sorted again by FACS. Cells expressing high levels of YFP are selected for through FACS. Cells with high expression of YFP are treated with ligand again and cells exhibiting low fluorescence levels are collected 4 hours following removal of the ligand from the media to enrich cells that exhibit fast kinetics of degradation. Any of the sorting steps may be repeated to identify DDs with ligand dependent stability.

The cells are recovered after sorting. The identified candidate cells are harvested and the genomic DNA is extracted. The candidate DDs are amplified by PCR and isolated. The candidate DDs are sequenced and compared to the LBD template to identify the mutations in candidate DDs.

To identify novel destabilizing domain mutations, mutagenic PCR was performed on the open reading frame of human PDE5 catalytic domain (SEQ ID NO. 3) using non-natural nucleotides. The mutant library was ligated in frame with an AcGFP reporter at C-terminus and cloned into pLVX-IRES-Puro vectors. The lentivirus library was then used to infect HEK 293T cells. Cells were selected with puromycin and the library was screened using screening strategies described in Example 1. DNA was extracted from the cell pool, cloned into vectors, and transformed into E. coli. Individual clones were sequenced and cloned in frame with a linker GGSGGGSGG (SEQ ID NO. 77) and AcGFP at C terminus into pLVX.IRES puro. The catalytic domain of wildtype hPDE5 was also cloned into pLVX.IRES. Puro and used as a control. HEK293 cells were transduced with individual clones and selected with puromycin.

HEK293 cells expressing OT-hPDE5N constructs were incubated with 10 μM Sildenafil or vehicle control, DMSO for 48 hours and the stability of hPDE5 mutants was evaluated at the protein level. Cell lysates obtained from hPDE5N construct expressing cells were immunoblotted using the AcGFP antibody (Clonetech, Mountain View, Calif.). Samples were also immunoblotted with the GAPDH antibody to ensure uniform protein loading. The immunoblot demonstrated that OT-hPDE5N-002, OT-hPDE5N-003, OT-hPDE5N-006, OT-hPDE5N-008, OT-hPDE5N-009, OT-hPDE5N-010 showed an increase in PDE5-GFP protein levels with Sildenafil treatment when compared to DMSO treatment suggesting a Sildenafil dependent stabilization of the construct. Further, the hPDE5-GFP levels with DMSO treatment in OT-hPDE5N-002, OT-hPDE5N-003, and OT-hPDE5N-006 was lower than in the wildtype hPDE5 construct, OT-hPDE5N-001, indicating that these constructs are destabilized in the absence of ligand.

The GFP expression in cells expressing hPDE5 constructs was measured by FACS. HEK293 cells expressing OT-hPDE5N-001 to OT-hPDE5N-010 were incubated with 10 μM Sildenafil or vehicle control, DMSO for 48 hours and the mean fluorescence intensity (MFI) was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation co-efficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs (OT-hPDE5N-002 to OT-hPDE5N-010) compared to the hPDE5 wildtype construct (OT-hPDE5N-001) in the absence of the ligand. Destabilizing mutation co-efficient less than 1 and stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 19.

TABLE 19
GFP expression in hPDE5 derived DDs
Destabilizing
MFIStabilizationmutation co-
ConstructsDMSOSildenafilratioefficient
OT-hPDE5N-00111064257892.33
OT-hPDE5N-0021649122857.450.15
OT-hPDE5N-003118473036.170.11
OT-hPDE5N-00479510651.340.07
OT-hPDE5N-0056924294914.260.63
OT-hPDE5N-00615421921112.460.14
OT-hPDE5N-007303870782.330.27
OT-hPDE5N-00811341318911.630.10
OT-hPDE5N-0097441558720.950.07
OT-hPDE5N-0105053217554.310.46

As shown in Table 19, all constructs demonstrated a stabilization ratio greater than one, indicating that all constructs show ligand (Sildenafil) dependent stabilization. The stabilization ratios of OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 was greater than 10 indicating strong ligand dependent stabilization. Constructs OT-hPDE5N-002, OT-hPDE5N-003, OT-hPDE5N-005, and OT-hPDE5N-010 showed stabilization ratio in the range of 2 to 10 indicating modest ligand dependent stabilization. The destabilizing mutation coefficient observed with all constructs was less than 1 indicating that all hPDE5 mutants are destabilized as compared to the wildtype hPDE5. Notably, constructs OT-hPDE5N-002, OT-hPDE5N-003, OT-hPDE5N-004, OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 demonstrated destabilizing mutation coefficients less than 0.2 indicating strong destabilizing in the absence of ligand. OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 were identified as mutants with desirable characteristics of a DD i.e., low basal expression in the absence of ligand and high expression in the presence of ligand.

HEK293 cells expressing OT-hPDE5N-006, OT-hPDE5N-008, or OT-hPDE5N-009 constructs were incubated with varying concentrations of Sildenafil ranging from 0.005 μM to 10 μM, or vehicle control (DMSO) for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 20.

TABLE 20
Sildenafil Dose titration
OT-hPDE5N-006OT-hPDE5N-008OT-hPDE5N-009
SildenafilStabilizationStabilizationStabilization
dose (μM)MFIratioMFIratioMFIratio
Untreated703643883506
0.000568480.9744221.0135131.00
0.001572391.0345571.0434730.99
0.004672181.0343971.0035391.01
0.013771271.0142740.9736831.05
0.04180971.1543951.0041711.19
0.123122481.7448751.1164631.84
0.37220183.1367531.54130763.73
1.11341714.86104952.39234686.69
3.33492207.00179604.09346159.87
10670849.53324807.404779313.63

As shown in Table 20, all three constructs showed an increase in stabilization ratio with increasing doses of Sildenafil indicating a ligand dose-dependent stabilization of hPDE5 mutants. The half maximal effective concentration or EC50 was approximately 104.

Sildenafil dependent stabilization of hPDE5 mutants was also measured over a period of time. HEK293 cells expressing OT-hPDE5N-006, OT-hPDE5N-008, and OT-hPDE5N-009 were treated with 10 μM of Sildenafil for 2, 4, 6, 16, 24, and 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 21.

TABLE 21
Time course of Sildenafil treatment
OT-hPDE5N-006OT-hPDE5N-008OT-hPDE5N-009
TimeStabilizationStabilizationStabilization
(h)MFIratioMFIratioMFIratio
Parental675667673
0792153044195
2120881.5472901.3763371.51
4140461.7786751.6481591.95
6167102.11109292.06102032.43
16390294.93190343.59262796.26
24515346.51272465.14365168.71
48708118.94347966.564740711.30

As shown in Table 21, all three constructs showed an increase in stabilization ratio with increasing duration of treatment with Sildenafil indicating a time-dependent increase in stabilization of hPDE5 mutants.

Vardenafil has an IC50 of 0.7 nM and is a more potent inhibitor of hPDE5 than Sildenafil which has an IC50 of 3.9 nM (Doggrell S, et al. (2007) Int J Impot. Res 19(3):281-95). To test if Vardenafil is capable of stabilizing hPDE5 DDs, HEK293 cells expressing OT-hPDE5-006, OT-hPDE5-008, and OT-hPDE5-009 were treated with Vardenafil at concentrations ranging from 0.0005 μM to 10 μM for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 22.

TABLE 22
Vardenafil Dose Titration
OT-hPDE5N-006OT-hPDE5N-008OT-hPDE5N-009
VardenafilStabilizationStabilizationStabilization
dose (μM)MFIratioMFIratioMFIratio
Parental988999980
01128779715841
0.0005117701.0478940.9959541.02
0.0015129651.1580991.0266011.13
0.0046187391.6688971.1299461.70
0.0137369403.27124401.56218943.75
0.041587555.21185272.32395806.78
0.123919948.15336144.226362210.89
0.3712514011.09610107.658648114.81
1.1114492712.849514911.9410593018.14
3.3317299015.3313430616.8512375721.19
1018806816.6616623620.8613916523.83

As shown in Table 22, all three constructs showed an increase in stabilization ratio with increasing doses of Vardenafil indicating a Vardenafil dose-dependent stabilization of hPDE5 DDs. The half maximal effective concentration or EC50 was approximately 0.1-0.3 μM which was less than the EC50 observed with sildenafil (˜1 μM) indicating that Vardenafil may stabilize hPDE5 DDs more potently than sildenafil.

The ability of Vardenafil to stabilize hPDE5 derived DDs was measured in cell lines stably transduced with hPDE5 DDs e.g. HEK293 cells, HCT-116 cells, and SKOV-3 cells. Cells were transduced with OT-hPDE5N-006, 008, and 009 constructs and incubated with 1 μM or 10 μM Vardenafil or with DMSO for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 23.

TABLE 23
Vardenafil Dose Titration
OT-hPDE5N-006OT-hPDE5N-008OT-hPDE5N-009
(hPDE5- F736A)(hPDE5- Y728L)(hPDE5- R732L)
StabilizationStabilizationStabilization
DoseMFIratioMFIratioMFIratio
DMSO960451913605
Vardenafil11060311.526881613.268148422.60
(1 μM)
Vardenafil14335114.9312315023.7210640329.52
(10 μM)

As shown in Table 23, all three constructs showed an increase in stabilization ratio with both doses of Vardenafil indicating a ligand dose-dependent stabilization of hPDE5 DDs. These data are consistent with the results observed with the dose response of Vardenafil observed in Table 22.

DDs may be positioned upstream or downstream of the payload within an SRE. hPDE5 mutants generated by site mutagenesis as discussed in example 2 are fused at the C-terminus of GFP to test if the hPDE5 mutants can destabilize proteins of interest when fused to the C-terminus of the protein of interest. A linker is placed between GFP and hPDE5 and cloned into pLVX.IRES. Puro. HEK 293T cells stably expressing GFP-hPDE5 (wildtype and mutant) constructs are incubated with 10 μM Sildenafil or 10 μM Vardenafil or DMSO (control) for 48 hours. Following the incubation, mean fluorescence intensity (MFI) is measured using FACS. All hPDE5 (mutant)-GFP constructs are expected to stabilize GFP in the presence of ligand while they are expected to destabilize GFP in the absence of ligand when fused to C terminus.

Known mutations in phosphodiesterases that affect protein stability are identified and utilized to identify novel hPDE derived DDs. Mutations previously identified include, but are not limited to, hPDE5 (I778T), or hPDE6C (H602L), hPDE6C (E790K), hPDE6C(R104W), hPDE6C (Y323N), and hPDE6C (P391L) or hPDE4D (S752A), hPDE4D (S754A), hPDE4D (S752A, S754A), and hPDE4D (E757A, E758A, D759A) (Zhu et al. (2010) Mol Cell Biol. 4379-4390; Alexandre et al. (2015). Endocr. Relat. Cancer 22(4):519-30; Cheguru P. et al. (2015) Mol Cell Neurosci; 64: 1-8; the contents of each of which are incorporated herein by reference in their entirety). Human PDE mutants are fused to a linker, and a reporter gene e.g. GFP. The reporter constructs are transfected into cells such as NIH 3T3 cells and 293T cells. Transfected cells are incubated with appropriate ligand e.g. Sildenafil and Vardenafil for hPDE5 or Apremilast and Roflumilast for hPDE4. Fluorescence signal is measured by FACS and mean fluorescence signal intensity is calculated.

Thermal shift assays can be used to measure the thermal denaturation temperature of a protein as an indicator of its stability in response to different conditions such as pH, ions, salts, additives, drugs, and/or mutations. Additionally, thermal shift assays can be used to understand the correlation between ligand binding, enzymatic activity and stabilization potencies. Human PDE5 mutants are mixed with a thermal assay dye, thermal assay buffer, and ligand (or DMSO control). Samples are also treated with varying concentrations of factors such as drugs, salts, ions, or other parameters. The samples are loaded into an instrument such as a real-time PCR instrument and the temperature ramp rates is set within a range of approximately 0.1-10 degrees Celsius per minute. The fluorescence in each condition is measured at regular intervals, over a temperature range spanning the typical protein unfolding temperatures of 25-95 degrees Celsius.

The data shown in the previous examples show that the catalytic domain of hPDE5 was a suitable template for the identification of destabilizing domains. Several truncation mutants of the full length hPDE5 were generated to identify regions beyond the catalytic within the catalytic domain that may serve as a template for identifying DDs. The truncation mutants tested included amino acids 535-860 of hPDE5 WT (E535-Q860), amino acids 535 to 836 of hPDE5 WT (E535-S836), amino acids 590 to 860 of hPDE5 WT (M590-Q860), amino acids 590 to 836 of hPDE5 WT (M590-S836), wherein the amino acids positions are with respect to SEQ ID NO. 1. The DD mutation R732L was incorporated into all truncation mutants and its destabilizing potential was compared to E535-Q860 wildtype by fusing the mutants to an SG linker and reporter, AcGFP. HCT-116 cells were stably transduced with the constructs described above and treated with 10 μM stabilizing ligands, Sildenafil, or Vardenafil or DMSO for 48 hours. As a control, parental untransduced cells and cells expressing OT-hPDE5N-001, or OT-hPDE5N-028 were also included in the analysis. The mean fluorescence intensity (MFI) of GFP was analyzed by FACS. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 24.

TABLE 24
Expression of hPDE5 truncation mutants
SildenafilVardenafilDestabilizing
MFIStabilizationStabilizationmutation
ConstructDMSOSildenafilVardenafilratioratiocoefficient
Parental2093373532001.781.53
OT-hPDE5N-0014297353736493441.251.15
OT-hPDE5N-0281503561878451701291.251.13
OT-hPDE5N-0196494266860673881.031.04
OT-hPDE5N-020924855636932166.0210.080.14
OT-hPDE5N-0214542460851881.011.140.07
OT-hPDE5N-0223395343435231.011.040.05
OT-hPDE5N-0232689268626601.000.990.04
OT-hPDE5N-0242809266327700.950.990.04

As shown in Table 24, OT-hPDE5N-020 construct consisting of E535-Q860 amino acids of hPDE5 with the R732L mutant displayed the strongest ligand dependent stabilization with both ligands with the highest stabilization ratio. The destabilizing mutation coefficient was also calculated for constructs 020-024 and this analysis showed that the constructs were all effective in destabilizing the payload. This suggests that the removal of residues from the catalytic domain does not appear to enhance the ligand dependent stabilization potential of hPDE5.

Protein expression analysis of the truncation mutants was performed in parallel via western blot. HCT 116 cells expressing OT-hPDE5N-019 to OT-hPDE5N-024 were treated with 10 μM Vardenafil for 24 hours and immunoblotted for AcGFP using anti AcGFP antibodies (catalog no. 63277, Clonetech, Mountain View, Calif.). GAPDH levels were also analyzed to ensure even protein loading. OT-hPDE5N-020 construct consisting of E535-Q860 i.e. amino acids 535 to 860 of hPDE5 WT (SEQ ID NO. 1) with the R732L mutant showed vardenafil dependent stabilization. This result is consistent with the FACS analysis. Stabilization was not observed with OT-hPDE5N-021, while constructs OT-hPDE5N-022, OT-hPDE5N-023, and OT-hPDE5N-024 showed no AcGFP expression, both in the presence and absence of vardenafil, indicating that the expression of the construct in these mutants is below the detection levels of the western blot method.

Single destabilizing mutants identified were combined to test if the combining two or more mutations generates domains with greater destabilizing potential either additively or synergistically. Desirable qualities of a DD include, low expression of the SRE in the absence of ligand and ligand dependent stabilization of the SRE. Constructs were generated using DDs linked to GFP using an SG linker. HCT-116 cells were stably transduced with the constructs described above and treated with 10 μM stabilizing ligands, Sildenafil, or Vardenafil or DMSO for 48 hours. As a control, parental untransduced cells and cells expressing OT-hPDE5N-001, or OT-hPDE5N-028 were also included in the analysis. The mean fluorescence intensity (MFI) of GFP was analyzed by FACS. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 25.

TABLE 25
Expression of hPDE5 combination mutants
SildenafilVardenafilDestabilizing
MFIStabilizationStabilizationmutation
ConstructDMSOSildenafilVardenafilratioratiocoefficient
Parental2093373532001.781.53
OT-hPDE5N-0014297353736493441.251.15
OT-hPDE5N-0281503561878451701291.251.13
OT-hPDE5N-0196494266860673881.031.04
OT-hPDE5N-0251263313862538481.104.260.19
OT-hPDE5N-0268625485921096675.6312.720.13

As shown in Table 25, only the OT-hPDE5N-026 construct with R732L and D764N mutations showed Sildenafil dependent stabilization with a ratio of 5.63. Similar results were obtained with OT-hPDE5N-026 upon treatment with Vardenafil. OT-hPDE5N-025 however only showed Vardenafil dependent stabilization with a ratio of 4.26. Both constructs were destabilized in the absence of ligand. As expected, hPDE5 wildtype constructs did not show any significant ligand dependent stabilization. These data suggest that the strategy of combining mutations may be used to identify improved DDs as well as DDs that are stabilized by specific ligands.

Protein expression analysis of the combination mutants was performed in parallel via western blot. HCT 116 cells expressing OT-hPDE5N-025, and 26 were treated with 10 μM Vardenafil for 24 hours and immunoblotted for AcGFP using anti AcGFP antibodies (catalog no. 63277, Clonetech, Mountain View, Calif.). GAPDH levels were also analyzed to ensure even protein loading. OT-hPDE5N-025 with hPDE5 (F736A, D764N) and OT-hPDE5N-026 with hPDE5 (R732L, D764N) constructs consisting showed Vardenafil dependent stabilization of AcGFP protein levels as measured via western blotting. This result is consistent with the FACS analysis.

The response of hPDE5 combination mutants to increasing doses of sildenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Sildenafil for 24 hours at doses ranging from 0.04 μM to 30 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-hPDE5N-019 wildtype construct were also included as controls. The response of the combination mutants to Sildenafil was compared to the response of the single mutant construct OT-hPDE5N-020. The stabilization ratio indicated as SR in Table 26 was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient ratio was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficient ratios less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 26.

TABLE 26
Sildenafil dose response of combination mutants
OT-OT-OT-OT-
hPDE5N-hPDE5N-hPDE5N-hPDE5N-
Dose (μM019020025026
Sildenafil)MFISRMFISRMFISRMFISR
DMSO621166172107367093
30754781.22479927.78268372.50698649.85
10276934.49132631.24345874.88
3.33235493.82103840.97223923.16
1.11159522.5896360.90103531.46
0.37127392.0698020.9169610.98
0.1264411.0486190.8066030.93
0.0452990.8686880.8159480.84

As shown in Table 26, the stabilization ratios for OT-hPDE5N-026 construct obtained across multiple doses of sildenafil were higher than the single mutant OT-hPDE5N-020 construct. The combination mutant 025, achieved stabilization ratios much lower than the 026 construct for any given ligand dose. The destabilizing mutation co-efficient ratios obtained for the OT-hPDE5N-020 (ratio=0.1), OT-hPDE5N-025 (ratio=0.17), and OT-hPDE5N-026 (ratio=0.1) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-hPDE5N-026 is strong DD candidate when the stabilizing ligand is Sildenafil.

The response of hPDE5 combination mutants to increasing doses of Vardenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Vardenafil for 24 hours at doses ranging from 0.04 μM to 30 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-hPDE5N-019 comprising hPDE5 wildtype construct were also included as controls. The response of the combination mutants to Vardenafil was compared to the response of the single mutant construct OT-hPDE5N-020. The stabilization ratio (SR) was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient ratio was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation co-efficient ratios less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 27.

TABLE 27
Vardenafil dose response of combination mutants
OT-OT-OT-OT-
hPDE5N-hPDE5N-hPDE5N-hPDE5N-
Dose (μM019020025026
Vardenafil)MFISRMFISRMFISRMFISE
DMSO62116782976945156
30708981.14753239.62461095.995584310.83
10390894.99299713.90351916.83
3.33355644.54295203.84404087.84
1.11308793.94126341.64328686.37
0.37248473.1766670.87145432.82
0.12168662.1573140.95106762.07
0.04147451.8861740.8054971.07

As shown in Table 27, the stabilization ratios for OT-hPDE5N-026 construct obtained across multiple doses of Vardenafil were higher than the single mutant OT-hPDE5N-020 construct. The combination mutant 025, achieved stabilization ratios much lower than the 026 construct for any given ligand dose. The destabilizing mutation coefficient obtained for the OT-hPDE5N-020 (ratio=0.13), OT-hPDE5N-025 (ratio=0.12), and OT-hPDE5N-026 (ratio=0.08) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-hPDE5N-026 is strong DD candidate when the stabilizing ligand is Vardenafil.

The response of hPDE5 combination mutants to increasing doses of Tadalafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Tadalafil for 24 hours at doses ranging from 0.14 to 100 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-hPDE5N-019 comprising hPDE5 wildtype construct were also included as controls. The response of the combination mutants to Tadalafil was compared to the response of the single mutant construct OT-hPDE5N-020. The stabilization ratio (SR) was calculated as the fold change in GFP intensity in Tadalafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-0019) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 28.

TABLE 28
Tadalafil dose response of combination mutants
OT-OT-OT-OT-
hPDE5N-hPDE5N-hPDE5N-hPDE5N-
Dose (μM019020025026
Vardenafil)MFISRMFISRMFISRMFISR
DMSO36453380660433746
100584681.60340418.94235423.90300298.02
33.334471311.75204643.39300288.02
11.11306418.05137892.28244996.54
3.7264806.9695151.57173174.62
1.23204585.3886341.4392832.48
0.41132063.4761411.0260441.61
0.1485122.2457680.9546821.25

As shown in Table 28, the stabilization ratios for OT-hPDE5N-026 construct obtained across multiple doses of Tadalafil were higher than the single mutant OT-hPDE5N-020 construct, except at the 100 μM concentration of the drug. The combination mutant OT-hPDE5-025, achieved stabilization ratios much lower than the OT-hPDE5-026 construct for any given ligand dose. The destabilizing mutation coefficient obtained for the OT-hPDE5N-020 (ratio=0.1), OT-hPDE5N-025 (ratio=0.17), and OT-hPDE5N-026 (ratio=0.1) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-hPDE5N-026 is strong DD candidate when the stabilizing ligand is Tadalafil.

The stabilization ratios obtained for the highest concentrations of all three ligands, Sildenafil, Vardenafil and Tadalafil for each of the constructs were compared and are shown Table 29.

TABLE 29
Comparative analysis of hPDE5 ligands
Stabilization ratio
OT-OT-OT-OT-
hPDE5N-hPDE5N-hPDE5N-hPDE5N-
Ligand019020025026
Sildenafil1.227.782.59.85
(30 μM)
Vardenafil1.149.625.9910.83
(30 μM)
Tadalafil1.608.943.98.02
(100 μM)

As shown in Table 29, based on the stabilization ratios it was evident that OT-hPDE5N-026 was effectively stabilized by all three ligands, in comparison to both the single mutant construct as well as the other combination mutant construct (OT-hPDE5N-025). Both combination mutants were most effectively stabilized by Vardenafil, which is the most potent inhibitor of hPDE5. Construct OT-hPDE5N-025 was stabilized more effectively by Tadalafil than Sildenafil, although only by a small margin—this observation is noteworthy as Sildenafil is a much stronger inhibitor of hPDE5 than Tadalafil

The response of hPDE5 combination mutants to increasing duration treatment with sildenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Sildenafil at 0.5 or 5 μM for 0-72 hours. Mean fluorescence intensity (MFI) was measured by FACS. The response of the combination mutants to Sildenafil was compared to the response of the single mutant construct OT-hPDE5-020. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5N-019) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios for time course experiments with 5 or 0.5 μM are presented in Table 30 and Table 31 respectively.

TABLE 30
Response to Sildenafil (5 μM) over time
OT-hPDE5N-020OT-hPDE5N-025OT-hPDE5N-026
StabilizationStabilizationStabilization
Time (hours)MFIratioMFIratioMFIratio
0266833642769
725847921.92269958.029041332.65
484660417.47220616.566523323.56
24209557.85167054.972796210.10
20155295.82132803.95216037.80
16148555.57122803.65176006.36
1290973.4191992.73104513.77
856722.1370212.0961792.23
442361.5963141.8842661.54
TABLE 31
Response to Sildenafil (0.5 μM) over time
OT-hPDE5N-020OT-hPDE5N-025OT-hPDE5N-026
StabilizationStabilizationStabilization
Time (hours)MFIratioMFIratioMFIratio
0272732452611
725878621.5669062.133183512.19
484575416.7866822.062723110.43
24205247.5361441.89178486.84
20161425.9260031.85133185.10
16144695.3156001.73113904.36
1290583.3251221.5881263.11
854612.0050831.5757422.20
441271.5153221.6438701.48

As shown in Table 30 and Table 31, the stabilization ratios for OT-hPDE5N-026 construct obtained over time at 5 μM dose of Sildenafil were higher than the single mutant OT-hPDE5N-020 construct. However, this pattern was reversed at lower dose of 0.5 μM where the single mutant construct showed greater stabilization. The combination mutant OT-hPDE5-025, achieved stabilization ratios much lower than the OT-hPDE5-026 construct for both ligand doses at any given time. These data indicate that the choice of a suitable DD may sometime depend on the duration of the ligand treatment desired as well as the concentration of the ligand that is available for use in a system.

The analysis of mutants identified by site directed mutagenesis identified amino acid hotspots whose mutation confers destabilization and ligand dependent stabilization properties to hPDE5. To improve the DD characteristics of these constructs, the amino acid at the hotspot position is mutated to any of the known amino acids, including, but not limited to lysine, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. The library of hotspot mutations is generated by site directed mutagenesis and each of the mutants in the library is fused to a reporter protein e.g. AcGFP via a linker. The properties of the DDs are analyzed in the presence and absence of ligands via western blot and FACS as previously described. Ligands that are evaluated include, but not limited Sildenafil, Vardenafil and Tadalafil.

The biocircuits of the invention comprises multiple modules which can be optimized. Libraries of each of the components is generated to allow for the rapid generation of new constructs with desired behaviors. Ligand pharmaco*kinetics is a powerful tool for payload specific tuning in vivo, which can be used to shift the ligand response curve of the effector module to the left or right depending on the modulating factors. Several modulating factors are tested, including, but not limited to the ligand dose, concentrations, magnitude, duration, and route of administration. Destabilizing domains can also be modified to improve biocircuit behavior. The destabilizing domain is the core determinant of the dynamic range of the biocircuit. Depending on the DD selected, the ligand response curve of the effector module can be shifted up or down. The nature, position of the DD within the effector module as well as the number of DDs within an effector module are modified. DD selection is also altered depending on its degradation kinetics desired. Promoters that transcriptionally control the expression of the SREs are optimized. Choice of promoter impacts the basal-off state and affects the dynamic range of stabilization. Further, promoter choice contributes to the extent of stabilized payload produced. Other optimizable elements of the biocircuits include vector, translational elements, leader sequence, placement of the components within the SRE, codon selection, protease sites, linkers, and mRNA stability.

Combination mutants were generated as described in Example 9. The response of hPDE5 combination mutants to increasing doses of Vardenafil was tested in HCT116 cells transduced with hPDE5 constructs were treated with Vardenafil for 48 hours at doses ranging from 0.1 to 10 μM or vehicle control (DMSO). Mean fluorescence intensity (MFI) of GFP was measured by FACS. The response of the combination mutants to Vardenafil was compared to the response of the single mutant construct OT-hPDE5N-020. The fold change in MFI over DMSO is presented in Table 32.

TABLE 32
Vardenafil dose response
Sildenafil OT-hPDE5-OT-hPDE5-OT-hPDE5-
(μM)020025026
0.01402644443815
0.04697049343839
0.121483251334870
0.372642950078107
1.1134932575121857
3.33497391051649105
10.00513062492764734

As shown in Table 32, the ligand dependent stabilization obtained for OT-hPDE5N-020 construct was observed at lower doses i.e. 0.1 and 0.3 micro molar concentrations of Vardenafil compared to the other two constructs, indicating that very low doses of the ligand are sufficient to stabilize this hPDE5 mutant. The OT-hPDE5N-026 construct did not show ligand dependent stabilization at similar doses. However, at the highest dose of Vardenafil the GFP expression obtained was much higher than OT-hPDE5N-020. In contrast, OT-hPDE5N-025 showed very little expression of GFP at lower doses and only modest GFP expression compared to the other two constructs at the higher doses. These experiments indicate that combination of single hPDE5 DD mutations produces synergistic effects not predicted by the properties of the single mutants. Thus, based on the properties of the payload of interest and the expression levels desired, suitable hPDE5 DDs may be selected.

Immunotherapeutic payloads of the invention such as cytokines (e.g. IL2, IL12, IL15, IL15-IL15Ra), chimeric antigen receptors (CD19 CAR), regulatory proteins (e.g. FOXP3), safety switch (e.g. Caspase 9) are fused to any of the DDs described herein and cloned into expression vectors. Optional linkers and cleavage sites are added to optimize the confirmation of the effector module.

To test ligand dependent immunotherapeutic payload production, cells are plated in a growth media e.g. DMEM with 10% FBS and incubated overnight at 37° C., 5% CO2. Cells are transiently transfected or transduced with the constructs using Lipofectamine 2000 and incubated for 48 hrs. Following the incubation, growth media is exchanged for media containing ligands (e.g. Sildenafil, Vardenafil, and Tadalafil). Following 24-hour incubation with ligand, cells are lysed and immunoblotted using antibodies specific to the payload. For secreted payloads, such as cytokines, the growth media is harvested from the cultures expressing the effector modules of the present invention. Similar to the immunoblot, the media is assayed for the expression of the payload using methods known in the art such as ELISA and MSD assay. For cell surface expressed payloads, the expression of the payload is also assayed using methods of cell surface expression analysis that are known in the art such as flow cytometry. Expression of the payload obtained in the presence of ligand is compared to expression in the absence of ligand. Increase in the levels of the payload with increase in ligand concentrations and/or duration of treatment is indicative of DD mediated regulation of the payload. Expression is also compared to parental untransduced cells as well as cells expressing immunotherapeutic payloads that are not appended to DD (i.e. expressed constitutively).

To test if DD regulated IL12's expression is capable of activating IL12 signaling. Human T-cells are isolated from PBMCs and activated with phytohemagglutinin (PHA, 2 μg/ml) for 3 days, followed by treatment with 50 IU/ml of Interleukin-2 (IL2) for 24 hrs. Cells are washed, resuspended in fresh media and rested for 4 hrs. T cells are transduced with DD-regulated IL12 constructs and treated with the ligand (e.g. Sildenafil, Vardenafil, and Tadalafil) based on the DD utilized or the vehicle control. Activation via IL12 results in STAT4 phosphorylation. Additionally, IL12 promotes the differentiation of naïve T cells into Th1 cells, which results in the secretion of IFN gamma from T cells. Cells are harvested and STAT4 phosphorylation is measured using STAT4 antibody (Cell Signaling Technology, Danvers, Mass.). Cell supernatants and cell lysates are analyzed for IFNgamma. In the presence of ligand, cells expressing DD regulated IL12 are expected to have increased STAT4 phosphorylation and increased expression of IFNgamma.

IL15 and IL15/IL15Ra fusion molecule can confer the memory phenotype on T cells and increase proliferation of NK cells (Hurton L et al. (2016), PNAS, 113: E7788-7797). This dependence of NK cell proliferation on cytokines can be used to test the functionality of DD regulated or constitutively expressed cytokines and cytokine fusion proteins. NK-92 cell activation in response to ligand treatment is evaluated by FACS using a panel of markers whose increased expression is associated with NK activation. These include NKG2D, CD71, CD69; chemokine receptors such as CCR5, CXCR4, and CXCR3, Perforin, Granzyme B and Interferon gamma (IFNg). Expression of DD regulated IL15 or IL15-IL15Ra fusion molecules is expected to increase NK cell activation. To evaluate the effect by ligand-dependent stabilization of IL15 and IL15-IL15Ra on primary T cells, T cells are transduced with DD-IL15Ra constructs. T cell proliferation and memory phenotype markers (e.g. CD62L) are measured either in the presence or absence of ligand by using flow cytometry.

To test the ability of DD regulated CD19 CAR cells to kill target cells in vitro, primary T cell populations are transduced with DD regulated CD19 CAR constructs are co cultured with K562 cells expressing CD19 (target cells) in the presence or absence of the ligand specific to the DD. Multiple combinations of T cells and target cells are set up. These include DD regulated CAR expressing T cells co cultured with K562 cells (in the presence or absence of the ligand), T cells co cultured with K562 cells expressing CD19 and K562 cells expressing CD19 without T cell co culture. Additional controls include target cells only; untransduced T cells; T cells transduced with empty vector. Target cells are treated with Mitomycin C to prevent their proliferation. The K562 cells are fluorescently labelled with NucLight Red and co cultured with T cells for 300 hours. Cell death is monitored by labelling cells with Annexin V and the cell death in target K562 cells is monitored by evaluating cells that are positive for both Annexin V and NucLight Red using the IncuCyte® Live Cell Analysis System (Essen Biosciences, Ann Arbor, Mich.). Target cell killing is expected with the DD regulated CAR constructs only in the presence of ligand and when K562 target cells ectopically expressing CD19 are utilized. No cell killing is expected in untreated controls of the same co-culture set up and when T cells are co cultured with parental K562 cells that do not express CD19 in the presence or absence of ligand. Constitutive constructs are predicted to show cell killing both in the presence of ligand.

The ligand-dependent in vivo function of DD-regulated immunotherapeutic payloads is characterized by evaluating the ability of T cells expressing DD regulated constructs to inhibit the growth of established tumors upon treatment with the ligands of the invention. Tumor cells such as HCT116 cells are subcutaneously xenografted into mice. T cells stably transduced with a DD regulated constructs described herein are injected intravenously into mice. Approximately, two weeks after injection when the tumors reach a size of approximately 300 cubic mm, mice are dosed with the ligand (e.g. Sildenafil, Vardenafil, and Tadalafil) or vehicle control at varying concentrations every two days. Tumor volume and body weight are monitored twice a week. Plasma and tumor samples are also collected after the last dosing of the ligand and the payload levels as well as the ligand levels are measured. Tumor volume is expected to be significantly smaller in mice treated the ligand compared to vehicle treated animals. Tumor payload levels are expected to positively correlate with tumor volume.

To measure if compositions of the invention promote immune cell persistence, T cells transduced with DD-IL15/IL15Ra constructs are injected into mice. Mice are treated with the ligand (e.g. Sildenafil, Vardenafil, and Tadalafil) and monitored over a period of 40-50 days. T cells transduced with a constitutive OT-IL15-008 construct and untransduced parental T cells are injected into separate mice as controls. Blood is routinely withdrawn from the mice and tested for the presence of T cells. Mice treated with the ligand are expected to retain T cells expressing hPDE5 DD-IL15-IL15Ra while T cells in vehicle treated mice are not expected to persist.

Toxicity related to systemic administration of interleukins can be circumvented by using CAR-T cells to deliver interleukins to the target tissue. This combinatorial approach also has greater anti-tumor activity than interleukin and CAR therapy alone. Cells are co-transfected with CD19 CAR (constitutive or DD regulated) and DD-Interleukin e.g. DD-IL2, DD-IL12, DD-IL15 and DD-IL15/IL15Ra constructs. Transfected cells are treated with stabilizing ligands depending on the DD utilized. CD19 CAR expression is evaluated by immunoblotting for CD3 zeta. DD-IL2, DD-IL12, DD-IL15 and DD-IL15/IL15Ra expression in the media is measured by ELISA.

A DD-regulated caspase 9 has the potential improve safety and minimize the toxicity associated with CD19 CAR therapy. Cells are co-transfected with CD19 CAR (constitutive or DD regulated) and DD-caspase 9 constructs. Transfected cells are treated with stabilizing ligands depending on the DD utilized. CD19 CAR and caspase 9 expression are evaluated by immunoblotting for CD3 zeta and caspase 9 respectively.

Combination mutations were generated as previously described in Example 9. The response of HCT 116 cells expressing hPDE5 combination mutants to increasing doses ranging from 0.1 μM to 100 μM of Tadalafil and Sildenafil for 48 hours or vehicle control (DMSO) was tested. Mean fluorescence intensity (MFI) was measured by FACS. The response of the combination mutants to ligand treatment was compared to the single mutant construct, OT-hPDE5N-020. The MFI with ligand treatment is shown in Table 33 and Table 34.

TABLE 33
Tadalafil dose response
Tadalafil OT-hPDE5-OT-hPDE5-OT-hPDE5-
(μM)020025026
0.14361643283720
0.41581150023804
1.231169455034810
3.702418557447893
11.1140380829924617
33.33572331583152927
100.00725873102084334
TABLE 34
Sildenafil dose response
Sildenafil OT-hPDE5-OT-hPDE5-OT-hPDE5-
(μM)020025026
0.14377143983401
0.41546348323681
1.231047950314477
3.702244149747625
11.1135561567524104
33.3352029967751416
100.0010122637494136010

As shown in Table 33 and Table 34, ligand dose dependent stabilization was obtained with all three constructs. The dose dependent stabilization at lower doses (e.g., up to 11 μM of Sildenafil and Tadalafil) is more evident in the single mutant construct, OT-hPDE5-020, compared to the other two constructs. At higher concentrations of ligand, both OT-hPDE5-025 and OT-hPDE5- 026 showed ligand dependent stabilization. In fact, OT-hPDE5-026 construct demonstrated much higher MFI values at 33 and 100 compared to both OT-hPDE5-020 and OT-hPDE5-025. These experiments indicate that combination of single hPDE5 DD mutations produces synergistic effects not predicted by the properties of the single mutants. Thus, suitable hPDE5 DDs may be selected based on the properties of the payload of interest and the expression levels desired,

The off kinetics of hPDE5 mutants, OT-hPDE5-020 and OT-hPDE5-026 was tested by treating HCT 116 cells expressing these constructs or the wild type control construct OT-hPDE5-019. Cells were treated with ligand for 48 hours. The media containing the ligand was removed and fresh media without the ligand was added. MFI was analyzed by FACS at 0 hours (i.e., prior to the beginning of the experiment), 48 hours after ligand treatment, as well as at several time points after the ligand washout, up until 96 hours. The stabilization ratio was calculated as the fold change in GFP intensity in ligand treated samples compared to the GFP intensity in the absence of ligand with the same construct. The results are shown in Table 35.

TABLE 35
Off-Kinetics
OT-hPDE5-020OT-hPDE5-026OT-hPDE5-019 (WT)
StabilizationStabilizationStabilization
Time (hrs)MFIRatioMFIRatioMFIRatio
03675364845512
487153819.475710515.651021372.24
506383217.374107411.26972252.14
525154414.03269267.38962642.12
544180011.37163914.49954102.10
56255216.9477002.11817331.80
60195985.3356351.54843231.85
7280622.1940621.11701511.54
8064271.7535870.98632081.39
9643191.1834430.94559181.23

As shown in Table 35, the stabilization ratio of hPDE5 mutants decreased following removal of the ligand. The stabilization ratio values decreased more quickly in the combination mutant OT-hPDE5-026 compared to OT-hPDE5-020 construct suggesting the destabilization of the DD is achieved more quickly in the OT-hPDE5-026 construct. The ligand dependent stabilization as indicated by the stabilization ratio, achieved with OT-hPDE5-026 construct is lower than OT-hPDE5-020 construct, which may also contribute to the superior off kinetics seen with the OT-hPDE5-026 construct.

The ability of hPDE5 mutants to tune the expression of payloads when appended to the C terminal of the payload was tested. OT-hPDE5C-030 was compared to OT-hPDE5C-036. NIH 3T3 cells were incubated with varying doses of Sildenafil or Vardenafil for 48 hours and MFIs were analyzed by FACS. The stabilization ratio (SR) was calculated as the fold change in GFP intensity in ligand treated samples compared to the GFP intensity in the absence of ligand with the same construct. The results are shown in Table 36.

TABLE 36
hPDE5 C-terminal mutant's response to Sildenafil and Vardenafil
LigandOT-hPDE5C-030OT-hPDE5C-036
concentrationSildenafilVardenafilSildenafilVardenafil
(nM)MFISRMFISRMFISRMFISR
010210414761410
1002782.739719.3416391.1116141.14
3005625.51116511.2016481.1216561.03
1000103910.19123511.8817801.2116861.02
3000127612.51129912.4917841.2117211.02
10000144214.14130912.5918881.2817211.00

As shown in Table 36, OT-hPDE5C-030 construct showed stabilization ratios greater than one, indicating that both Vardenafil and Tadalafil ligand could stabilize GFP expression. As expected, the wildtype construct, OT-hPDE5C-036 did not stabilization much greater than one, indicating that virtually no stabilization was achieved with the wildtype construct.

GFP expression was also measured at 24 and 48 hours to monitor the dependence of hPDE5-DD GFP constructs on the duration of ligand exposure. The results are shown in Table 37 and Table 38A, where SR indicates stabilization ratio.

TABLE 37
Dose response of hPDE5 C-terminal mutants with Sildenafil treatment
SildenafilOT-hPDE5C-030OT-hPDE5C-036
concentration24 hours48 hours24 hours48 hours
(nM)MFISRMFISRMFISRMFISR
010810213851476
1002432.252782.7314951.0816391.11
3003803.525625.5115651.1316481.12
10005755.32103910.1916691.2117801.21
30006666.17127612.5118311.3217841.21
10000144214.1418881.28
TABLE 38A
Dose response of hPDE5 C-terminal mutants with Vardenafil treatment
VardenafilOT-hPDE5C-030OT-hPDE5C-036
concentration24 hours48 hours24 hours48 hours
(nM)MFISRMFISRMFISRMFISR
010810413601410
1006846.339719.3414391.0616141.14
3007617.05116511.2017301.2716561.17
10008637.99123511.8817211.2716661.18
30008567.93129912.4916061.1817211.22
100008898.23130912.5916781.2317211.22

Consistent with the responses measured at 48 hours, the responses measured at 24 hours showed that the hPDE5 mutant construct stabilized GFP expression as evidenced by the stabilization ratios greater than one, while the wildtype construct, OT-hPDE5C-036 showed stabilization ratios around 1, indicating no ligand dependent stabilization. Results were consistent between Sildenafil and Vardenafil treatment. It was noted that the stabilization ratios obtained at 48 hours was much greater than the values obtained at 24 hours suggesting, a time dependent stabilization of GFP expression. Similar results were obtained by western blot analysis using a GFP antibody. At 0.1 μM sildenafil, modest stabilization of GFP protein levels was observed via western blot. The stabilization of GFP increased when the cells were treated with 1 μM sildenafil Both 0.1 μM and 1 μM dose of vardenafil showed stabilization of GFP levels. These trends were observed both at 24 hours and 48 hours. All comparisons were made against cells that were not treated with either ligand.

The response of hPDE5C terminal mutants to lower doses of Vardenafil was also tested and is shown in Table 38B.

TABLE 38B
Dose response of hPDE5 C-terminal
mutants with Vardenafil treatment
VardenafilStabilization
(nM)MFIratio
0137
11631.19
32301.68
104773.48
309096.64
100141710.34
1000178913.06

As shown in Table 38B, the hPDE5C terminal mutant showed a dose dependent stabilization even at lower doses of Vardenafil as indicated by the increase in the stabilization ratio. Thus, even low nano molar doses of Vardenafil are sufficient to induce ligand dependent stabilization of hPDE5 DD.

PDE5 derived DDs were appended to reporter payload such as luciferase to generate constructs OT-hPDE5-031, OT-hPDE5-032, OT-hPDE5-033, and OT-hPDE5-035 constructs. Such constructs may be useful to study in the dynamics of destabilization and stabilization of DDs in vivo. These constructs were transduced into HCT116 cells. Cells were seeded into 96 well plates at 2000 cells per well and incubated with 1 μM or DMSO Vardenafil for 48 hours. The luciferase activity was then measured using a plate reader assay. Parental untransduced cells were used as a control to measure the background fluorescence levels. The results are shown in Table 39. In Table 39, the stabilization ratio was calculated as the fold change in luciferase signal in Vardenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-hPDE5-031) in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs.

TABLE 39
Stability of Luciferase constructs
Destabilizing
Controlmutation Stabilization
Construct(DMSO)Vardenafilco-efficientratio
Parental cells1367.473824.04
OT-hPDE5-03185429.26127499.781.49
OT-hPDE5-03288881.46174814.641.041.97
OT-hPDE5-03353239.8888918.040.621.67
OT-hPDE5-03596460.45269718.661.132.80

The luciferase signal intensity observed in parental cells that did not express the construct indicated that some of the signal was likely background noise. Construct, OT-hPDE5-033 showed the lowest destabilizing mutation coefficient indicating the construct is destabilized. Increase in stabilization ratios was observed with all constructs including the wildtype hPDE5 construct, OT-hPDE5-031. Construct OT-hPDE5-035 showed the highest stabilization ratio indicating the strongest ligand dependent stabilization. Among the constructs tested, OT-hPDE5-033 showed destabilization in the absence of ligand and stabilization in the presence of ligand.

The analysis of mutants identified by site directed mutagenesis identified amino acid hotspots whose mutation confers destabilization and ligand dependent stabilization properties to hPDE5. The amino acid at position 735 was chosen for the further analysis since the hPDE5 (R732L) mutation possessed the properties described above. To improve the DD characteristics of this DD, the amino acid at the position 732 was mutated to any of the known amino acids, including, but not limited to, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. The library of mutations was generated by site directed mutagenesis and each of the mutants in the library was fused to a reporter protein e.g. AcGFP via a linker and transduced into HCT116 cells. The properties of the DDs were analyzed in the presence and absence of ligands via FACS as previously described. Ligands that were evaluated included, but not limited Sildenafil, and Vardenafil. The results are shown in Table 40A and Table 40B.

TABLE 40A
Ligand responsive behavior of hotspot constructs
VardenafilSildenafil
0 μM0 μM
ConstructMutation(DMSO)1 μM(DMSO)10 μM
OT-hPDE5-001161294989219
OT-hPDE5-009R732L182173143122
OT-hPDE5-064R732G176854298288
OT-hPDE5-065R732A175853288348
OT-hPDE5-066R732V150507189113
OT-hPDE5-067R732I151587201170
OT-hPDE5-068R732P355310379361
OT-hPDE5-069R732F189943233351
OT-hPDE5-070R732W301179248158
OT-hPDE5-071R732Y302345397648
OT-hPDE5-072R732H308328352710
OT-hPDE5-073R732S566399760746
OT-hPDE5-074R732T235270276546
OT-hPDE5-075R732D294422298394
OT-hPDE5-076R732E276212295316
OT-hPDE5-077R732Q305289353553
OT-hPDE5-078R732N313290315516
OT-hPDE5-079R732M316337285503
OT-hPDE5-080R732C526349499707
OT-hPDE5-081R732K113423165765
TABLE 40B
Stabilization ratio and Destabilizing mutation
coefficient of hotspot constructs
VardenafilSildenafil
DestabilizingDestabilizing
mutationStabilizationmutationStabilization
ConstructMutationcoefficientratiocoefficientratio
OT-hPDE5-0011.830.22
OT-hPDE5-009R732L1.130.950.140.85
OT-hPDE5-064R732G1.094.850.30.97
OT-hPDE5-065R732A1.094.870.291.21
OT-hPDE5-066R732V0.933.380.190.6
OT-hPDE5-067R732I0.943.890.20.85
OT-hPDE5-068R732P2.20.870.380.95
OT-hPDE5-069R732F1.174.990.241.51
OT-hPDE5-070R732W1.870.590.250.64
OT-hPDE5-071R732Y1.881.140.41.63
OT-hPDE5-072R732H1.911.060.362.02
OT-hPDE5-073R732S3.520.70.770.98
OT-hPDE5-074R732T1.461.150.281.98
OT-hPDE5-075R732D1.831.440.31.32
OT-hPDE5-076R732E1.710.770.31.07
OT-hPDE5-077R732Q1.890.950.361.57
OT-hPDE5-078R732N1.940.930.321.64
OT-hPDE5-079R732M1.961.070.291.76
OT-hPDE5-080R732C3.270.660.51.42
OT-hPDE5-081R732K0.73.740.174.64

The destabilizing mutation coefficients and stabilization ratios obtained for each construct with the indicated ligands were analyzed to identify constructs which possessed the lowest destabilizing mutation coefficient ratio and a second sort of the data was then performed to identify constructs with the highest stabilization ratio. This analysis allowed the identification of constructs with both the lowest destabilizing mutation coefficient that also possessed the highest stabilization ratios. Based on this analysis, it was identified that virtually all mutants tested showed destabilizing mutation coefficients less than one for the DMSO control of Sildenafil treatment, indicating that all constructs are destabilized in the absence of sildenafil. In the presence of Sildenafil, OT-hPDE5-081 construct with arginine to lysine substitution showed high sildenafil dependent stabilization ratio. Similar analysis of the constructs with Vardenafil identified OT-hPDE5-081, OT-hPDE5-066, OT-hPDE5-067, and OT-hPDE5-065 as having a low destabilizing mutation coefficient and high-ligand dependent stabilization ratios. Other constructs with low destabilizing mutation coefficients and high stabilization ratios include OT-hPDE5-067, OT-hPDE5-065, OT-hPDE5-069, OT-hPDE5-074, and OT-hPDE5-075.

The response of select mutants to increasing doses of Sildenafil, Vardenafil and Tadalafil was also tested in HCT 116 cells treated with the ligand for 48 hours. The MFI values obtained with each ligand treatment are shown in Table 41A, Table 41B and Table 41C.

TABLE 41A
Vardenafil Dose Response
OT-OT-OT-OT-OT-
VardenafilhPDE5-hPDE5-hPDE5-hPDE5-hPDE5-
(μM)065067069074075
025511810218828544336
0.0125511810218828544336
0.0483453356846868627350
0.12109464874109411318715637
0.37138507855129872889525047
1.111520211777137543307537828
3.331678314531147054178844499
101894517645170214894650822
302254824322206936736470645
10002254824322206936736470645
TABLE 41B
Sildenafil Dose Response
OT-OT-OT-OT-OT-
SildenafilhPDE5-hPDE5-hPDE5-hPDE5-hPDE5-
(μM)065067069074075
0.018085796888561192
0.04102561291610411270
0.121270592120511131337
0.371931771200218351867
1.1126551040271133553108
3.3337691709355568966171
104716273344271240713971
305694419754492125821120
10005694419754492125821120
TABLE 41C
Tadalafil Dose Response
OT-OT-OT-OT-OT-
TadalafilhPDE5-hPDE5-hPDE5-hPDE5-hPDE5-
(μM)065067069074075
0.017524986318251163
0.141259540119310681361
0.412066712207516551548
1.2334121041313434332504
3.746901745429466974821
11.115126274647341284310583
33.336264397052931716416956
1006301548758672111322630
10006301548758672111322630

OT-hPDE5-074 with an arginine to threonine substitution showed the strongest increase in GFP expression at the highest dose, with all three ligands tested. At doses lower than 1 μM of Vardenafil, all constructs showed ligand dependent stabilization. At doses of Sildenafil lower than 1 μM, OT-hPDE5-069, OT-hPDE5-074 and OT-hPDE5-075 showed ligand dependent stabilization. With doses of Tadalafil lower than 1 OT-hPDE5-065, OT-hPDE5-069 and OT-hPDE5-074 showed ligand dependent stabilization. By mutagenesis of the R732 locus, DDs with a variety of properties were obtained. The selection of a particular DD may be made based on the payload utilized and the extent of expression desired with the payload. The EC50 values for each of the constructs with each of the ligands is shown in Table 41D.

TABLE 41D
EC50 for Hotspot Mutants
OT-OT-OT-OT-OT-
hPDE5-hPDE5-hPDE5-hPDE5-hPDE5-
Ligand065067069074075
Vardenafil0.302.200.281.471.44
Sildenafil2.086.901.767.507.04
Tadalafil1.4514.281.338.6414.54

These results are consistent with the western blot analysis of GFP protein levels in HCT 116 cells stably transduced with these mutants. The following constructs showed a strong stabilization of GFP levels in the presence of vardenafil and when compared to DMSO controls: OT-hPDE5-009, OT-hPDE5-064, OT-hPDE5-065, OT-hPDE5-068, OT-hPDE5-070, OT-hPDE5-071, OT-hPDE5-072, OT-hPDE5-073, OT-hPDE5-074, OT-hPDE5-075, OT-hPDE5-076, OT-hPDE5-077, OT-hPDE5-078, OT-hPDE5-079, and OT-hPDE5-080. Modest ligand dependent stabilization of GFP levels was observed with OT-hPDE5-066, OT-hPDE5-067, OT-hPDE5-069, and OT-hPDE5-081. All samples showed equal protein loading as measured by GAPDH protein levels.

HCT116 cells were transduced with hPDE5-GFP constructs, OT-hPDE5-083, OT-hPDE5-084, OT-hPDE5-085, and OT-hPDE5-094 and incubated with the indicated concentrations of ligand for 48 hours. GFP fluorescence was measured by FACS. The fold change in GFP expression over untreated DMSO control is shown in Table 42A, Table 42B and Table 42C for vardenafil, sildenafil and tadalafil respectively.

TABLE 42A
Vardenafil dose response
VardenafilOT-hPDE5-OT-hPDE5-OT-hPDE5-OT-hPDE5-
(log)83848594
1.47720.66413.6124.50716.171
1.00018.20712.0302.17813.462
0.52318.32710.2601.27713.230
0.04617.2297.4651.07812.550
−0.43116.1434.3741.02211.992
−0.90813.7642.2581.0259.770
−1.38610.1081.3231.0155.477
−1.8634.6730.8341.0302.303
−2.3402.5750.7411.0341.412
−2.8171.7440.7251.0471.105
TABLE 42B
Sildenafil dose response
SildenafilOT-hPDE5-OT-hPDE5-OT-hPDE5-OT-hPDE5-
(log)83848594
2.00011.37014.2121.90911.290
1.52312.92515.2471.50913.091
1.04612.06610.0281.21212.344
0.56910.5875.4081.09110.615
0.0929.1902.8220.9958.165
−0.3866.8491.6401.0405.536
−0.8634.2251.2490.9932.540
−1.3402.2951.1061.0071.397
−1.8171.4341.0251.0131.134
−2.2941.1361.0240.9660.997
TABLE 42C
Tadalafil dose response
TadalafilOT-hPDE5-OT-hPDE5-OT-hPDE5-OT-hPDE5-
(log)83848594
2.00012.07414.9191.49812.606
1.52311.48113.7401.22411.910
1.0469.8978.0831.01111.144
0.5698.4034.3600.9459.902
0.0925.4452.3120.9737.992
−0.3862.7251.4720.9075.049
−0.8631.5631.2250.9462.887
−1.3401.1211.0340.9381.402
−1.8171.0951.0130.9761.077
−2.2941.0450.9850.9421.064

As shown in Table 42A, Table 42B and Table 42C, dynamic regulation of hPDE5 DDs was observed with OT-hPDE5-083, OT-hPDE5-084, and OT-hPDE5-085. The hPDE5 wildtype construct shown little to no ligand dependent stabilization with all three ligands. The stabilization concentration 50 or (SC50), which is the concentration of ligand required to achieve 50% stabilization, was also calculated for all four constructs with each of the ligands and the results are shown Table 42D.

TABLE 42D
Stabilization Concentration 50 (SC50) of hPDE5 DDs
OT-hPDE5-OT-hPDE5-OT-hPDE5-OT-hPDE5-
Ligand83848594
Vardenafil0.041.15>300.07
Sildenafil0.386.82>300.67
Tadalafil1.979.54>1000.77

Taken together these results indicate that structure-guided mutagenesis of ligand-binding site in PDE5 generates 23 nM ligand-DD interaction. OT-hPDE5-083 with Y612F, R732L, was able to bind to Vardenafil with SC50, of 23 nM suggesting potent DD-ligand interaction.

Immunotherapeutic payloads of the invention such as, IL15-IL15Ra fusion proteins, were fused to any of the DDs described herein and cloned into expression vectors, such as pLVX and pELNS vectors. To test ligand dependent IL15-IL15Ra production, HEK293T cells were transiently transfected with the constructs. Cells were then plated in DMEM with 10% FBS and incubated overnight at 37° C., 5% CO2. The growth media was exchanged for media containing ligand, e.g. Vardenafil at 10 μM. Following 48-hour incubation with ligand, cells were lysed and immunoblotted using antibodies specific to IL15Ra. hPDE5-DDs were able to regulate IL15Ra levels in the presence of Vardenafil with all three constructs tested OT-IL15-043, OT-IL15-044 and OT-IL15-045. In contrast, the IL15Ra levels remained unchanged both in the presence and absence of ligand with the constitutive construct, OT-IL15-008. It was noted that the ligand dependent stabilization was accompanied by an upward shift in the mobility of IL15Ra only in the presence of Vardenafil, indicating that the stabilization is likely accompanied by a post translation protein modification. Uniform loading of samples was demonstrated using actin as a loading control.

The effects of vector backbone on the expression of the payload were examined by cloning the OT-IL15-031 construct into the pELPS vector backbone to generate the OT-IL15-079 construct. The constructs were transduced into HEK293T cells and IL15Ra expression was assayed as described above. Only OT-IL15-031 showed vardenafil dependent stabilization of IL15Ra protein levels. Only modest ligand dependent stabilization was observed with the OT-IL15-079 construct in the presence of vardenafil.

The IL15 levels were also examined using the MSD assay. The growth media was harvested from the cells expressing IL15-IL15Ra and that were exposed to 10 μM Vardenafil or vehicle control for 48 hours. The results are shown in Table 43, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. IL15-IL15Ra in response to the stimulus, i.e. Vardenafil; to the expression, of the IL15-IL15Ra in the absence of the stimulus, i.e. DMSO control. The destabilization ratio was calculated as the ratio of expression, of IL15Ra in the absence of the stimulus specific to the effector module i.e. Vardenafil to the expression, function or level of the protein of interest, that is expressed constitutively (OT-IL15-008) and in the absence of the stimulus specific to the SRE. Stabilization ratios greater than one and destabilization ratios less than one are desired.

TABLE 43
IL15 levels (pg/ml)
DestabilizationStabilization
ConstructControlVardenafilratioratio
OT-IL15-008710.73799.391.12
OT-IL15-04363.3793.630.091.48
OT-IL15-044193.09203.210.271.05
OT-IL15-045255.05320.390.361.26

As shown in Table 43, all three hPDE5 regulated constructs showed destabilization ratios less than one indicating destabilization in the absence of ligand. OT-IL15-043 appeared to be the most destabilized construct. It was also the most ligand-stabilized construct, with the highest stabilization ratio.

Expression of OT-IL15-031 construct was also analyzed in HCT-116 cells via western blot. The cells were exposed to 10 μM Vardenafil for 48 hours and IL15 and IL15Ra levels were analyzed by western blot. Similar to the HEK293T cells, HCT 116 cells also displayed a Vardenafil dependent stabilization with a concomitant upward shift in mobility of IL15Ra protein indicating protein modifications.

The effect of the type of linker used and the length of the linker on the regulation of the expression of the payload was tested. IL15-IL15Ra fusion constructs were linked to the hPDE5 (R732L) DD using GSGSGS (SEQ ID NO. 8330) as the linker (as in OT-IL15-111), or GSGSGSGS (SEQ ID NO. 8331) as the linker (as in OT-IL15-112) or using GSGSGGGSGS (SEQ ID NO. 8332) as the linker (as in OT-IL15-113). The IL15 portion of the construct was tagged with a Flag tag while the IL15Ra portion was tagged with a HA tag. These tags allow both the components of the construct to be tracked individually in experiments. The constructs were transiently transfected into HEK293T cells and then incubated with 1 μM Vardenafil for 24 hours. The properties of the DDs regulated IL15-IL15Ra payloads were analyzed in the presence and absence of ligands via FACS using the HA antibody as previously described. The results are shown in Table 44, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. IL15-IL15Ra in response to the stimulus, i.e. Vardenafil; to the expression, of the IL15-IL15Ra in the absence of the stimulus, i.e. DMSO control treated samples.

TABLE 44
% HA positive cells with different linkers
ConstructStabilization
NameControlVardenafilratio
OT-IL15-11137.563.21.69
OT-IL15-11241.674.61.79
OT-IL15-1134269.11.65

As shown in Table 44, all three constructs each with a different linker resulted in a somewhat similar stabilization ratio, indicating that linker length and identity did not impact regulation of the payload by the DD. All three constructs also had a stabilization ratio greater than one suggesting that the payload expression was stabilized in the presence of the ligand. Among the three constructs tested OT-IL15-112 showed a slightly higher stabilization ratio than the other two constructs indicating that the use of the GSGSGSGS linker may result in a slightly improved ligand dependent stabilization.

Immunotherapeutic payloads of the invention such as CD19 CAR were fused to any of the DDs described herein and cloned into expression vectors pLVX and pELNS vectors. In this manner, OT-CD19-052 (hPDE5 (WT)) and OT-CD19-053 (hPDE5 (R732L)). The HA tag was added to enable the easy detection of the chimeric proteins.

To test ligand dependent CD19 CAR production, NIH 3T3 cells were transiently transfected with the constructs. Cells were then plated in a growth media e.g. DMEM with 10% FBS and incubated overnight at 37° C., 5% CO2. The growth media was exchanged for media containing ligand, at various concentrations of Vardenafil ranging from 30 nM to 10,000 nM. Following 48-hour incubation with ligand, cells were analyzed by FACS using the HA antibody and the mean fluorescence intensity (MFI) was calculated. The results are shown in Table 45A, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. CD19 CAR in response to the stimulus, i.e. Vardenafil; to the expression, of the CD19 CAR in the absence of the stimulus, i.e. DMSO control. Stabilization ratios greater than one are desired.

TABLE 45A
CD19 CAR expression
OT-CD19-053
OT-CD19-052(R732L)
Vardenafil(WT)Stabilization
(nM)MFIMFIratio
001336
30912530662.29
100959246743.50
3001050957324.29
10001032867385.04
10000928539312.94

As shown in Table 45A, a stabilization ration greater than 1 was observed with all doses of Vardenafil, and even with the lowest concentration of Vardenafil (30 nM) suggesting that low doses of ligand may be sufficient to achieve ligand dependent stabilization. It was also noted that the stabilization ratio obtained at the highest concentration of ligand i.e. 10,000 nM was lower than the ratio obtained with 1000 nM ligand suggesting a bimodal pattern of stabilization.

The dose dependent regulation of OT-CD19-052 and OT-CD19-053 was measured in HEK 293 cells transfected with 2 ug DNA and stably selected using 2 ug/ml puromycin. CAR surface expression was detected using Protein L staining following 24 hours of ligand treatment at the indicated concentrations. The median Protein L fluorescence is shown in Table 45B.

TABLE 45B
Ligand dose dependent CAR expression
TadalafilSildenafilVardenafil
OT-OT-EmptyOT-OT-EmptyOT-OT-Empty
LigandCD19-CD19-VectorCD19-CD19-VectorCD19-CD19-Vector
(nM)052053(pLVX)052053(pLVX)052053(pLVX)
0.152112240647714703284889.817946420287.9
0.4615335350175.81533533048717746406492
1.3914662350178.813143325083.916175460489.8
4.221437733417713901281085.716450597793.9
12.7910773359978.89419297681.817646921092
38.741409840428012083326884.8161751332994.8
117.411835463027715037358983198562059493.9
355.78137851123572.913901527483.9224062317595.8
1078.1118200156408013708805488.8223433113897.7
3267.00159502130175.8143371329184.82493331226100
9900.00214212465475.8177462337184.82682436249110
30000.00279023369177250032521584.83061735945140

As shown in Table 45B, only OT-CD19-053 responded to increasing doses of ligand with increase surface CAR expression, but not the WT construct OT-CD19-052. This was observed with all three ligands. However, the highest levels of CAR expression were observed with increasing doses of vardenafil. The EC50 for vardenafil, tadalafil and sildenafil were determined to 25 nM, 380 nM, and 1500 nM respectively.

Cells were also treated with ligand for varying durations of time with ligand concentrations shown in Table 45C and Protein L expression was measured using FACS. The results are shown in Table 45C and Table 45D. Stabilization ratios are shown in Table 45E.

TABLE 45C
Time dependent increase in CAR expression with Vardenafil
Vardenafil 10 μMVardenafilDMSO
EmptyOT-OT-1 uMOT-OT-Empty
VectorCD19-CD19-OT-CD19-CD19-CD19-Vector
Hours(pLVX)052053053052053(pLVX)
014125188148665.95060138671.9
2286311643291878.75545127071
4365411258352676.85408127471.9
24662410439800583.75845124171
4877648118848993.86128128771
7292827961978892.86442132965.9
TABLE 45D
Time dependent increase in CAR expression with Tadalafil and Sildenafil
TadalafilTadalafilSildenafilSildenafil
10 μM1 μM10 μM1 μM
EmptyOT-OT-OT-EmptyOT-OT-OT-
VectorCD19-CD19-CD19-VectorCD19-CD19-CD19-
Hours(pLVX)052053053(pLVX)052053053
06549091336136862.8546915341372
26559112778245165853628012278
46561963032295063.7856032562617
246586086606434662.8811854993159
4862.888277384468362.8740459273283
7258.781188050602758.7611151883506
TABLE 45E
Time dependent increase in CAR expression
TadalafilTadalafilSildenafilSildenafilVardenafil
10 μM1 μM10 μM1 μMVardenafil1 μM
OT-OT-OT-OT-OT-OT-10 μMOT-OT-
TimeCD19-CD19-CD19-CD19-CD19-CD19-OT-CD19-CD19-CD19-
(hrs)052053053052053053052053053
00.970.960.991.081.110.991.031.070.05
21.072.191.931.542.211.792.102.300.06
41.152.382.321.582.562.052.082.770.06
241.475.323.501.394.432.551.796.450.07
481.445.743.641.214.612.551.326.600.07
721.266.064.530.953.902.641.247.360.07

The analysis of the stabilization ratios indicated that OT-CD19-053 is stabilized by all three ligands with increased duration of incubation time with ligand. As expected, 10 μm dose of ligand showed much greater expression of CAR than the 1 μM dose. Regulation was evident even at the lower doses.

Constructs OT-CD19-130, OT-CD19-131 and OT-CD19-132 were cloned into pELNS vectors and transduced into T cells. Three different volumes of lentiviral supernatant were tested on cells i.e. 1 μl and 20 μl. Following transduction, cells were treated with 10 μM Vardenafil or left untreated for 24 hours beginning on day 4. Untransduced cells were also included as negative control. On day 5, the percentage CAR positive cells were measured by FACS using 1 μg/ml CD19 Fc. The results are shown in FIG. 19A.

As shown in FIG. 19A, all three constructs showed a viral dose dependent increase in the percentage of CAR positive cells, in the presence of Vardenafil. Although similar trends were observed in untreated controls, the percentage of CAR positive cells observed with no vardenafil treatment was substantially lesser than the vardenafil treated controls. Among the three constructs, OT-CD19-132 showed lowest basal expression of the CAR in the absence of ligand and the highest percentage of CAR positive cells in the presence of vardenafil. Similar observations were made when comparing the percentage CAR positive cells obtained with different constructs using 20 μl of virus as shown in FIG. 19B, where a shift in the number of cells that are CAR positive was observed in vardenafil treated cells (labelled treatment) compared to untransduced as well as untreated cells.

T cells maintained in culture for over 10 days reach quiescence and accordingly T cells transduced with OT-CD19-131 did not show vardenafil dependent CAR expression at day 11. However, restimulation of the same T cells on day 11 with CD3/CD28 beads (at 3:1 bead:cell ratio, for 24 hours concomitant with ligand treatment) restored vardenafil dependent CAR expression in T cells transduced with 20 μl of virus (FIG. 19C). The effect of restimulation on the expression of the CAR was evident at all concentrations of the virus tested FIG. 19D. Taken together, these data show that CD19 CARs operably linked to hPDE5 DDs demonstrate ligand dependent CAR expression. Further, ligand responsiveness and subsequent CAR expression may be restored in quiescent T cells by restimulation with CD3/CD28 beads.

To test the effect on different ligands on hPDE5-CAR constructs, the constructs were packaged into plasmids and transduced into T cells using 10 μl of virus. On day 9, T cells expressing either OT-CD19-111, OT-CD19-130, OT-CD19-131 or OT-CD19-132 were treated with varying doses of ligand ranging from 0.1 nM to 10 μM for 24 hours. The constitutive construct OT-CD19-063 was included as the positive control, and the cells transduced with the empty vector (pELNS) served as the negative control. Three different ligands for hPDE5 were tested including, Sildenafil, Tadalafil and Vardenafil. Cells were analyzed by FACS and sorted for singlets/live CAR positive cells. The results are shown in FIG. 19E. Among the three ligands tested, all constructs were most responsive to Vardenafil, followed by Tadalafil and Sildenafil. As seen previously, the OT-CD19-131 and OT-CD19-132 showed lower basal expression, and had the higher EC50 values than the other constructs. The experiments were repeated with the OT-CD19-131 construct by transducing T cells with different volumes of virus transduced into T cells using 10 μL, 2 μL, 0.4 μL, or 0.084, of virus and the CAR expression was measured by FACS, both in the presence of all three ligands and in the absence of the ligands. The results are shown in Table 45F, where “basal % CAR+” indicates the percentage of CAR positive cells in the absence of ligand, and the “Max % CAR+,” indicates the maximum expression of the CAR in the presence of ligand. The EC50 is defined as the concentration of a drug/ligand that gives half-maximal response. The response herein refers to the expression of the chimeric antigen receptor.

TABLE 45F
hPDE5 regulation of CD19-CAR
VirusBasal Max VardenafilTadalafilSildenafil
Volume%%EC50EC50EC50
Construct(uL)CAR+CAR+(nM)(nM)(nM)
Empty 10.20.2
vector
(pELNS)
OT-CD19-130.030.0
063
OT-CD19-103.637.5140.01312.2>10000.0
131
OT-CD19-22.029157.01402.8>10000.0
131
OT-CD19-0.40.916.1197.72511.9>10000.0
131
OT-CD19-0.080.45.0220.81857.8>10000.0
131

Among the three ligands tested, higher transduction volume increased the maximum CAR expression level achieved, but did not alter ligand EC50 values.

To test how rapidly hPDE5-CAR can be stabilized with ligand, the indicated constructs were tested in T cells. T cells from donor were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with 104, lentivirus prepared from OT-CD19-063, OT-CD19-111, OT-CD19-130, OT-CD19-131, and OT-CD19-132 constructs. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL, then frozen. Expanded T cells were thawed and restimulated with CD3/CD28 beads for 48 hours. Cells were treated with 10 μM Tadalafil or Vardenafil at various times such that all conditions received 48 hr of bead stimulation with either 0, 2, 4, 6, 24, or 48 hours of ligand treatment. CAR surface expression was measured with 1 μg/mL CD19-Fc. The results are shown in FIG. 19F. In activated T cells, CAR surface expression occurred at nearly maximum levels by 2 hours after ligand addition.

To test whether CD19-CARs showing regulated expression also show regulated cytotoxicity, transduced T cells were tested in a cytotoxicity assay against the CD19-expressing Nalm6 tumor cell line, T cells from a human donor were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with 10 μL lentivirus from OT-CD19-063, OT-CD19-111, OT-CD19-130, OT-CD19-131, and OT-CD19-132. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL, then frozen. Expanded T cells were thawed and cocultured with CD19 expressing target cells, Nalm6-Katushka, at effector:target cell ratio of 10:1 for 6 days, in the absence or presence of Tadalafil. Images captured on the Incucyte Zoom were analyzed for proliferation of target cells by measuring red fluorescence over time (Total NucRed Area). In the absence of ligand, i.e. DMSO, OT-CD19-131 and OT-CD19-132 showed target cell proliferation as measured by the increase in total NucRed area (red fluorescence). Constructs, OT-CD19-130, OT-CD19-111 showed very low levels of red fluorescence indicating basal activity that was comparable to the constitutively expressed CAR construct OT-CD19-063. All constructs tested showed a reduction in red fluorescence when treated with either 3 μM Tadalafil or 10 μM Tadalafil that was comparable to the red fluorescence levels observed with the constitutively expressed CAR. As expected, the untransduced cells showed high levels of red fluorescence both in the presence and absence of ligand.

Constructs showing higher basal CAR expression in T cells, OT-CD19-111 and OT-CD19-130, inhibited target cell growth in the absence of tadalafil. T cells transduced with OT-CD19-132, which had the highest Tadalafil EC50 in terms of CAR expression, required higher concentrations of ligand to generate an in vitro functional response.

To measure cytokine levels in T cells, supernatants from the previous coculture assay were harvested at 48 hours and analyzed for IFNγ and IL2 levels by MSD assay (Meso Scale Discovery's ELISA). The results are shown in FIG. 19G. The cytokine levels at the following effector to target cell rations: 10:1, 3:1, 1:1, 0.3:1, and 0.1:1. High levels of both IFNγ and IL2 are produced by OT-CD19-131 transduced T cells when co-cultured with Nalm6 targets only in the presence of 3 μM Tadalafil, correlating with the cytotoxicity observed.

To confirm the cytotoxicity and cytokine secretion is directly related to CAR expression, OT-CD19-131 transduced T cells were cocultured with Nalm6-Katushka target cells at 10:1 effector:target cell ratio for 6 days in the presence of a dose titration of Tadalafil from 10 μM to 10 nM. The fluorescence of Nalm6 cells was measured over a period of 6 days in response to the following doses of tadalafil: 0.01 μM, 0.04 μM, 0.12 μM, 0.37 μM, 1.11 μM, 3.33 μM, 10 Tadalafil doses at 0.37 μM, 1.11 μM, 3.33 μM, 10 μM showed a reduction in Nalm6 proliferation over 6 days. Lower concentrations (<0.37 μM) tadalafil did not cause a reduction in Nalm6 fluorescence, in fact, Nalm6 cells continue to proliferate over the span of 6 days. Significant CAR expression was detected by FACS using CD19-Fc at Tadalafil concentrations at or above 300 nM. This CAR expression corresponded to Tadalafil dose-dependent cytotoxicity (FIG. 19H) and cytokine secretion of IFNγ and IL2 (FIG. 19I).

The functionality of the CAR transduced T cells was also tested in vitro. T cells were transduced with OT-CD19-131 or the constitutive construct OT-CD19-063. Cells were then frozen. Prior to the experiment, T cells were thawed overnight, and cocultured with Nalm6 target cells stably expressing Katushka RFP. Nalm6 cells express high levels of CD19 antigen and are hence ideal target cells in cell killing assay that test CD19 CAR constructs. T cells were mixed with Nalm6 cells at an effector cell to target cell (E:T) ratio of 5:1 for 12 hours in the presence of 10 μM vardenafil or DMSO. Target cell apoptosis was determined by measuring Annexin V fluorescence over time using the Incucyte instrument. Cell killing is measured as the ratio of the total killed target area and to the NALM6-Katushka area (μM2). As shown in FIG. 19J, the total killed target cell area increased when Nalm6 cells were co-cultured with OT-CD19-131 expressing T cells in the presence of vardenafil. Similar trend was observed in the proliferation of Nalm6 cells (FIG. 19K). The same cells did not result in significant cell killing in presence of DMSO, showing that the target cell killing by the T cells is specifically in response to the presence of the ligand. As expected, the constitutive construct, OT-CD19-063 showed increased total killed target cell area both in the presence and absence of ligand, with a trend towards more killing in the presence of the ligand. Nalm6 cells co-cultured with untransduced T cells and Nalm6 cells that were not co-cultured with T cells did not show an increase in the total killed target area. Taken together, these data show that the regulated CAR construct, OT-CD19-131 is active on antigen positive cells only in response to ligand.

The cell supernatants were also collected from the T cell/Nalm6 cytotoxicity co-culture assays at 66 hours and Interferon gamma levels were measured by MSD assays. The results are shown in Table 45G.

TABLE 45G
Interferon gamma production (pg/mL)
ConstructDMSOVardenafil 10 μM
OT-CD19-131443.992282.98
OT-CD19-0633268.721980.48
Untransduced16.5718.48

As shown in Table 45G, the interferon gamma levels showed a five-fold induction in OT-CD19-131 transduced T cells with the addition of vardenafil. Vardenafil treatment did not induce interferon gamma production in OT-CD19-063 transduced T cells or untransduced T cells, indicating that the ligand specific induction of interferon gamma is related to the increased CAR expression and cell killing observed under similar conditions. The interferon gamma levels in DMSO treated OT-CD19-131 was lower than the levels observed with the constitutive construct indicating that the OT-CD19-131 cells have low basal expression of the CD19 CAR.

To test the efficacy of ligand regulated CAR efficacy in a tumor rejection model, 5 million CAR positive T cells (25 million total T cells) were injected in Nalm6 tumor bearing female NSG mice. The Nalm6-Luc is a B-cell precursor leukemia cell line used to generate an intravenous disseminated tumor model for studying blood tumors. Mice were treated daily with vehicle or Tadalafil at the following mg/kg body weight or mpk: 10 mpk, 30 mpk, or 100 mpk. Constitutive OT-CD19-063 transduced T cells served as a positive control and untransduced T cells as a negative control. T cells were injected 7 days after the Nalm6 cells were implanted. Animals in the Tadalafil groups received 2 doses of ligand prior to T cells being injected. The objective of the study was to test the ligand dose response regulation of a hPDE5 DD CD19 CAR-T and its impact on efficacy. Further, the study was also used to address if the presence of antigen was necessary for detection and expression of the CAR. Dose groups included (a) untransduced T cells (b) untransduced vehicle treated cells (c) Un-transduced cells dosed with Tadalafil 100 mg/kg (d) 5.0 Million CD19+OT-CD19-063 CAR T cells (e) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-063 CAR T cells (Vehicle) (f) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-063 CAR T cells (Tadalafil 100 mg) (g) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 CAR T cells (Vehicle) (h) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 (Tadalafil 10 mg/kg) (i) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 CAR T cells (Tadalafil 30 mg/kg (j) 5.0 Million CD19 positive Nalm6 cells with OT-CD19-131 CART cells (Tadalafil 100 mg/kg). All animals were dosed once a day, orally for 25 days. Tumor burden assessments were made biweekly using bio luminescent imaging and the fluorescence intensity of Nalm6 Luc cells was observed over time. Two terminal collections were made to assess bone marrow, blood and spleen cell populations. Reduction in tumor burden/prevalence was measured by decreased luminescence from Nalm6-Luciferase cells, and was observed in Tadalafil treated CD19-131 animals (FIG. 20A). In FIG. 20A, “const” refers to OT-CD19-063 and “regulated” refers to OT-CD19-131. Taken together these data show that daily oral dosing of tadalafil resulted in dose-dependent suppression of tumor growth and/or reduction in tumor burden. Maximal tumor suppression was comparable to constitutive CAR with very low activity in the absence of drug. Plasma PK was also established in non-tumor-bearing mice of the hPDE5 inhibitors Tadalafil and Vardenafil after a single dose at the indicated dose levels and is shown in FIG. 20B and FIG. 20C.

PDE5 compositions and methods for immunotherapy (2024)
Top Articles
Latest Posts
Article information

Author: Errol Quitzon

Last Updated:

Views: 6244

Rating: 4.9 / 5 (59 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Errol Quitzon

Birthday: 1993-04-02

Address: 70604 Haley Lane, Port Weldonside, TN 99233-0942

Phone: +9665282866296

Job: Product Retail Agent

Hobby: Computer programming, Horseback riding, Hooping, Dance, Ice skating, Backpacking, Rafting

Introduction: My name is Errol Quitzon, I am a fair, cute, fancy, clean, attractive, sparkling, kind person who loves writing and wants to share my knowledge and understanding with you.